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Abstract

In previous French Cued Speech (CS) studies, one of the widely used methods is painting blue color on the speaker’s

lips to make lips feature extraction easier. In this paper, in order to get rid of this artifice, a novel automatic method to

extract the inner lips contour of CS speakers is presented. This method is based on a recent facial contour extraction

model developed in computer vision, called Constrained Local Neural Field (CLNF), which provides eight characteristic

landmarks describing the inner lips contour. However, directly applied to our CS data, CLNF fails in about 41.4%

of cases. Therefore, we propose two methods to correct the B parameter (aperture of inner lips) and A parameter

(width of inner lips), respectively. For correcting the B parameter, a hybrid dynamic correlation template method

(HD-CTM) using the first derivative of smoothed luminance variation is proposed. HD-CTM is first applied to detect the

outer lower lips position. Then, the inner lower lips position is obtained by subtracting the validated lower lips thickness

(VLLT). For correcting the A parameter, a periodical spline interpolation with a geometrical deformation of six

CLNF inner lips landmarks is explored. Combined with an automatic round lips detector, this method is efficient

to correct A parameter for round lips (the third vowel viseme made of French vowels with a small opening). HD-

CTM is evaluated on 4800 images of three French speakers. It corrects about 95% CLNF errors of the B parameter,

and total RMSE of one pixel (i.e., 0.05 cm on average) is achieved. The periodical spline interpolation method is

tested on 927 round lips images. The total error of CLNF is reduced significantly, which is comparable to the state

of the art. Moreover, the third viseme is properly distributed in the parameter A and B plane after using this method.

Keywords: CLNF, Luminance variation, HD-CTM, Periodical spline interpolation, Inner lips contour parameters,

Cued Speech, Visemes

1 Introduction

Lips detection is an active research topic since lips (es-

pecially inner lips) hold significant information speech

production, and it plays an important role in speech

recognition based on lips visual features. In 1967,

Cornett [1] developed Cued Speech (CS), which is a

complement of lipreading to enhance speech percep-

tion from visual input including lips and hand. This

system was adapted from American English to French

in 1977. In French CS, which is named Langage Parlé

Complété (LPC) [2], five hand positions are used to en-

code the vowels and eight hand configurations to en-

code the consonants. It is often used by deaf people or

hearing people when they communicate with deaf orally

educated. This paper extracts inner lips contour in the

CS case, in which the lips may be occluded by hand.

Moreover, it can also be used in a non-CS case.

Several approaches to extracting lips contour in au-

diovisual speech processing have been investigated in

the literature. One of the most widely used techniques

is model-based lips detection. Active Shape Model

(ASM) [3] and Active Appearance Model (AAM) [4]

were proposed to segment lips contour. The shape and

appearance of lips are learned from training data with

manually annotated faces, and lips configurations are

described by a set of model parameters. Bandyopadhyay

[5] investigated a lips feature extraction technique com-

bined with ASM and used the contrast between the lips

and face to segment lips contour. In the early time, for
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model-based techniques, a large training set and good

initial condition are necessary even if it may not be ef-

ficient. Stillitano et al. [6] used both active contours and

parametric models for lips contour extraction. This

method needs prior knowledge of lips shape. Another

technique is based on segmentation in color spaces [7, 8].

Color-based clustering assumes that there are only two

classes, i.e., skin and lips, and this technique may not be

efficient if facial hair or teeth exist. Currently, deep lear-

ning is very popular in the feature extraction field. Hlavac

presented a Convolutional Neural Network (CNN) for lips

landmark detection in [9], which achieves a sub-pixel

accuracy in landmark detection, but some errors remain

since no robust features around the chin can be locked.

In 2013, Baltrusaitis et al. [10] proposed the Con-

strained Local Neural Field (CLNF), which is robust for

facial landmark detection in the general case. Note that

CLNF is a novel instance of the Constrained Local

Model (CLM) [11] that deals with the issues of feature

detection in the complex scene. CLNF learns the vari-

ation in the appearance of a set of template regions sur-

rounding individual feature landmarks. It replaces the

SVR patch expert of CLM by the Local Neural Fields

(LNF) and uses Non-Uniform Regularized Landmark

Mean-Shift as the new optimization method. In CLNF,

the neural network layer and convolution kernel are

used to capture non-linear relationships between pixel

values and the output responses. CLNF is trained on

about 4000 faces from independent databases HELEN,

LFPW, and Multi-PIE. The experiments in [10] show

that CLNF is more accurate than ASM, AAM, and

CLM, and it is especially robust to occlusions, rotated

face, and different lighting conditions. Therefore, we in-

vestigated an automatic inner lips tracker based on

CLNF. However, directly applied to our visual database

of CS data, CLNF failed in about 41.4% of cases. This

work aims at improving CLNF performance using post-

processing methods. Another possibility is to adjust

CLNF by retraining only lips images, but large training

is needed, and efficient features around the lips may not

be enough to track the inner lips [9].

This paper presents the following contributions. We

deal with the extraction of inner lips from video without

using any artifices. Recall that the B parameter is the

aperture of the inner lips and the A parameter means

the width of the inner lips (see Fig. 1). Two post-

processing methods for inner lips parameter extraction

based on CLNF are presented. We named these methods

as Modified CLNF in this paper. Figure 2 is an outline

showing the logic structure of this work.

� For correcting the B parameter error of CLNF, a

novel hybrid dynamic correlation template method

(HD-CTM) using the first derivative of smoothed

luminance variation is proposed to detect the outer

lower lips. Then, inner lower lips position can be

estimated by subtracting the validated lower lips

thickness (VLLT) from the outer lower lips position.

This method is robust for any lips shape.

� For correcting the A parameter, a periodical spline

interpolation is proposed based on six CLNF inner

lips landmarks for round lips (like [o] and [y]). The

round lips are selected by an automatic round lips

detector based on Discrete Cosine Transformation

(DCT).

The method for correcting the B parameter is evalu-

ated on 4800 images on three subjects. It corrects 95%

CLNF errors, and total RMSE of one pixel (0.05 cm on

average) is reached, instead of four pixels (0.2 cm on

average) when using the original CLNF. The evaluation

of the periodical spline interpolation is carried out on

927 round lips images. The total error is reduced from

2.12 cm to 0.35 cm.

2 Relation with prior works
In the previous study of CS lips feature extraction,

Heracleous et al. [12] and Aboutabit et al. [13] ex-

tracted the A and B parameters by painting blue color

on the subject’s lips. Firstly, the gray level image was sub-

tracted from the blue component of the RGB image.

Then, a threshold was applied to the resulted image to

segment the blue lips. To get rid of the blue lips, a dy-

namic correlation template method in our previous work

[14] was introduced to estimate B parameters of inner lips.

In this paper, we improve this method for correcting the B

parameter by a HD-CTM, which is robust for tracking

any lips shape. More precisely, compared with [14], three

improvements are proposed to enhance the robustness of

our method. They contain a new initial condition for the

first image, an automatic tracking of the starting position

for template searching region, and a novel dynamic hybrid

template. Meanwhile, we focus on correcting the A

Fig. 1 B parameter is the aperture of the inner lips and A parameter

the width of the inner lips
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parameter using the periodical spline interpolation with

an automatic round lips detector to filter the third viseme.

Above all, a complete inner lips tracking model which cor-

rects the A and B parameters of CLNF for multi-subjects

is proposed.

3 CLNF model

CLNF contains three main parts: a point distribution

model (PDM) [15] of 68 points for facial contour, LNF

patch expert, and Non-Uniform RLMS [16]. In these 68

points, 12 of them are dedicated to describing the outer

lips contour and 8 for the inner lips contour. By apply-

ing PCA to the data, lips can be estimated using the

sum of the mean shape and the variation part.

3.1 Local neural fields

In CLNF, LNF is used as the patch expert. It is an undir-

ected graphical model, which models the conditional

probability of a continuous valued vector y (the prob-

ability that a patch is aligned) depending on continuous

x (the pixel intensity values in the support region). It

shows the relationships between pixels (neighboring and

long distance) by learning both similarity and long dis-

tance sparsity constraints. LNF also includes a neural

network layer and a convolution kernel that can show

non-linear relationships between pixel values and the

output responses. LNF gives a conditional probability

distribution with probability density:

P yjXð Þ ¼
exp Ψð Þ

R

þ∞

−∞

exp Ψð Þdy

;X ¼ fx1;…; xng; y ¼ fy1;…; yng

ð1Þ

where X is the observed input and y is the predicted

output (expected response maps). Ψ is the potential

function in linear combination of vertex features, edge

features with different coefficients. All the parameters

are estimated by maximizing condition log-likelihood

of LNF.

α; β; γ ;Θ
� �

¼ argmax
α;β;γ;Θ

L α; β; γ;Θð Þð Þ ð2Þ

L α; β; γ;Θð Þ ¼
X

M

q¼1

logP y qð Þ
; jx qð Þ

� �

ð3Þ

Given training data x qð Þ
; y qð Þ

� �M

q¼1
of M patches, we

want to pick the α, β, γ, and Θvalues that maximize the

conditional log-likelihood of LNF on the training

sequences.

3.2 Non-Uniform RLMS

Non-Uniform RLMS is used as the new optimization

method in CLNF. RLMS [16] is used in CLM which is a

local approach and relies on an initial parameter estimate.

If we have an initial estimate p0, we want to find a par-

ameter update Δp to get closer to a solution p∗ = p0 +Δp

(where p∗ is the optimal solution). Hence, the iterative

fitting objective is as follows:

argmin
Δp

ℜ p0 þ Δpð Þ þ
X

n

i¼1

Di xi; Ið Þ

" #

ð4Þ

Considering the different weight of each patch expert

for each landmark, Non-Uniform RLMS takes into ac-

count the patch expert reliability compared with RLMS.

The aim is to minimize the following objective function:

Fig. 2 An outline showing the logic arrangement of this work
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argmin
ΔP

P þ ΔPk k2
Α
−1 þ JΔP−vk k2W

� �

ð5Þ

where P is a vector of output prediction parameter

obtained from PDM and LNF. v is the mean-shift vec-

tor over the patch response. J is the Jacobian of the

landmark location for P. r is the matrix describing the

prior onP.

4 Experiment dataset

The database contains videos of 50 French words made

of numbers and daily words (such as “Bonjour” and

“Rendez-vous”). The corpus is uttered 10 times by three

French subjects: one female CS speaker and two male

speakers (see Fig. 3). Video images of the speaker’s upper

body (720 × 576 RGB images, 50 fps) are recorded in a

soundproof booth in GIPSA-lab, France. Images are ob-

tained every 20 ms. Words and vowels are annotated

with Praat based on speech sound signals. We use the

first repetition of the three speakers containing 4800 im-

ages corresponding to all types of lips shape to evaluate

the B parameter. As for evaluating the A parameter, 927

round lips images are used. To evaluate the performance

of the original CLNF model and our model, the ground

truth inner lips contour is extracted manually by an ex-

pert placing several landmarks on inner lips.

When studying lips parameter extraction problem,

three visemes (lips shape) are often considered which

correspond to the 13 French vowels [17] shown in

Table 1. The first viseme correspond to opened vowels

while the second viseme describe opened round vowels.

The third viseme is characterized by small-opened round

vowels. In this work, we use the visemes mentioned in

[18].

5 Performance of CLNF on our data
CLNF is first straightforward applied to all video of each

annotated word in the database. Among 68 facial points,

8 landmarks (6 of them for inner lips and 2 endpoints)

are used to describe inner lips contour. Recall that main

advantages of CLNF are its robustness to variable

lighting conditions, in the presence of occlusion, and

head movements.

A whole inner lips contour can be first generated

using the eight inner lips landmarks. A linear

interpolation [19] is used for the upper inner lips con-

tour, and a spline interpolation [19] is applied to lower

inner lips. Figure 4a shows one example of the excellent

performance of CLNF, and the green curve shows inter-

polated inner lips. The A and B parameters are then cal-

culated from the inner lips contour using the classic

method in [20].

However, some mistaken cases remain. On the one

hand, the landmarks of the lower lips are often poorly

placed in a much higher position while no error is pre-

sented for upper lips (Fig. 4b). It causes a wrong B par-

ameter. This phenomenon can be explained by the fact

that the CLNF is based on a dictionary of training im-

ages. If the lips shape and appearance are not properly

taken into account during the training phase, it may lack

the template during the optimization step. In fact, the

lower inner lips detection is challenging since the lips

area is often very complex (tongue and teeth may be vis-

ible) and lighting condition is alterable.

On the other hand, the two endpoints of the inner lips

may be poorly placed (Fig. 4c). It causes a mistaken A

parameter. Indeed, from a “geometrical” perspective, the

two endpoints of the inner lips are not false because, in

this case, the inner contour can achieve these two end-

points. However, in an articulatory-acoustic point of

view, these two points do not define the proper A par-

ameter of the inner lips.

Concerning the error of the B parameter, a compari-

son between the original CLNF and ground truth values

shows that CLNF only obtains about 58.6% accuracy on

Fig. 3 The first one is the CS speaker and other two are non-CS speakers. Note that in this work, color marks on the CS female speaker front and

hand are not taken into account

Table 1 Three visemes of vowels

Vowels

Viseme Phonemes

V1 a,Ɛ,~ɛ ,e,i

V2 ~a,ɔ,œ

V3 o,ø, ,y,u

Liu et al. EURASIP Journal on Image and Video Processing  (2017) 2017:88 Page 4 of 15



average (75.2% for speaker 1, 52.2% for speaker 2, and

48.5% for speaker 3). We consider the errors as mistaken

when they are larger than two pixels. In Fig. 5, we ob-

serve that most of the error appears negative. It means

the mistaken CLNF lower inner point is often placed

above the ground truth points. Since there is a large pro-

portion of B parameter error and inner lips height plays

a very crucial role in speech production, we pay particu-

lar attention to the B parameter correction.

To see the CLNF performance concerning the A par-

ameter, three visemes are plotted using the first repeti-

tion of the CS speaker in the A and B parameter plane

(Fig. 6). The distribution of each vowel is presented by a

Gaussian ellipse. Figure 6a corresponds to the original

CLNF landmarks and Fig. 6b to the ground truth. We

observe that three visemes of the original CLNF are to-

tally mixed compared with the distribution of the

ground truth.

6 Proposed methods and experiment details

6.1 Parameter B correction based on HD-CTM and back-

subtracting of VLLT

The proposed method is based on the luminance variation

along the middle CLNF landmarks of lips. A suitable

spline smoothing is first applied to this luminance vari-

ation and also the first derivation curve. The smoothing

degree is carefully controlled so that the noise can be re-

moved without losing useful information. A smoothing

coefficient of p = 0.01 [21] is used for a good compromise.

We may expect to determine the inner lips position by

searching the local limit point in the first derivative of the

smoothed luminance variation curve. But, this is not al-

ways feasible since there are many local limit points (see

Fig. 7) without being given a searching interval. Or, even

given a searching interval, the local limit position may be

fuzzy or uncertain. Moreover, it is sensitive to noise and

unable to guarantee coherent results for adjacent images.

To overcome the above problems, we proposed to search

the limit point using a correlation method with a dynamic

template which is called HD-CTM in this paper.

However, inner lower lips detection still remains chal-

lenging since this area may be fuzzy, and several

different cases have to be considered. For example, the

luminance variation from the teeth to lower lips is differ-

ent with that from the tongue to lower lips. In Fig. 7a,

one can see that luminance decrease from the teeth to

lower lips corresponds to a local minimal point. How-

ever, in Fig. 7b, c, it becomes complicated to find one

particular local minimal point corresponding to the

lower inner lips boundary. By contrast, in the region of

the outer lower lips, the luminance variation is less com-

plicated than in the inner lower lips region. In fact, the

middle landmark (in the vertical sense) of the lower lips

is more enlightened and corresponds to a high lumi-

nance variation. When the luminance goes down, it de-

creases rapidly as the chin (the lower part of lower lips)

is darker. Also, we can see that the luminance value var-

ies on the position. The first derivative of the luminance

curve consequently shows a significant “V” shape corre-

sponding to the luminance variation. Therefore, as a

proposed solution, the HD-CTM is first applied to de-

tect the outer lower lips position. Then, the inner lower

lips position is estimated by subtracting the outer lower

lips position from the validated lower lips thickness

(VLLT) which will be introduced in detail in the next

section. This method is illustrated by Fig. 8.

6.1.1 Determination of the lower outer lips position

This procedure contains the following three steps.

❖Definition of the template

Instead of directly finding a minimal local value in the

first derivative curve, which is often difficult due to its

great sensitivity to noise, a hybrid dynamic template cor-

responding to a typical derivative variation in the region

around the outer lower lips position is first established.

The template is obtained by training some derivative

curves reflecting different lips shapes except for closed

lips. In this approach, template length (LM) is a key par-

ameter. A very small template length makes results sen-

sitive to noise while a very large length reduces

detection precision. If it is badly chosen, it will not be

sufficiently pertinent to indicate the “V” shape of the

Fig. 4 Examples of 20 CLNF landmarks placed in the full lips region. Eight points describe the inner lips contour. a Good inner lips contour of CLNF with

hand occlusion. The green curve is the inner lips contour using interpolation. b Mistaken CLNF landmarks in the case of the B parameter). c Mistaken CLNF

two end landmarks for round open inner lips (mistaken A parameter)
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derivative curve. This length is set to 20 pixels experi-

mentally so that a rapid sudden change of the outer

lower lips position could be taken into account. An ex-

ample of the template is illustrated in Fig. 9 by a

magenta curve with circle. The template is not necessar-

ily symmetric in our case. In fact, a symmetric shape

was firstly tried, but it gave slightly larger errors.

In order to increase the capacity of the template to fol-

low the variation the derivative curve, we use a hybrid

dynamical template m(i):

m ið Þ ¼ αm0 ið Þ þ 1−αð Þmυ ið Þ ð6Þ

where m0(i) denotes the fixed part of the above template.

We denote by υn − 1(i) the derivative curve of luminance

variation for the previous lips image. The variable part

of the template is defined as:

mυ ið Þ ¼ υn−1 ið Þ for i∈ kn−1opt þ 1; kn−1opt þ LM

h i

ð7Þ

where kn−1opt is the optimal position of the template for

the previous lips image. α is the weight for the fixed part

Fig. 5 Three figures correspond to three speakers. Red, green, and blue

histograms represent the CLNF error of the three speakers, respectively.

The abscissa is the error (larger than two pixels are considered as the

mistake) and the Y-axis is the frequency of these errors

a

b

Fig. 6 a, b Stars correspond to the first viseme, circles to the second

viseme, and triangles to the third viseme. The color order is blue, red,

green, magenta, and cyan for each vowel of viseme. They are

corresponding to the vowel order shown in Table 1
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Fig. 7 The left figure shows lips ROI with CLNF lips landmarks (20 black stars). The blue line in the left figure corresponds to the middle point of

the inner lower lips, and all the curves in the right figure are plotted according to this blue line. On the right figure, the blue curve is the original

luminance variation. The red curve is the smoothed luminance. The green curve is the first derivative of the smoothed luminance. Four lines with

blue, red, green, and magenta colors correspond to four middle CLNF landmarks around the blue middle line in the left figure. In (a), the luminance

decreases from the teeth to lower lips which corresponds to a local minimal point in the right figure. In (b, c), it becomes complicated to find the local

minimal point corresponding to lower inner lips boundary. However, the outer lower lips boundary is always corresponding to a local minimal point on

the local “V” curve in the right figure for these three cases

Fig. 8 Twenty black lips landmarks are given by the CLNF with 8 inner lips landmarks. The green point A is the middle outer lower lips position

obtained by the HD-CTM and the green point B is the middle inner lower lips position by subtracting the VLLT from the position of A. Two orange

points are the left and right key landmarks determined by the third step
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which is set to be 0.75 experimentally. Note that the per-

formance of the proposed method is not very sensitive

to this value; a range of α between 0.7 and 0.9 gives

comparable results.

❖Determination of optimal outer lower lips

In order to determine an optimal position of outer

lower lips, a correlation value is calculated between the

current derivative curve υ(i) and the template mυ(i)

when the template scans through the searching interval.

This method using the correlation with the template re-

duces the influence of noise and gives a more consistent

result for the adjacent image.

The correlation is defined as:

c kð Þ ¼
X

LM

i¼1

υ iþ kð Þm ið Þ ð8Þ

The optimal position of the template is determined by

kopt ¼ argmax
k

c kð Þð Þ ð9Þ

k ∈ [k0 − δ1, k0 + δ2], which is the searching interval. k0
is an initial searching position. δ1 and δ2 are two param-

eters which define the length of the searching interval.

❖Determination of the searching interval

� The searching region for the first image

For non-open lips, k0 is the original CLNF outer lower

middle lips position, while for opened lips, k0 is defined

as:

k0 ¼ Aþ VLLT ð10Þ

where A denotes the original CLNF inner lower lips pos-

ition and VLLT is the validated lower lips thickness

which is explained in detail in the following section. In

this case, we take δ1 = 3 and δ2 = 18 experimentally.

� The searching region for images after the first image

The optimal initial search position is estimated from

the previous image, so that a continuous tracking can be

achieved. k0 is defined as:

k0 ¼ kn−1opt þ Δk ð11Þ

where kn−1opt denotes the optimal outer lower position for

the previous image. Δk is an estimated translation of the

current outer lower lips position with respect to the pre-

vious image. To calculate Δk, we take the previous deriv-

ation curve υn − 1(i) in the interval kn−1opt −10; kn−1opt þ 10
h i

and also the current derivative curve υ(i) in the same

interval. After calculating the cross-correlation be-

tween these two derivative curves, a searching of its

maximal value permits to determine Δk. This interval

length is reduced when using this automatic tracking

method. In this case, we take δ1 = 3 and δ2 = 6 experi-

mentally. The details of the HD-CTM are shown by an

example in Fig. 9.

Fig. 9 The figure is plotted along the middle point of the upper inner

lips. Blue curve: original luminance variation. Red curve: the smoothed

luminance. Green curve: the smoothed first derivative. Red curve with

stars: correlation values between the template and the first derivation

curve in function of the position of the template. Magenta curve with

stars: the proposed hybrid dynamic template. Vertical black line around

the 301 position corresponds to the initial searching position. The bold

red line around position 307 located in the maximum correlation value

corresponds to the estimated lower outer lips position

Fig. 10 The red curve is the distance between the inner lower lips

position determined by the ground truth and the outer lower lips

position obtained by the HD-CTM. Some evident errors come from

our detection step

Liu et al. EURASIP Journal on Image and Video Processing  (2017) 2017:88 Page 8 of 15



6.1.2 Determination of the lower inner lips position

To estimate inner lower lips, we first study the distance

between the inner lower lips position given by the

ground truth and the outer lower lips position obtained

by the proposed method. It has been found that this dis-

tance is almost a perfect uniform distribution (Fig. 10)

except for some errors from the detection error using

HD-CTM. More importantly, the distance distribution is

invariant whatever the variation of the lips shape. This

distance floats slightly around a constant for each

speaker. The distance is 19.9 ± 0.97 pixels for the female

speaker and 19.7 ± 0.89 and 16.6 ± 0.83 pixels for the

other two male speakers. The mean value of this distri-

bution can be regarded as a validated lower lips thick-

ness, which is called VLLT. For a given speaker, the

VLLT can be estimated by training their data. For our

three subjects, VLLT is set to be 20, 20, and 17 pixels,

respectively. The inner lower lips position can then be

estimated by subtracting the outer lower inner lips pos-

ition from the VLLT.

Someone could think of using the “lower lips width”

estimated by original CLNF landmarks instead of the

VLLT. In fact, by comparing, we found that the “lower

lips width” is poorly estimated especially when CLNF

gives mistaken lips landmarks. Moreover, the

performance of evaluation shows that using “lower lips

width,” we obtain higher RMSE (1.49) than using the

VLLT (RMSE is 1.0).

It should be mentioned that, if the inner lower lip’s

middle position value obtained by Modified CLNF is less

than that estimated by original CLNF, the initial value is

kept. A parallel translation with the same distance as the

inner middle lips point is proposed to locate two other

inner lower points, which are the left and right points of

the middle point (see Fig. 8).

6.1.3 Closed lips filter based on DCT analysis

When the upper and lower inner lips points are close to

each other, the lips may be confused with true closed

lips (Fig. 11). In fact, CLNF performs perfectly for closed

lips for which the dynamic template is not suitable. To

eliminate closed lips and keep the good result of the ori-

ginal CLNF, a closed lips detector based on DCT coeffi-

cients is developed.

Firstly, lips ROI is determined by the 20 landmarks of

CLNF which efficiently delimit the lips region and deter-

mine a precise center of this region. A suitable-sized

ROI is determined according to this center (Fig. 12). The

ROI size is 110 × 75 pixels in our case.

Fig. 11 Mistaken CLNF landmarks (left). Correct CLNF landmarks for closed lips (right). Note that the CLNF landmarks are very similar in these two cases

Fig. 12 Lips ROI determined by a blue mark in the front of the speaker (left). Lips ROI (the same size) determined by a center point estimated

from CLNF landmarks (right)
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a b

c d

e

Fig. 13 a Speaker’s lips with CLNF original landmarks (note that two red endpoints of the inner lips contour are mistakenly placed). b Six center

points are plotted with red stars which are dilated in the vertical scale to form a square in polar coordinates. c The vertical axis presents the ρ

value and the horizon axis θ. The six points are repeated three times. d Periodical spline interpolation is realized, and only the period inside two

red lines is used to return to Cartesian coordinates. e The whole interpolated inner lips contour

Fig. 14 Examples showing initial mistaken CLNF landmarks (orange points) and corrected landmarks using the proposed method (green points)

for the inner lower lip
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By large observations, we find that our detected lips

ROI is as precise as the ROI determined by the blue

mark on speaker’s front in most of the cases. However,

when the speaker’s head rotates or shifts, the ROI is not

accurate using the blue mark method, while our pro-

posed method gives an accurate ROI centered of lips. In

fact, the proposed method benefits from CLNF which is

robust to the rotation or shift of the speaker’s head.

DCT coefficients are calculated from lips ROI, and

10 × 10 coefficients in the low-frequency region are

retained. The mean vector of these DCT coefficients is

considered as a model for closed lips. By applying this

model to all images, a threshold that distinguishes closed

lips and open lips is obtained. For each new image, DCT

coefficients of ROI are first calculated and then com-

pared with the model. Images with distance less than a

threshold are considered to be closed lips and thus will

be skipped by the HD-CTM.

6.2 Parameter A correction based on periodical spline

interpolation

For round lips, the two endpoints determined by CLNF

are mistakenly placed from the acoustic point of view. In

this case, the six points from CLNF (three upper points

and three lower points) are assumed to be correctly

determined (Fig. 13a). We propose to estimate the inner

lips contour using the periodical spline interpolation

based on these six points. They are firstly dilated in the

vertical scale to form a square (see Fig. 13b) in order to

obtain a regular repartition of these points in the polar

coordinate. Cartesian coordinates of these points are

then converted into polar coordinates. The center of the

polar coordinates is situated in the middle of the two

middle landmarks of CLNF inner lips. A spline

interpolation is applied to the polar coordinates

(Fig. 13c). In order to take into account the initial condi-

tion of the endpoint, the six points are periodized three

times to prepare for a periodical spline interpolation

(Fig. 13d). Finally, by returning to the original scale, a

full contour interpolation can be obtained (Fig. 13e).

To apply this method, an automatic round lips de-

tector is necessary to select round lips from the image

sequence which contains all kinds of lips shapes. A simi-

lar method with closed lips filter in the above section is

applied to detect round lips. Firstly, a round lips DCT

template is trained from several round lips images. DCT

coefficients are calculated from lips ROI. Secondly, this

template scans through all the images, and the distance

between the current image and template is computed.

Lips are considered as round lips if its distance is less

than a threshold which is determined experimentally.

The performance of the automatic round lips detector is

evaluated on 3184 lips images (10 repetitions of the first

Fig. 15 Red curve: B parameter (expressed in pixels) determined by

the ground truth value. Blue curve: B values by original CLNF landmarks.

Black curve: B parameter by proposed method. Green curve: errors of

original CLNF. Magenta curve: errors of Modified CLNF. The figure shows

the result of three speakers from the top to the bottom. The blue short

lines at the top are the segmentation for 50 words. The cyan line is the

RMSE value
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speaker). Only 42 round lips are mistaken among 467

round lips images (about 9% error rate).

7 Results and discussions
To evaluate the performance of the proposed method,

the A and B parameters estimated by the proposed

methods are compared with the ground truth, and the

statistic numerical results are given. Furthermore, the

proposed methods are also compared with the baseline

CLNF in Section 7.3.

7.1 Evaluation of the B parameter

The HD-CTM combined with the back-subtracting of

VLLT efficiently corrects B errors of CLNF, which is

visually shown in Fig. 14. The corrected B parameter is

drawn by the black curve and the ground truth is drawn

by the red curve in Fig. 15. Since they are very close to

each other in most of the cases, we cannot distinguish

them clearly. By contrast, the original CLNF B param-

eter drawn in blue has an evident difference with the

ground truth, especially for the second and third

speakers. The residual error between our estimated B

parameter and the ground truth value is drawn magenta.

One can see that errors are significantly reduced with re-

spect to the original CLNF errors (green curves). RMSE

of these errors is shown in Table 2. Total RMSE of the

final errors is reduced to one pixel (0.05 cm), instead of

four pixels (0.20 cm) when using the original CLNF. It

outperforms the result in [22] (RMSE 0.1 cm).

7.2 Evaluation of the A parameter

The periodical spline interpolation method efficiently

corrects A parameter errors of CLNF, which can be visu-

ally shown in Fig. 16. The evaluation of the A parameter

is based on round lips images which are selected using

the DCT filter (Section 6.2). A total 927 round lips

images are selected (222 images for speaker 1, 396 im-

ages for speaker 2, and 309 images for speaker 2). In

Fig. 17, the error between these methods and the ground

truth is shown. We can see that the error is much less

using the proposed method than the CLNF.

To further measure the error, we calculate the statistic

error (Table 3). We observe there is huge bias in terms

of mean value for CLNF error which is far greater than

the standard deviation. From Fig. 17, therefore, we cal-

culate the total error (Etotal) to measure the precision of

the A parameter, and it is calculated using the following

formula.

Etotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

υ2 þ σ2
p

ð12Þ

where υ is the mean error (bias) and σ2 is the variance of

the error.

We can see the huge total error of CLNF is signifi-

cantly reduced which is comparable to the state-of-the-

art work [22, 23].

Concerning the error of the A parameter, the precision

is not as demanding as the B parameter from the speech

production point of view, and the estimation of the A

parameter is less precise in practice. Meanwhile, com-

paring the error of the B parameter with the error of the

A parameter, we can see the error of the B parameter is

less than the A parameter, which is coherent with the re-

sult in [22].

To evaluate the joint performance of the A and B pa-

rameters, we explore the distribution of three visemes in

the A and B parameter plane. In Fig. 18, three visemes

are plotted for the first repetition of the speaker one.

The distribution of each vowel is presented by a Gauss-

ian ellipse. We recall that three visemes of original

CLNF are mixed, especially for the third viseme (Fig. 6a).

After the B parameter is corrected by the dynamic

Table 2 RMSE values for original CLNF model and for Modified CLNF (expressed in pixels and in cm)

RMSE Speaker 1 Speaker 2 Speaker 3 Total

CLNF 3.84 (0.20 cm) 4.02 (0.21 cm) 3.53 (0.18 cm) 3.81 (0.20 cm)

Modified CLNF 1.06 (0.06 cm) 0.90 (0.05 cm) 0.94 (0.05 cm) 0.99 (0.05 cm)

Fig. 16 The green curve is the whole inner lips contour for round open lips by the proposed periodical spline method
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correlation template method, these visemes are well-

distributed in the axis B (Fig. 18a). After the A param-

eter is corrected by the periodical spline interpolation,

the third viseme is correctly distributed corresponding

to the axis A (Fig. 18b). One can see that distribution of

three visemes correspond correctly [18] to the ground

truth distribution in Fig. 6b.

7.3 Application of the estimated lips parameters to CS

phoneme recognition

In order to further evaluate the performance of the esti-

mated inner lips parameters, French CS recognition

based on 13 vowels is carried out using a HMM-GMM

recognizer. We use the corpus of the first CS speaker

with 10 repetitions. Eighty percent of the data (randomly

chosen) are used for training and the remaining 20%

used for testing (without overlap between the training

and testing sets). A HMM-GMM decoder is built with a

standard HMM configuration: context-independent,

three-state, left-to-right, no-skip phoneme. It is trained

with maximum likelihood estimation based on the EM

algorithm. The labial features (inner lips A and B param-

eters) are modeled together with their first derivatives.

At the decoding stage, the most likely image sequence of

vowels is estimated by decoding the HMM-GMM state

posterior probabilities using the Viterbi algorithm. 61.8%

accuracy on average is obtained for the recognition of

the 13 French vowels in CS. This result is comparable

with the state of the art [12] in automatic CS recogni-

tion. It is another validation of our method for auto-

matic tracking of inner lips parameters.

7.4 Discussions

� The periodical spline interpolation method is based

on CLNF lips landmarks. When the real inner lips

contour is inside the six inner lips landmarks of

CLNF, we cannot expect the proposed method to

give a satisfactory inner lips contour (about 5% of

this case).

� In HD-CTM, there are several parameters that need

to be optimized by training their data for each sub-

ject. Ongoing work is to reduce the subject-

dependency of these parameters in this method.

8 Conclusions

This paper presents a new automatic approach to track-

ing the inner lips contour based on CLNF which is ro-

bust for facial landmark detection in the general case.

However, the original CLNF presents mistakes in about

41.4% of cases for inner lips tracking. This paper aims at

correcting CLNF errors by post-processing procedure.

We propose two methods to correct the B parameter

and the A parameter, respectively. In the case of the B

parameter, an efficient method named HD-CTM based

on the correlation with a hybrid dynamic template is in-

vestigated first to detect the outer lower lips position.

Then, the inner lower lips position is determined by the

a

c

b

Fig. 17 Y-axis represents the pixel number. Red curve: the error of

the A parameter (expressed in pixels) between the values obtained

by the CLNF and the ground truth value. Blue curve: the error of the

A parameter (expressed in pixels) between the values obtained by

the periodical spline method and the ground truth value. (a–c)

correspond to the result of three speakers
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back-subtracting of the VLLT. The evaluation of this

method on about 4800 images of three speakers con-

firms its performance. In fact, RMSE is reduced from

four pixels (0.2 cm) to one pixel (0.05 cm). For the A

parameter, the periodical spline interpolation based on

the dilated six CLNF inner lips points is used to estimate

the A parameter for round lips. An automatic round lips

detector based on the DCT coefficient of lips ROI is

used to select the third viseme. This method is tested on

927 round lips images. The total error is reduced from

2.12 cm using CLNF to 0.35 cm with the proposed

method. The remaining errors come from the mistaken

six inner lips landmarks of the original CLNF. Our fu-

ture work will aim at reducing the subject-dependency

of the proposed method.
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