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INNER DERIVATIONS AND NORM EQUALITY

MOHAMED BARRAA AND MOHAMED BOUMAZGOUR

(Communicated by Joseph A. Ball)

Abstract. We characterize when the norm of the sum of two bounded oper-
ators on a Hilbert space is equal to the sum of their norms.

1. Introduction

Let H denote a complex Hilbert space and let L(H) denote the algebra of all
bounded linear operators on H . For A and B in L(H), the equation

‖A+B‖ = ‖A‖+ ‖B‖(∗)
was studied by many authors; see for instance [1], [8] and the references therein. In
[1], it is shown that an operator B satisfies the equation ‖I +B‖ = 1 + ‖B‖ if and
only if the norm ‖B‖ lies in the approximate point spectrum of B; here I denotes
the operator identity on H . Another type of result in this direction (see Lin [8])
shows that if two operators A and B in L(H) satisfy equation (∗), then 0 must be
in the approximate point spectrum of the operator ‖B‖A− ‖A‖B; moreover C. L.
Lin proved that the converse holds if either A or B is an isometric operator.

In section 2 of the present paper we shall give a necessary and sufficient condition
for any pair of operators A and B in L(H) to satisfy equation (∗). Moreover,
we show that in general the condition of [8] that 0 lies in the approximate point
spectrum of ‖B‖A− ‖A‖B is not necessary to get ‖A+B‖ = ‖A‖+ ‖B‖.

In section 3, we shall apply the main result of section 1 to the theory of inner
derivations, and we thereby answer the question of L. Fialkow [3] concerning when
the norm of the restriction of a derivation to a norm ideal in L(H) is independent
of the ideal.

In order to state our results in detail, we first recall some notations and results
from the literature. For A ∈ L(H), let σ(A), σap(A) and r(A) denote respectively
the spectrum, approximate point spectrum and spectral radius of A. Recall that a
complex number λ ∈ σap(A) if there exists a unit sequence {xn}n ⊆ H such that
limn ‖(A − λ)xn‖ = 0. Since the boundary of σ(A) is contained in σap(A), then
‖A‖ ∈ σ(A) if and only if ‖A‖ ∈ σap(A).

The numerical range of A is defined by W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1} and
the numerical radius of A is defined by w(A) = sup{|λ| : λ ∈ W (A)}. Note that
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W (A) is a compact convex subset of the plane and σ(A) ⊆ W (A) [6], where the
bar denotes the closure. From [6], it turns out that the norm ‖A‖ lies in W (A) if
and only if ‖A‖ lies in σap(A).

2. Norm equality

In this section we shall characterize when the norm of the sum of two operators
on H is equal to the sum of their norms. The main result of this section is the
following.

Theorem 2.1. Let A, B ∈ L(H) be non-zero. Then the equation ‖A + B‖ =
‖A‖+ ‖B‖ holds if and only if ‖A‖‖B‖ ∈W (A∗B).

Proof. Suppose ‖A + B‖ = ‖A‖ + ‖B‖. There exists a sequence of vectors {xn}n
with ‖xn‖ = 1 for each n and such that limn ‖Axn +Bxn‖ = ‖A‖+ ‖B‖. Since

‖Axn +Bxn‖ ≤ ‖Axn‖+ ‖Bxn‖ ≤ ‖A‖+ ‖Bxn‖ ≤ ‖A‖+ ‖B‖,
then

lim
n

(‖A‖+ ‖Bxn‖) = ‖A‖+ ‖B‖.

Hence we deduce that limn ‖Bxn‖ = ‖B‖. Similarly, we obtain limn ‖Axn‖ = ‖A‖.
From the identity

‖Axn +Bxn‖2 = ‖Axn‖2 + ‖Bxn‖2 + 2<(〈A∗Bxn, xn〉) (< : real part),

we see that

lim
n
<(〈A∗Bxn, xn〉) = ‖A‖‖B‖.

Since |〈A∗Bxn, xn〉| = ((<(〈A∗Bxn, xn〉))2 + (=(〈A∗Bxn, xn〉))2)
1
2 (= : imaginary

part), and |〈A∗Bxn, xn〉| ≤ ‖A∗Bxn‖ ≤ ‖A‖‖B‖, we infer that

lim
n
|〈A∗Bxn, xn〉| = ‖A‖‖B‖.

Thus limn=(〈A∗Bxn, xn〉) = 0, whence limn〈A∗Bxn, xn〉 = ‖A‖‖B‖, i.e., ‖A‖‖B‖
∈W (A∗B).

For the converse, assume that ‖A‖‖B‖ ∈ W (A∗B). Pick a unit sequence
{xn}n ⊆ H such that limn〈A∗Bxn, xn〉 = ‖A‖‖B‖. We know that |〈A∗Bxn, xn〉| ≤
‖Axn‖‖B‖ ≤ ‖A‖‖B‖, whence limn ‖Axn‖ = ‖A‖. By a similar argument, we get
limn ‖Bxn‖ = ‖B‖. Since ‖Axn +Bxn‖2 = ‖Axn‖2 + ‖Bxn‖2 + 2<(〈A∗Bxn, xn〉)
and limn<(〈A∗Bxn, xn〉) = ‖A‖‖B‖, we deduce that limn ‖Axn + Bxn‖ = ‖A‖ +
‖B‖, whence ‖A+B‖ = ‖A‖+ ‖B‖; the proof is complete.

Corollary 2.2. For two operators A and B ∈ L(H), the following are equivalent:
1. There exists λ ∈ C with |λ| = 1 such that ‖A+ λB‖ = ‖A‖+ ‖B‖.
2. There exists λ ∈ C with |λ| = 1 such that λ‖A‖‖B‖ ∈ W (B∗A).
3. There exists λ ∈ C with |λ| = 1 such that λ‖A‖‖B‖ ∈ σap(B∗A).
4. w(A∗B) = ‖A∗B‖ = ‖A‖‖B‖.
5. r(A∗B) = ‖A∗B‖ = ‖A‖‖B‖.

Proof. The equivalence 1 ⇔ 2 follows from Theorem 2.1. The implications 3 ⇒
2⇒ 4 and 5⇒ 3 are obvious. The implication 4⇒ 5 follows from the general fact:
For any operator T on H , r(T ) = ‖T ‖ if and only if w(T ) = ‖T ‖ see ([6]).
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Corollary 2.3. Let A, B ∈ L(H) be non-zero. If ‖A‖‖B‖ ∈ W (A∗B), then 0 ∈
σap(‖B‖A − ‖A‖B). The converse holds if any one of A or B is an isometric
operator.

Proof. If ‖A‖‖B‖ ∈ W (A∗B), then one can find a sequence of vectors {xn}n with
‖xn‖ = 1 for each n such that limn〈A∗Bxn, xn〉 = ‖A‖‖B‖. So limn<〈A∗Bxn, xn〉
= ‖A‖‖B‖. Since |〈A∗Bxn, xn〉| ≤ ‖Axn‖‖Bxn‖ ≤ ‖A‖‖Bxn‖ ≤ ‖A‖‖B‖, then
limn ‖Bxn‖ = ‖B‖ and similarly we get limn ‖Axn‖ = ‖A‖. Now

‖‖B‖Axn − ‖A‖Bxn‖2 =‖B‖2‖Axn‖2 + ‖A‖2‖Bxn‖2 − 2‖A‖‖B‖<(〈A∗Bxn, xn〉),

so limn ‖‖B‖Axn − ‖A‖Bxn‖ = 0, that is, 0 ∈ σap(‖B‖A− ‖A‖B).
To prove the converse, suppose for instance that B is an isometry. The condition

0 ∈ σap(A − ‖A‖B) implies the existence of unit sequence {xn}n ⊆ H such that
limn ‖Axn−‖A‖Bxn‖ = 0. From the inequality ‖Axn−‖A‖Bxn‖ ≥ |‖Axn‖−‖A‖|,
we conclude that limn ‖Axn‖ = ‖A‖. But limn〈(Axn−‖A‖Bxn), Axn〉 = 0. Hence
we infer that

lim
n
〈A∗Bxn, xn〉 = ‖A‖,

whence

‖A‖ ∈ W (A∗B),

which proves the corollary.

Remark 2.4. 1) Corollary 2.3 may be established by using Theorem 2.1 above and
Theorem 1 of [8].

2) In [8], it is proved that if A, B ∈ L(H), then 0 ∈ σap(‖B‖A − ‖A‖B). The
following example shows that in general the condition 0 ∈ σap(‖B‖A−‖A‖B) does
not imply equation (∗).

Example 2.5. Let

A =
(

1 0
1 0

)
and B =

(
0 −1
0 −1

)
on H = C2. Since

A∗A =
(

2 0
0 0

)
and B∗B =

(
0 0
0 2

)
,

then

‖A‖ = ‖B‖ =
√

2.

Next

A−B =
(

1 1
1 1

)
,

so σap(A−B) = {0, 2}, but ‖A−B‖ = 2 < 2
√

2 = ‖A‖+ ‖B‖.
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3. Application to S-universal operators

Before stating the main result of this section we need some additional prelimi-
naries. For a bounded operator A ∈ L(H), we mean by LA (respectively RA) the
left (respectively right) multiplication by A on L(H), and δA denotes the inner
derivation LA −RA.

Let (J, ‖.‖J) be a norm ideal in the sense of [5]. If X ∈ J and A,B ∈ L(H),
then ‖AXB‖J ≤ ‖A‖‖X‖J‖B‖, with equality if A and B are unitary. Let Cp(H)
denote the Schatten p-ideal, 1 ≤ p ≤ ∞; see for instance [5] or [9]. The space Cp(H)
consists of the compact operators X such that

∑
j
Spj (X) < ∞, where {Sj(X)}j

denotes the sequence of the singular values of X . For X ∈ Cp(H) (1 ≤ p ≤ ∞),
we set ‖X‖P = (

∑
j
Spj (X))1/p, where, by convention, ‖X‖∞ = S1(X) is the usual

operator norm of X . Then (Cp(H), ‖.‖p) is a norm ideal. Moreover, (Cp(H)2, ‖.‖2)
is a Hilbert space with inner product defined by

〈X,Y 〉 = tr(Y ∗X) (X,Y ∈ C2(H)),

where tr denotes the usual trace functional.
Let (J, ‖.‖J) be a norm ideal in L(H) and let A ∈ L(H). If X ∈ J , then

‖AX −XA‖J = ‖(A− λ)X −X(A− λ)‖J ≤ 2‖A− λ‖‖X‖J for all λ ∈ C. Hence
‖AX −XA‖J ≤ 2 infλ∈C ‖A− λ‖‖X‖J . Since ‖δA‖ = 2 infλ∈C ‖A − λ‖ (see [11]),
we conclude that ‖AX − XA‖J ≤ ‖δA‖‖X‖J . Thus the restriction δJ,A of δA to
J defines a bounded linear operator on (J, ‖.‖J) and ‖δJ,A‖ ≤ ‖δA‖ for each norm
ideal J in L(H). For simplicity of notation, we write δ2,A instead of δC2(H),A.

The numerical range of an inner derivation on norm ideals in L(H) was studied
by several authors; see for instance [7] or [10]. In [10] S. Shaw considered inner
derivations δS,A acting on subspaces (S, ‖.‖S) of L(E) (E : Banach space) which
satisfy axioms like those of norm ideals. In particular, he proved that W (δ2,A) =
W (A)−W (A).

Let K be a non-empty bounded subset of the plane. The diameter ofK is defined
by diam(K) = supα,β∈K |α− β|. For A in L(H), we see from above that w(δ2,A) =
diam(W (A)). On the other hand, it turns out [3] that σ(δ2,A) = σ(A) − σ(A).
Hence we deduce that r(δ2,A) = diam(σ(A)).

Definition 3.1. An operator A ∈ L(H) is S-universal if ‖δJ,A‖ = 2 inf{‖A−λI‖ :
λ ∈ C} for each norm ideal J .

The concept of an S-universal operator was introduced by L. Fialkow [3], who
studied criteria for S-universality and posed several questions in this context. In
particular, it is proved in [3] that diam(W (A)) ≤ ‖δJ,A‖ ≤ 2 infλ∈C ‖A − λ‖ for
each operator A ∈ L(H) and each norm ideal J . The main result of this section is
the following theorem.

Theorem 3.2. Let A ∈ L(H) be non-zero. Then ‖δ2,A‖ = ‖δA‖ if and only if
r(δ2,A) = ‖δA‖.

Proof. Assume that ‖δ2,A‖ = ‖δA‖. By Theorem 8 of [11], we have ‖δA‖ =
2 infλ∈C ‖A − λ‖. By a compactness argument, there exists µ ∈ C such that
infλ∈C ‖A − λ‖ = ‖A − µ‖. Hence ‖δ2,A‖ = 2‖A − µ‖. Since δ2,A = δ2,A−µ =
L2,A−µ −R2,A−µ, it follows that

‖L2,A−µ −R2,A−µ‖ = 2‖A− µ‖.
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On the other hand, ‖L2,A−µ‖ = ‖A− µ‖ and ‖R2,A−µ‖ = ‖A− µ‖. Hence

‖L2,A−µ −R2,A−µ‖ = ‖L2,A−µ‖+ ‖R2,A−µ‖.
Without loss of generality we may assume that µ = 0, and then ‖L2,A − R2,A‖ =
‖L2,A‖+ ‖R2,A‖. By Theorem 2.1, this is equivalent to

‖L2,A‖‖R2,A‖ ∈W (−L2,A∗R2,A).

As remarked in the introduction this implies that ‖L2,A‖‖R2,A‖ ∈ σ(−L2,A∗R2,A).
But σ(−L2,A∗R2,A) = −σ(A∗)σ(A) (see [2]) and ‖A‖2 = ‖L2,A‖‖R2,A‖ (see [4]).
So there exist α, β ∈ σ(A) such that ‖A‖2 = −αβ (α : complex conjugate of α).
Since |α| ≤ ‖A‖ and |β| ≤ ‖A|, one can find θ ∈ R such that α = ‖A‖eiθ and
β = −‖A‖eiθ. So

r(δ2,A) = diam(σ(A)) ≥ |α− β| = 2‖A‖.
From the inequality r(δ2,A) ≤ ‖δ2,A‖ ≤ ‖δA‖ ≤ 2‖A‖, it follows that

r(δ2,A) = ‖δ2,A‖ = ‖δA‖.
The reverse implication is obvious since r(δ2,A,B) ≤ ‖δ2,A,B‖ ≤ ‖δA,B‖.

The next corollary characterizes the S-universality of an operator on H .

Corollary 3.3. For A ∈ L(H), the following are equivalent:
1. A is S-universal.
2. diam(W (A)) = 2 infλ∈C ‖A− λ‖.
3. diam(σ(A)) = 2 infλ∈C ‖A− λ‖.

Proof. From [11] and the inequality of [3],

diam(σ(A)) ≤ diam(W (A)) ≤ ‖δJ,A‖ ≤ ‖δA‖,
it follows immediately that 3)⇔ 2)⇔ 1). Since σ(δ2,A) = σ(A) − σ(A), r(δ2,A) =
diam(σ(A)), so 1)⇔ 3) follows directly from Theorem 3.2.

The following corollary answers negatively questions 2.18, 2.19 and 2.20 of [4].

Corollary 3.4. Every non-zero quasi-nilpotent operator on H is not S-universal.

For A ∈ L(H), denote by R(A) the radius of the smallest disk containing σ(A).
In [3], L. Fialkow proved that a subnormal operator is S-universal if and only if the
diameter of the spectrum is equal to twice the radius of the smallest disk containing
it, and asked whether the same holds for an hyponormal operator. The following
corollary answers Fialkow’s question in the affirmative.

Corollary 3.5. An operator hyponormal A ∈ L(H) is S-universal if and only if
diam(σ(A)) = 2R(A).

Proof. This follows from the relation R(A) = infλ∈C ‖A− λ‖ (see [11]).
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