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ABSTRACT

Context. The possible presence of amorphous and heterogeneous phases in the inner crust of a neutron star is expected to reduce the
electrical conductivity of the crust, potentially with significant consequences on the magneto-thermal evolution of the star. In cooling
simulations, the disorder is quantified by an impurity parameter, which is often taken as a free parameter.
Aims. We aim to give a quantitative prediction of the impurity parameter as a function of the density in the crust, performing micro-
scopic calculations including up-to-date microphysics of the crust.
Methods. A multicomponent approach was developed at a finite temperature using a compressible liquid-drop description of the ions
with an improved energy functional based on recent microscopic nuclear models and optimized on extended Thomas-Fermi calcu-
lations. Thermodynamic consistency was ensured by adding a rearrangement term, and deviations from the linear mixing rule were
included in the liquid phase.
Results. The impurity parameter is consistently calculated at the crystallization temperature as determined in the one-component
plasma approximation for the different functionals. Our calculations show that at the crystallization temperature, the composition of
the inner crust is dominated by nuclei with charge number around Z ≈ 40, while the range of the Z distribution varies from about
20 near the neutron drip to about 40 closer to the crust-core transition. This reflects on the behavior of the impurity parameter that
monotonically increases with density reaching up to around 40 in the deeper regions of the inner crust.
Conclusions. Our study shows that the contribution of impurities is non-negligible, thus potentially having an impact on the transport
properties in the neutron-star crust. The obtained values of the impurity parameter represent a lower limit; larger values are expected
in the presence of nonspherical geometries and/or fast cooling dynamics.

Key words. stars: neutron – dense matter – plasmas

1. Introduction

It is generally assumed that the composition of an iso-
lated neutron star (NS) is of “cold catalyzed matter”, mean-
ing that determined in the ground state at zero temperature
(see, e.g., Haensel et al. 2007; Chamel & Haensel 2008;
Blaschke & Chamel 2018). In this hypothesis, the crust of an
NS is supposed to be made of pure layers, each consisting of
a one-component Coulomb crystal. However NSs, being born
from core-collapse supernova explosions, are initially hot, with
temperatures exceeding 1010 K. At such temperatures, the crust
of a (proto-)NS is expected to be made of a Coulomb liquid com-
posed of different nuclear species in a charge-compensating elec-
tron background: see Oertel & Hempel (2017) for a review. As
the NS crust cools down, it is generally supposed that this multi-
component plasma (MCP) remains in full thermodynamic equi-
librium until the ground state is reached. However, it is unlikely
for full equilibrium to be maintained, after crystallization occurs,
until T = 0 K. Moreover, if the NS cools down rapidly enough,
the composition of the crust could be frozen at finite tem-
perature, Tf , above the crystallization temperature, Tm (see,

⋆ The tables of the impurity parameter shown in Fig. 6 are only
available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/
cat/J/A+A/640/A77

e.g., Goriely et al. 2011). Therefore, a more realistic picture of
the crust would be that of a multicomponent solid.

For the outer crust, the coexistence of different nuclear
species is not expected to significantly impact the static prop-
erties of the crust. Indeed, because of the relatively low crystal-
lization temperatures, Tm . 109 K, the most probable nucleus
is very close to the ground-state one-component plasma (OCP)
composition, and the contribution of other ions is typically very
small. In the inner crust, the situation is a priori less obvi-
ous, and deviations from the ground-state composition may be
larger, due to the higher crystallization temperature, 109

.

Tm . 1010 K (Haensel et al. 2007). Jones (1999, 2001) indeed
suggested that thermal fluctuation of the charge and neutron
numbers may be quite significant for mass densities of ρB &

1013 g cm−3 near the crystallization temperature. The presence
of amorphous and heterogeneous phases in the inner crust leads
to a higher temperature-independent electrical resistivity and
strong ohmic dissipation, and significant consequences on the
magnetic field evolution were predicted by Jones (2004). More
recently, Pons (2013) suggested that the increased resistivity
due to the amorphous structure could reflect into observational
timing properties of X-ray pulsars. More generally, the pres-
ence of impurities in the crust has notable effects on trans-
port and magneto-rotational properties of the NS (see, e.g.,
Schmitt & Shternin 2018; Gourgouliatos & Esposito 2018 for
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recent reviews), which in turn affect the NS thermal evolution.
For these reasons, although cooling simulations are usually car-
ried out using the ground-state composition, the presence of
various nuclear species is taken into account via an “impurity
factor”, often taken as a free parameter adjusted on observational
cooling data: see, for instance, Viganò (2013).

A microscopic calculation of the impurity parameter at the
crystallization temperature for the outer crust of a non-accreting
unmagnetized NS was recently performed in Fantina et al.
(2020). In the latter work, the nuclear distributions of the
multicomponent liquid plasma at the crystallization point was
computed fully self-consistently, adapting a general formal-
ism originally developed for the description of supernova cores
(Gulminelli & Raduta 2015; Grams et al. 2018). The crystalliza-
tion temperature was determined in the OCP approximation,
using a microscopic nuclear mass model based on deformed
Hartree–Fock–Bogoliubov calculations (HFB-24, Goriely et al.
2013). The study of Fantina et al. (2020), performed on the
outer crust, has subsequently been extended in Carreau et al.
(2020), who calculated the crystallization temperature and the
associated composition in the inner crust using the compress-
ible liquid-drop (CLD) model approach of Carreau et al. (2019),
with parameters optimized on four different microscopic mod-
els: namely BSk22, BSk24, BSk25, and BSk26 (developed by
Goriely et al. 2013). Shell effects, as calculated in Pearson et al.
(2019) for the same functionals, were added to the CLD model.
The use of such an approach instead of a fully microscopic one
not only reduces the computational time, but more importantly
allows us to quantitatively estimate the model dependence of the
results. The outcomes of Carreau et al. (2020) suggest that, while
shell effects are important at the lowest densities close to the
outer crust, the highest source of uncertainties comes from the
smooth part of the nuclear functional, specifically the surface
tension at extreme isospin values.

In the present work, we employed the same CLD model with
parameters optimized on the same functionals as in Carreau et al.
(2020), but we extended it by including a nuclear distribution in
an MCP approach at equilibrium similar to that of Fantina et al.
(2020). This also allows us to calculate the impurity parameter in
the inner crust self-consistently, thus complementing the results
obtained in Fantina et al. (2020) for the outer crust.

The formalism is described in Sect. 2. The numerical results
are presented in Sect. 3; specifically, the composition of the inner
crust is discussed in Sect. 3.1, and the impurity parameter in
Sect. 3.2. Finally, we conclude in Sect. 4.

2. Model of the inner crust

2.1. MCP in nuclear statistical equilibrium

To model a full statistical equilibrium of ions in the inner crust,
we extended the formalism of Fantina et al. (2020), allowing for
the presence of dripped neutrons, which are supposed to con-
stitute a homogeneous gas. The possible contribution of a free
proton gas is expected to be small at the temperatures we con-
sidered, and thus it was neglected. This working hypothesis is
a-posteriori confirmed by the calculation of the proton fugacity,
zp = exp[(µp − mpc2)/(kBT )], µp (mp) being the proton chemi-
cal potential (mass), c the speed of light, and kB the Boltzmann
constant, which never exceeds −20 MeV in the density and tem-
perature domain studied in this paper.

The NS crust at a given depth in the star is supposed
to contain different ion species with mass and charge num-
bers (A( j),Z( j)) associated with different Wigner-Seitz cells of

volume V ( j), such that p j is the frequency of occurrence or prob-
ability of the component ( j), with

∑

j p j = 1. Thermodynamic
quantities are defined in terms of the ion densities of the differ-

ent species n
( j)

N
, which are related to the probabilities p j through

n
( j)

N
= p j/〈V〉, where the bracket notation 〈〉 indicates ensemble

averages.
The different (A( j),Z( j)) configurations are associated with

different baryonic densities n
( j)

B
, such that the total baryonic den-

sity is nB =
∑

j p jn
( j)

B
(see Eq. (14)). Conversely, they share the

same total pressure P imposed by the hydrostatic equilibrium

and the same background densities of electrons, n
( j)
e = ne, and of

free neutrons, n
( j)
g = ng. We also suppose that charge neutrality is

realized in each cell, meaning that the proton density is the same

in each cell (i.e. n
( j)
p = np) and equal to the electron density ne

(i.e. ne = np = Z( j)/V ( j)).
The free energy density of the multicomponent system is

defined as:

F =
∑

j

n
( j)

N
F( j) , (1)

where the free energy per ion of the component ( j) accounts for
the contribution of the ion, the dripped neutrons, and the elec-
trons:

F( j) = F
( j)

i
+ F

( j)
n + F

( j)
e , (2)

including their mutual interactions1. For future convenience, the
nuclear interactions between the ion and the neutron gas, and the
Coulomb interactions between the ion and the electrons, are all

included in the term F
( j)

i
. Therefore, the free neutron and elec-

tron components are simply given by:

F
( j)
n = V ( j)Fg ; F

( j)
e = V ( j)Fe , (3)

where Fg(e) is the free energy density of a uniform neutron (elec-
tron) gas at density ng (ne). The explicit expression of these terms

is discussed in Sect. 2.4. The ion contribution, F
( j)

i
, can be writ-

ten as:

F
( j)

i
= F

( j),0

i
+ δF( j) . (4)

The first term in Eq. (4), F
( j),0

i
, noting mn (mp) the neutron (pro-

ton) mass, is given by:

F
( j),0

i
= (A( j) − Z( j))mnc2 + Z( j)mpc2 + F

( j),nuc

i

+F
( j),id

i
+ F

( j),int

i
, (5)

where F
( j),nuc

i
is the internal nuclear free energy and F

( j),int

i
is the

Coulomb interaction contribution. The explicit expressions of
these terms, as well as of the last term in Eq. (4), δF( j), account-
ing for the interaction between the ion and the surrounding (neu-
tron) gas, depend on the adopted model and are discussed in
Sects. 2.3 and 2.4. Finally, since in this work we are only inter-
ested in temperatures higher or equal to the melting temperature,
where the MCP is expected to be in the liquid phase, the “ideal”

contribution, F
( j),id

i
, accounts for the translational center-of-mass

motion:

F
( j),id

i
= kBT















ln















n
( j)

N
(λ( j))3

g
( j)
s















− 1















, (6)

1 We denote with capital letters the (free) energy per ion, for example,
F, while the notation F is used for the free energy density.
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where g
( j)
s is the spin degeneracy. For this, we take g

( j)
s = 1 for

nuclei whose ground-state angular momentum is unknown, and
the de Broglie wavelength of component ( j) is given by:

λ( j) =

√

2π(~c)2

M⋆( j)c2kBT
, (7)

~ being the Planck-Dirac constant, and the effective mass of the
ion M∗( j) is defined as

M⋆( j)c2 = (A( j) − Z( j))mnc2 + Z( j)mpc2 + F
( j),nuc

i
+ δF( j) . (8)

The probabilities p j and the densities n
( j)

N
are calculated so as to

maximize the thermodynamic potential in the canonical ensem-
ble. Because of the chosen free energy decomposition, we can
observe that the electron and free neutron part of the free energy

density, Fe and Fg, do not depend on n
( j)

N
, for instance,

F
({

n
( j)

N

})

= Fi

({

n
( j)

N

})

+ Fe + Fg , (9)

where

Fi =
∑

j

n
( j)

N
F

( j)

i
. (10)

Therefore, the variation can be performed on the ion part only:

dFi =
∑

j

(

Ω
( j)

i
+ kBT ln n

( j)

N

)

dn
( j)

N
, (11)

where the single-ion canonical potential is given by:

Ω
( j)

i
=

(

F
( j)

i
− F

( j),id

i

)

+ kBT ln

(

λ( j)
)3

g
( j)
s

+n
( j)

N

∂
(

F
( j)

i
− F

( j),id

i

)

∂n
( j)

N

· (12)

In Eq. (11), the variations dn
( j)

N
are not independent, because of

the normalization of probabilities and the baryonic number and
charge conservation laws:

1

〈V〉
=

∑

j

n
( j)

N
, (13)

nB − ng =
∑

j

n
( j)

N
A( j)















1 −
ng

n
( j)

0















, (14)

np =
∑

j

n
( j)

N
Z( j) . (15)

The correction factor on the right hand side of Eq. (14) accounts
for the excluded volume, meaning the gas cannot occupy the
nucleus volume. In the same equation, nB is the total baryonic

density, and n
( j)

0
is the average density of the ion ( j). This latter

can be calculated by imposing equilibrium with the nucleon gas
via:

n
( j)2

0

A( j)

∂F
( j),0

i

∂n
( j)

0

= Pg , (16)

where Pg = n2
gd(Fg/ng)/dng is the pressure of the neutron

gas. This expression is explicitly demonstrated in Sect. 2.4 (see
Eq. (38)).

The constraints Eqs. (13)–(15) are taken into account by
introducing Lagrange multipliers (α, µn, µp) leading to the fol-

lowing equations for the equilibrium densities n
( j)

N
:

∑

j

(

Ω
( j)

i
+ kBT ln n

( j)

N
− α

)

dn
( j)

N

− µn

∑

j

N( j)dn
( j)

N
− µp

∑

j

Z( j)dn
( j)

N
= 0 , (17)

with N( j) = A( j)
(

1 − ng/n
( j)

0

)

− Z( j). Considering independent

variations, the equilibrium distributions are given by

p j = N exp















−
Ω̃

( j)

i

kBT















, (18)

with the normalization

N = exp

(

α

kBT

)

=
∑

j

exp















−
Ω̃

( j)

i

kBT















. (19)

The single-ion grand-canonical potential Ω̃
( j)

N
reads:

Ω̃
( j)

i
= Ω

( j)

i
− µnN( j) − µpZ( j) , (20)

where µn and µp can be identified with the neutron and proton
chemical potentials, respectively. In the definitions above, the
ion free energy contains the rest-mass energy, thus the chemical
potentials include the rest-mass energies as well.

The calculation of the grand-canonical potential, Ω̃
( j)

i
,

requires the evaluation of the chemical potentials µn, µp, as well
as of the rearrangement term (last term in Eq. (12)):

R( j) = n
( j)

N

∂
(

F
( j)

i
− F

( j),id

i

)

∂n
( j)

N

· (21)

These terms are worked out in Sects. 2.2 and 2.5, respectively.
Once the abundances of the different ions are calculated via

Eq. (18) at the crystallization temperature, it is also possible to
calculate the impurity parameter of the solid crust, which repre-
sents the variance of the ionic charge distributions and is defined
as (see, e.g., the discussion in Sect. 7 in Meisel et al. 2018 for a
review)

Qimp =
∑

j

p(Z( j))(Z( j) − 〈Z〉)2 , (22)

where p(Z( j)) is the normalized probability distribution (inte-
grated over all N( j)) of the element Z( j).

2.2. Evaluation of the chemical potentials

In a given thermodynamic condition expressed by a temperature
T and a pressure P, the proton and neutron chemical potentials
can be determined using the thermodynamic relation F + P =
µnnn + µpnp + µene, giving, together with the beta-equilibrium
condition µn = µe+µp (µe being the electron chemical potential),

µn =
F + P

nB

; µe =
Fe + Pe

np

, (23)

where the baryon and proton densities, nB and np, are given
by Eqs. (14) and (15), respectively, the free energy density
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F is given by Eq. (1), and Fe (Pe = n2
ed(Fe/ne)/dne) is

the free energy density (pressure) of the electron gas at den-
sity np = ne. With this prescription, the equilibrium proba-
bilities can only be determined by the solution of a complex
nonlinear system of coupled equations which is a challenging
numerical task. Such a complete nuclear statistical equilib-
rium formalism has been adopted by different authors (see
Oertel & Hempel 2017; Burgio & Fantina 2018 for a review);
however, simplified nuclear functionals were adopted, the den-
sity (instead of the pressure) was imposed, and the rearrange-
ment term was neglected.

In the outer crust regime, it was found by Fantina et al.
(2020) that a perturbative implementation of the nuclear statis-
tical equilibrium as proposed by Grams et al. (2018) leads to
a very fast convergence, with reduced computational cost and
increased numerical precision. We therefore adopt this same pre-
scription in the inner crust. In the perturbative treatment, the
equilibrium problem is solved in the OCP approximation, as
detailed in Sect. 2.3 below. This gives a first guess for the chem-
ical potentials as:

µOCP
n =

F OCP + P

nOCP
B

; µOCP
p = µOCP

n −
Fe + Pe

nOCP
p

, (24)

where F OCP is the equilibrium free energy density in the OCP
approximation, and nOCP

B
, nOCP

p are the baryon and proton densi-
ties that, in the OCP approximation, lead to the pressure P (see
Sect. 2.3). Similarly, the electron quantities Fe and Pe are cal-
culated at ne = nOCP

p . With this guess, the ion abundances are
readily calculated via Eq. (18), and again using Eq. (23) we can
get an improved estimation of the chemical potentials as

µn =

∑

j n
( j)

N
F( j)

nB〈V〉
+

P

nB

, (25)

ypµe =

∑

j n
( j)

N
F

( j)
e

nB〈V〉
+

Pe

nB

, (26)

where yp = 〈Z〉/(nB〈V〉) is the average proton fraction of the

mixture, with 〈Z〉 =
∑

j p jZ
( j). The problem can thus be solved

by iteration. It turns out that the difference between the initial
guess, Eq. (24), and the result of the first iteration, Eqs. (25)–
(26), is so small for all pressures and temperatures considered in
this work, that the simple OCP estimation, Eq. (24), can be kept.

The full MCP calculation becomes therefore computation-
ally equivalent to the much simpler OCP one, with the additional
advantage that the MCP results can be compared to the more
standard OCP ones with no extra computational cost.

2.3. The OCP approximation

In the OCP approximation, the equilibrium configuration of
inhomogeneous dense matter in the inner crust in full thermo-
dynamic equilibrium is obtained by minimizing the free energy
density in a Wigner-Seitz cell of volume V with the constraint
of a given baryon density, nB. (see Lattimer & Swesty 1991;
Gulminelli & Raduta 2015; Carreau et al. 2020).

Similarly to the general MCP case of Sect. 2.1, we write:

F (A, I, n0, np, ng) =
Fi + Fn + Fe

V
, (27)

where the variational variables are the mass number A and
isospin ratio I = 1 − 2Z/A of the ion, its internal density n0, the
proton density in the cell np = ne, and the density of the homo-
geneous gas of dripped neutrons ng. As in Sect. 2.1, see Eq. (4),

we include the interactions of the nucleus with the neutrons and
electrons in the term Fi:

Fi = F0
i + δF , (28)

with

F0
i = (A − Z)mnc2 + Zmpc2 + Fnuc

i

+F id
i + F int

i . (29)

In the OCP approximation, the translational motion is limited to
the single Wigner-Seitz cell (nN = 1/V):

F id
i = kBT

[

ln

(

λ3

Vgs

)

− 1

]

, (30)

where the de Broglie wavelength λ is given by the same expres-
sion as in Eq. (7), with M⋆( j) = M⋆. The interacting part of the
ion free energy can be decomposed as:

F int
i = Fii,liq + F

pol

ie,liq
. (31)

Analytical formulae were derived by Potekhin & Chabrier
(2000) for these two terms; see their Eqs. (16) and (19), respec-
tively. For this study, only the first term is included; indeed, the
polarization correction is found to have no effect in the density
and temperature regime studied in the present paper and is there-
fore neglected. In addition, the nuclear finite-size correction is
also included. The latter is derived from the Gauss theorem and
reads:

Efs =
2np

n0(1 − I)

e2

r0

Z2

A1/3
, (32)

with r0 = (4πn0/3)−1/3 and e as the elementary charge.
Finally, the interaction between the ion and the surrounding

neutron gas is handled in the excluded volume approximation:

δF = −
A

no

Fg . (33)

The equilibrium configuration is obtained by minimizing
Eq. (27) with respect to the variational variables using the baryon
density constraint limited to a single cell,

nB = ng +
A

V

(

1 −
ng

n0

)

. (34)

This leads to the following system of coupled differential equa-
tions2:

∂(F0
i
/A)

∂A
= 0, (35)

2

A













∂F0
i

∂I
−

np

1 − I

∂F0
i

∂np













= µe, (36)

F0
i

A
+

1 − I

A

∂F0
i

∂I
= µB −

Pg

n0

, (37)

n0
2
∂(F0

i
/A)

∂n0

= Pg, (38)

2 These equations are equivalent to Eqs. (8)–(11) in Carreau et al.
(2020). The notation Fi in Carreau et al. (2020) is indeed equivalent to
the notation F0

i
used in the present paper. We note, however, that there

is a misprint in Eq. (9) in Carreau et al. (2020) (although the calcula-
tions were done correctly); the term ∆mn,pc2 should not appear in their
Eq. (9).
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where the gas pressure is given by Pg = n2
gd(Fg/ng)/dng =

ngµB − Fg, and the baryon chemical potential µB results in:

µB =
2npn0

n0(1 − I) − 2np

∂(F0
i
/A)

∂ng

+
dFg

dng

· (39)

In our parameterization (see Sect. 2.4), the in-medium modi-
fication of the nuclear energy arising from the external gas is
governed by a single parameter, p, which does not depend on
the external neutron density, but only on the isospin asymme-
try, I. Therefore, ∂F0

i
/∂ng = 0, and the baryon chemical poten-

tial can be identified with the chemical potential of the gas:
µB = µg ≡ dFg/dng.

At each value of the baryon density nOCP
B

and temperature
T ≥ Tm above the crystallization point, the system of coupled
differential equations, Eqs. (35)–(38), is numerically solved as
in Carreau et al. (2019). This procedure leads to the determina-
tion of the favored liquid composition (A, I, n0, np, ng)|OCP and to

the evaluation of the total free energy and pressure, F OCP and P,
as well as of the electron component, Fe(nOCP

e ), Pe(nOCP
e ). These

quantities allow one to compute the chemical potentials of the
MCP using Eq. (24).

2.4. The free energy functional

The free energy functional for an isolated nucleus in the vacuum
is modeled using the CLD model of Carreau et al. (2020), which
we briefly outline here.

The nuclear free energy Fnuc
i

at temperature T of a nucleus
of mass number A, isospin asymmetry I, and average density n0,
is decomposed into a bulk, surface, and Coulomb part as:

Fnuc
i = A fb(n0, I,T ) + Fsurf+curv + FCoul , (40)

where fb(nB, δ,T ) represents the free energy per baryon of bulk
nuclear matter, with nB = np +nn, δ = (nn −np)/nB, and np(nn) is
the homogeneous proton (neutron) density. Assuming spherical
nuclei, we write the Coulomb energy as:

FCoul =
3

5

e2

r0

Z2

A1/3
, (41)

with the surface and curvature free energies as in Newton et al.
(2013), Lattimer & Swesty (1991):

Fsurf+curv = 4πr2
0σsA

2/3

+8πr0σs

σ0,c

σ0

α

(

β −
1 − I

2

)

A1/3, (42)

with α = 5.5, and an isospin-dependent surface tension given by:

σs = σ0

2p+1 + bs

(Z/A)−p + bs + (1 − Z/A)−p
· (43)

The surface and curvature parameters σ0, bs, p, σ0,c, and β are
optimized on extended Thomas-Fermi (ETF) mass tables built
with the same nuclear functional adopted for the bulk term, see
Carreau et al. (2020) for details. The same functional is also used
to compute the free energy density of the neutron gas,

Fg = ng fb(ng, 1,T ) + ngmnc2 . (44)

In principle, a shell and pairing correction should be added to
the nuclear free energy expression, Eq. (40). However, it was
shown in Carreau et al. (2020) that these corrections rapidly fade

away with the temperature, and we thus consider that they can
be neglected in the temperature range we explore in this work.

Concerning the nuclear models, we use the same functionals
as in Carreau et al. (2020), namely the recent functionals of the
BSk family BSk22, BSk24, BSk25, and BSk26 introduced by
Goriely et al. (2013). These realistic microscopic models span a
relatively large range in the symmetry energy parameters con-
sistent with existing experimental constraints, thus covering the
most important part of the present equation-of-state uncertainty
(Pearson et al. 2014, 2018), meaning that the spread of the pre-
dictions of those models can be taken as a reasonable estimation
of the model dependence of our results.

Finally, the free energy density Fe and pressure Pe of
the electron gas are calculated within a relativistic Sommer-
feld expansion. The complete expressions can be found in
Haensel et al. (2007): see their Eqs. (2.65) and (2.67), respec-
tively. Exchange and correlation contributions are found to be
very small in the ranges of density and temperature explored in
this work and can be safely neglected.

2.5. Evaluation of the rearrangement term

The computation of the equilibrium distributions, Eq. (18),
associated with a thermodynamic condition characterized by a
temperature T , and chemical potentials µn, µp, requires the eval-
uation of the rearrangement term entering Eq. (12):

R( j) = n
( j)

N

∂
(

F
( j)

i
− F

( j),id

i

)

∂n
( j)

N

· (45)

As already discussed in Fantina et al. (2020), the rearrange-
ment term arises from the self-consistency induced by the
Coulomb part of the ion free energy. This stems from the fact
that, due to the strong incompressibility of the electrons, we have
imposed charge conservation at the level of each cell:

ne = np =
∑

j

n
( j)

N
Z( j) =

Z( j)

V ( j)
· (46)

This is at variance with the baryonic density, which can fluctuate
from cell to cell (see Eq. (14)). As a consequence of that, any
component of the free energy density that depends on the local

cell proton density n
( j)
p = np leads to a dependence on the local

density n
( j)

N
through Eq. (46). Within the functional described in

Sect. 2.4, this is only the case for the Coulomb interaction F
( j),int

i
.

The rearrangement term of component ( j) thus reduces to:

R( j) = n
( j)

N

∂F
( j),int

i

∂n
( j)

N

∣

∣

∣

∣

∣

∣

∣

{n
(i)

N
}i, j

= n
( j)

N
Z( j)
∂F

( j),int

i

∂np

, (47)

where we used Eq. (46), implying the relation ∂np/∂n
( j)

N
= Z( j).

Following Grams et al. (2018), to avoid the complication of a
self-consistent resolution of Eq. (18), we looked for an approxi-
mation of Eq. (47) using the requirement that the most probable
ion in the MCP mixture should coincide with the OCP result, if
nonlinear mixing terms in the MCP are omitted. This condition
is a direct consequence of the principle of ensemble equivalence
in the thermodynamic limit (see Gulminelli & Raduta 2015).

To look for the extremum of Eq. (18), one has to consider that
in the MCP, both np and ng are imposed once the thermodynamic
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condition is specified. Therefore, these densities no longer act as
constraints and should not be varied. The variation of Eq. (18)
with respect to the ion variables A, I, n0 thus gives:

n0
2

A













∂F0
i

∂n0

+
∂R

∂n0













= Pg, (48)

2

A













∂F0
i

∂I
+
∂R

∂I













= µn − µp, (49)

∂F0
i

∂A
+
∂R

∂A
+

1 − I

A













∂F0
i

∂I
+
∂R

∂I













= µn −
Pg

n0

, (50)

where the partial derivatives are calculated at the values corre-
sponding to the equilibrium OCP solution, and F0

i
is given by

Eq. (29) using Eq. (30), meaning by the OCP functional, that is
nonlinear mixing terms are excluded.

By comparing Eqs. (48)–(50) to the OCP ones, Eqs. (35)–
(38), and using Pg = ngµn − Fg, we can deduce that R( j) should

not depend on n
( j)

0
, that is R( j) = R( j)(A( j), I( j)), and that at the

OCP solution, we should have

1 − I

A

∂R

∂I
= −
∂R

∂A
· (51)

This is satisfied if R( j) linearly depends on Z( j) = A( j)(1− I( j))/2.
Our final expression for the rearrangement term is therefore:

R( j) ≃ Z( j)

〈

〈n
( j)

N
〉∂F

( j),int

i

∂np

〉

j

= Z( j)













1

V

∂F int
i

∂np













OCP

, (52)

where the quantity in the parentheses is calculated at the OCP
solution.

3. Numerical results

We computed the finite-temperature composition of the inner
crust of non-accreting unmagnetized NSs within our MCP
approach, thus including a distribution of nuclei in nuclear sta-
tistical equilibrium. For the considered BSk functionals, the
recent calculations of Pearson et al. (2020) show that nonspher-
ical pasta structures are expected to be present at the highest
densities above nB ≈ 0.05 fm−3, close to the crust-core transi-
tion point. Since we only consider spherical nuclei in the present
study, we limited our calculation to the density domain extend-
ing from the neutron-drip point to nB = 0.04 fm−3.

All the results presented in this section were obtained using
the BSk CLD models, with the surface and curvature param-
eters fitted to the corresponding ETF calculations and crust-
core transition densities (see Table 1 of Carreau et al. 2020 for
the explicit parameter values). In Sect. 3.1, the results for the
inner-crust composition at a finite temperature are shown for the
BSk24 CLD model, as an illustrative example, while the impu-
rity parameter is presented in Sect. 3.2 for all four of the con-
sidered CLD models based on the BSk22, BSk24, BSk25, and
BSk26 functionals.

Our calculations of the liquid MCP were performed at
the crystallization temperature Tm and, for comparison, at
1010 K=T > Tm. The reason of this choice stems from the
fact that, depending on the NS cooling timescales, the com-
position may be already frozen at some temperature Tf > Tm

(see e.g., Goriely et al. 2011). In Carreau et al. (2020), the crys-
tallization temperature of the inner crust was estimated to lie
between ≈2.5 × 109 K and ≈8 × 109 K for the considered CLD
models (see their Figs. 5 and 7, panel (a)). Therefore, we chose

10−3 10−2

nB [fm−3]

0

200

400

600

800

1000

Acell

A

Z

(a)MCP average

MCP most probable

OCP solution

10−3 10−2

nB [fm−3]

Acell

A

Z

(b)

Fig. 1. Variation with baryon density nB of the average (solid lines)
and most probable (dashed lines) values of the charge number Z (blue
lines), cluster mass number A (orange lines), and total mass number Acell

(red lines) in the inner crust at two selected temperatures: T = 1010 K
(panel a), and T = Tm (panel b). Results obtained in the one-component
plasma (OCP) approximation are also shown (dotted lines).

Tf = 1010 K as an illustrative example. Indeed, a more realistic
estimate of Tf would require dynamical simulations, which are
beyond the scope of this paper.

3.1. Equilibrium composition of the MCP

The average and most probable mass and charge number in the
MCP are displayed in Fig. 1 as a function of the baryon density
in the inner crust for T = 1010 K (panel a) and T = Tm (panel
b). For comparison, the results obtained in the OCP approxima-
tion are also shown (dotted lines). We can see that the average
and most probable values in the MCP approach follow the OCP
ones very closely. This means that the deviations from the lin-
ear mixing rule in the liquid phase are small, as already noted
in Fantina et al. (2020) for the outer crust. While the mass num-
bers increase with density, the charge number is almost constant,
Z ≈ 40. The latter value is very close to that obtained at zero
temperature (see also, the dotted curve in Fig. 6, panel (b), in
Carreau et al. 2020 and Fig. 12 in Pearson et al. 2018), suggest-
ing that the presence of Z ≈ 40 ions in the inner crust is a robust
result.

To evaluate the width of the distribution, in Fig. 2 we show
the normalized probability distribution p(Z) for T = 1010 K and
T = Tm and for two selected densities in the inner crust: nB =

5× 10−4 fm−3 (panel a) and nB = 10−2 fm−3 (panel b). The peaks
of the distributions, meaning the most probable Z, coincide with
the charge numbers predicted in the OCP approximation (shown
by the associated arrows), thus indicating that the linear mix-
ing rule is a good approximation. To assess the importance of
the rearrangement term, Eq. (47), we use vertical lines to mark
the average values of the charge number, 〈Z〉, obtained when
this term is not included in the calculations. We observe that the
effect of the rearrangement term is significant, particularly at a
higher density. Without taking this term into account, the distri-
bution is systematically and considerably shifted toward a lower
Z, proving that the rearrangement term is actually needed to sat-
isfy the thermodynamic consistency. We can also notice that,
as expected, the distributions become broader with increasing
temperature and density, thus making the OCP approximation
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Fig. 2. Normalized probability distribution p(Z) for nB = 5 × 10−4 fm−3

(panel a) and nB = 10−2 fm−3 (panel b) at two selected temperatures:
T = Tm (orange squares), and T = 1010 K (blue circles). Arrows indi-
cate the OCP solutions. Vertical dashed lines correspond to the value of
〈Z〉 obtained without considering the rearrangement term (see text for
details).

less reliable. The flattening of the distribution is more clearly vis-
ible in Fig. 3, where the normalized probability distribution p(Z)
at the crystallization temperature is plotted for different increas-
ing baryon densities in the inner crust. While the average value
of Z is centered around 40 throughout the inner crust, the range
of Z of the distribution varies from ≈20 closer to the neutron drip
up to ≈40 near the crust-core transition.

To better assess the evolution of the nuclear distribution,
both in charge and mass number with density and tempera-
ture, in Fig. 4 we show the normalized probability distribution
p(Z,N) for two selected densities in the inner crust: nB = 5 ×
10−4 fm−3 (panels (a) and (b)) and nB = 10−2 fm−3 (panels (c)
and (d)), both at T = 1010 K (panels b and d) and T = Tm (panels
(a) and (c)). As expected, going from lower to higher densities
(upper to lower panels), we observe that the ion species become
more neutron rich and that the distribution, both in Z and N,
broadens when going from lower to higher temperatures (left to
right panels).

3.2. Impurity parameter

The impurity parameter at the crystallization temperature is
shown in the whole crust in Fig. 5, as calculated with the BSk24
CLD model (solid line). The black dot marks the neutron-drip
point. We can see that the impurity parameter in the inner crust is
higher than in the outer crust, meaning that the distribution is less
peaked, thus the OCP approximation is less reliable than in the
outer crust. Indeed, larger values of Qimp indicate more appre-
ciable deviations from the OCP predictions. For comparison,
we also plot the impurity parameter, taken from Fantina et al.
(2020), calculated in the outer crust with the HFB-24 model
(dashed line). The latter calculations show more prominent vari-
ations of Qimp with respect to the CLD model calculations. This
is due to the natural inclusion of shell effects in the fully micro-
scopic calculations, which exhibit bimodal distributions around
values of pressure corresponding to the simultaneous presence
of the two characteristic elements of adjacent layers (see Fig. 6
in Fantina et al. 2020). These strong fluctuations are naturally
smoothed out in the CLD model, because the nuclear functional
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Fig. 3. Normalized probability distribution p(Z) with increasing baryon
density nB in the inner crust at the crystallization temperature Tm.
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Fig. 4. Normalized probability distribution of nuclei p(N,Z) for four
chosen thermodynamic conditions. Panel a: nB = 5×10−4 fm−3, T = Tm;
panel b: nB = 5 × 10−4 fm−3, T = 1010 K; panel c: nB = 10−2 fm−3,
T = Tm; panel d: nB = 10−2 fm−3, T = 1010 K. In each panel, the OCP
solution coincides with the intersection of the black lines.

varies continuously with A and Z, and so does the probability.
However, we can observe that the CLD calculation nicely inter-
polates the microscopic results, with an average impurity factor
steadily increasing with the density and lying in the Qimp ≈

0, 1−2 interval. In the inner crust, neutrons drip out of the finite
ion volume, and the associated shell effects naturally disappear
(Chamel 2006). The inclusion of proton shell effects in the inner
crust would require a formidable numerical investment, which is
far beyond the scope of the paper. Moreover, it was suggested
in Carreau et al. (2020) that these effects are small at the higher
melting temperature of the inner crust, and that their effect on the
observables is smaller than the uncertainty brought by our imper-
fect knowledge of the smooth part of the energy functional. For
this reason, shell effects were completely neglected in our study.
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Fig. 5. Variation with baryon density nB of the impurity parameter
Qimp in the crust at the crystallization temperature T = Tm. In the
outer crust regime, the solid (dashed) line represents the BSk24 CLD
(HFB-24) prediction. In the inner crust regime, the impurity parameter
is calculated in the CLD approximation. Points indicate the neutron-drip
transition.

We expect that a fully microscopic calculation would still present
oscillations in Qimp beyond the drip point, that these oscillations
should be progressively damped going deeper in the star, and
that our calculation can be taken as a smooth interpolation of
that oscillating behavior.

To have a quantitative prediction of the impurity factor, the
problem of model dependence has to be addressed. Apart from
the modeling of finite temperature shell effects discussed above,
the main source of uncertainty of the calculation comes from the
choice of the nuclear functional. We show, in Fig. 6, the impu-
rity parameter (Eq. (22)) as a function of the baryon density in
the inner crust, at the crystallization temperature Tm (solid line),
for the four considered BSk CLD models. These data are avail-
able in tabular format at the CDS. Considering that the chosen
models are believed to cover the main uncertainty on the nuclear
equation of state at subsaturation density (Pearson et al. 2018),
we can take the spread of Qimp values obtained by the four cal-
culations as a reasonable estimation of the uncertainty on the
impurity parameter. Since this latter represents the variance of
the charge distribution, low values of Qimp indicate that the dis-
tribution is quite peaked, and thus the OCP approach is a good
approximation, which can also be seen from Figs. 1 and 2, panel
(a). The monotonic increase of the impurity parameter with den-
sity is also in accordance with Fig. 3, which clearly shows the
growth of the width of the charge distribution with increasing
density. While at lower densities all the models predict similar
values of the impurity parameter (.5), at higher densities the
spread among the models becomes larger, and the model associ-
ated with the lower (larger) symmetry energy coefficient at sat-
uration has the larger (lower) Qimp. The same trend is observed

at T = 1010 K (dashed lines in Fig. 6), although the hierarchy of
the models is not preserved.

4. Conclusions

In this paper, we present a multicomponent approach to the mod-
eling of the crust of isolated, unmagnetized NSs. Completing the
work of Fantina et al. (2020) on the outer crust, the composition
of the inner crust is evaluated with an extended nuclear statis-
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Fig. 6. Variation with baryon density nB of the impurity parameter Qimp

in the inner-crust regime at two selected temperatures: T = 1010 K, and
T = Tm, based on BSk22 (red lines), BSk24 (black lines), BSk25 (blue
lines), and BSk26 (green lines) CLD calculations.

tical equilibrium based on a CLD model for the nuclear part of
the ion energetics. To achieve thermodynamical consistency, a
rearrangement term is explicitly worked out. This term has an
important effect on the distributions and it is necessary to recover
the correct limit at zero temperature. Since NSs are born hot,
the equilibrium composition of a mature NS can be determined
assuming a liquid phase for the MCP, at the lowest temperature at
which strong and weak equilibrium are attained. In the absence
of a dynamical estimation of the associated reaction rates, we
consider the lowest temperature limit as given by the OCP crys-
tallization temperature Tm. We show that at that temperature, the
OCP approximation gives a very good estimation of the aver-
age composition of the inner crust, with nonlinear mixing terms
playing a very small role in the liquid phase. However, an impor-
tant contribution of impurities is obtained, favoring the picture of
a temperature-independent high resistivity in the inner crust for
all T < Tm.

In order to reach quantitative predictions for the associated
impurity parameter, we considered four different realistic micro-
scopic nuclear functionals of the BSk family, which cover the
present uncertainty in the nuclear modeling below the satura-
tion density of nuclear matter. The impurity parameter is seen to
increase with the density, and values in the Qimp ≈ 20−40 inter-
val are reached at the highest densities considered in this study,
namely nB = 0.04 fm−3. Higher values of the impurity parameter
might be expected in the deepest region of the inner crust, close
to the core-crust transition, due to the presence of nonspheri-
cal pasta phases, which have not been considered in the present
study.
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