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ABSTRACT.   This paper is an investigation of right modules over a ß*-
algebra   B which posses a ß-valued "inner product" respecting the module

action.    Elementary properties of these objects, including their normability

and a characterization of the bounded module maps between two such, are

established at the beginning of the exposition.   The case in which   B  is a

W -algebra is of especial interest, since in this setting one finds an abun-

dance of inner product modules which satisfy an analog of the self-duality

property of Hilbert space.    It is shown that such self-dual modules have im-

portant properties in common with both Hilbert spaces and W -algebras.   The

extension of an inner product module over  B   by a B -algebra  A   containing

ß as a    -subalgebra is treated briefly.   An application of some of the theory

described above to the representation and analysis of completely positive

maps is given.

1.   Introduction and conventions.   In this paper we investigate right modules

over a B*-algebra  B which possess a B-valued "inner product" respecting the

module action.   These objects, which we call pre-Hilbert B-modules, ate defined

in the same way as I. Kaplansky's "C*-modules" [4], but without the restriction

that B be commutative.   Our definition of a pre-Hilbert B-module also coincides

with that of a "right B-rigged space" as recently introduced by M. A. Rieffel [7]

except for his requirement that the range of the inner product generate a dense sub-

algebra of B.   Fields of inner product modules have been studied by A. Takahashi

[lO]; for a discussion of some of this work we refer the reader to §8 of [2].   Pre-

Hilbert B-modules and related objects appear to be useful in a variety of ways.

The application which we will give concerns the representation and analysis of

completely positive maps of U*-algebras into B*-algebras.

Our exposition begins with a section setting forth the elementary properties

of pre-Hilbert B-modules.   We show that these can be normed in a natural way,
with norm and B-valued inner product related by an analog of the Cauchy-Schwarz

inequality.   For a B*-algebra A  containing B as a *-subalgebra, we give a char-

acterization in terms of B- and A-valued inner products of bounded B-module maps
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444 W. L. PASCHKE

from a pre-Hilbert B-module into a pre-Hilbert A-module.   In §3, we investigate

the case in which B  is a W*-algebra and show that in this setting the S-valued

inner product on a pre-Hilbert B-module  X lifts to a B-valued inner product on the

right B-module  X   of bounded module maps of X into B.   The inner product mod-

ule X    so obtained turns out to be self-dual in the sense that each bounded mod-

ule map of X    into B arises by taking inner products with a fixed element of X .

(It is in some sense more difficult to produce self-dual inner product modules than

to produce self-dual inner product spaces, since completeness of a pre-Hilbert B-

module in its natural norm is in general insufficient for self-duality.)  Such self-

dual modules have properties in common with both Hubert spaces and W*-alge-

bras.   We show that they are all conjugate spaces and that the algebra of bounded

module maps of such a module into itself is a W*-algebra.   A polar decomposition

theorem for self-dual modules over a W*-algebra is established and used to obtain

an orthogonal direct sum decomposition for such modules.   §4 treats the exten-

sion of a pre-Hilbert B-module by a B*-algebra A  containing Basa *-subalge-

bra.   In §5 we show that a completely positive map from a *-algebra into a B*-

algebra  B gives rise to a pre-Hilbert B-module in much the same way that a posi-

tive linear functional on a *-algebra gives rise to a pre-Hilbert space.   The stan-

dard method of representing positive linear functionals via inner product spaces

thus generalizes to a method of representing completely positive maps via inner

product modules.   Following W. B. Arveson's treatment of completely positive

maps into the algebra of bounded operators on a Hubert space [l], we use this
representation scheme to characterize the order structure of the set of completely

positive maps from a (7*-algebra with  1  into an   arbitrary W*-algebra.   §6 is an

appendix in which we establish an elementary but useful  result on the positivity

of matrices with entries in a B*-algebra.

We make the following conventions.   All algebras and linear spaces considered

here are over the complex field C.   An algebra with involution a—* a* will be

a *-algebra.   A map between *-algebras which respects their involutions will be

called a *-map.   It is not assumed that all algebras herein possess a multipilca-

tive identity; we will say "A  has  1" if the algebra A  has a multiplicative iden-

tity 1  and call A an "algebra with  1".   If A  is an algebra without  1, we let

A    denote the algebra obtained by adjoining  1  to A.   The identity operator on a

linear space  X will be denoted by  / or ¡x, depending on whether any possibility

of ambiguity exists.   The algebra of bounded linear operators on a normed linear

space X will be denoted by B(X) and we will write  X*  for the conjugate space

of X.   We will denote the action of an algebra  A  on a right A-module  X by

(x, a) —» x • a; all such modules treated below will be assumed to have a vector

space structure "compatible" with that of A  in the sense that A(x • a) = (Ax) • a

= x • (Afl) VxeX, a £ A, AeC.
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2.   Elementary properties of pre-Hilbert and Hilbert B-modules.   Let B be a

B*-algebra.
2.1 Definition.   A pre-Hilbert B-module is a right B-module  X  equipped with

a conjugate-bilinear map (•, •): X x X    » B  satisfying:

(i) <x, x) > 0 Vx £ X;
(ii)  (x, x)= 0 only if x = 0;

(iii)   (x,y)=(y,x)*  Vx, y £ X;
(iv)  <x . b, y) = <x, y)b  Vx, y £ X, b £ B.

The map (•, •) will be called a B-valued inner product on X.

Examples of such objects are numerous.   If / is a right ideal of B,  then /

becomes a pre-Hilbert B-module when we define (•, •) by (x, y)= y*x for x, y £ J.

More generally, if í/a¡ is a collection of right ideals of B, then the space X of

all tuples  |xa| with xa £ ]a Va and   2a ||xa||    < oo becomes a right B-module

when we define ixa! • b = \xab\ fot \xa\ £ X, b £ B, and a pre-Hilbert B-

module when we set (i*a!, \ya\) = £a y*xa for fxj, {ya\ £ X.   One checks easily

that if H is a Hilbert space, then the algebraic tensor product  H ® B, which is

naturally a right B-module, admits a B-valued inner product (•, •) defined on ele-

mentary tensors by

(«f ®a,r¡®b) = («f, n)b*a.

We will see in §5 that pre-Hilbert B-modules can be constructed from completely

positive maps of *-algebras into B in much the same way that pre-Hilbert spaces

can be constructed from positive linear functionals on *-algebras.

Notice that if B  has   1  and X is a pre-Hilbert B-module, then X is automa-

tically unital, i.e. x • 1 = x Vx e X; this is because (x • 1, y) = (x, y)l =(x, y)

Vx, y £ X.  If B does not have 1, we can make X into a right module over the B*-algebra

B     in the obvious way.   X is then clearly a pre-Hilbert B  -module.   The presence

or absence of  1   in  B  will thus be of little importance in much of what follows.

We also note in passing that (x, y • b)= £>*(x, y) Vx, y £ X, b £ B; this follows

from (iii) and (iv) of 2.1.
2.2 Remark.   Suppose   Y is a right B-module equipped with a conjugate-bilin-

ear map [•, •]:  Y x Y —> B  satisfying (i), (iii), and (iv) of 2.1.   Let  N = |x £ Y:
[x, x] = 0\.   For each positive linear functional / on B, the map (x, y) —»/([x, y])

is a pseudo inner product (positive semidefinite hefmitian conjugate-bilinear form)

on   Y, and it follows that  N   = ¡x £ Y: f([x, x\) = 0! is a linear subspace of  Y.

N, being the intersection of all such  N 's, is thus a linear subspace of  V.   We

see from (iii) and (iv) that  N • B Ç N, so N is a submodule of   Y.   Let X = Y/N,
so X is naturally a right B-module.   The map (•, •): X x X —» B given by (x   + N,

y + N) = [x, y] is a (well-defined) B-valued inner product on X.
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For a pre-Hilbert B-module X, define   ||-||x on  X by  ||x||x = ||(x, x)||1 /2.

2.3   Proposition.     ||*|lx   zs a norm on  X and satisfies:

(i)  l|x-è||x<||x||x||è|| Vxex, b£B;
(ii)   (y, x)(x, y) < ||y||x(x, x)  Vx, y e X;

(iii)  IK*.y>ll< l|x||x||y||x Vx, y ex.

Proof.   For each positive linear functional / on B,  the map  (x, y) —»/((x, y))

is a pseudo inner product on X, whence it follows that x —* fi{x, x))        is a

pseudonorm on X.   We have

II*Hx = IK*. AH* = sup{/«x, x))*: f a state of  B¡

for each x £ X;  this exhibits   ||.||x as the pointwise supremum of a collection of

pseudonorms on  X, so  ||*||x  is a pseudonorm, and hence, in light of (ii) of 2.1,

a norm on X.

Item (i) of the proposition is established by a direct computation.   For x £ X,

b £ B, we have   ||x . b\\2x = ||(x . b, x . b)\\ = ||/3*(x, x)b\\ < \\b\\2\\{x, x)\\ =

l|x||xIIH|2-
For (ii), take x, y £ X and / a positive linear functional on B. Using the

Cauchy-Schwarz inequality for the pseudo inner product /((•, •)) on X, we com-

pute

fiiy, x)(x, y)) = fi(y -(x, y),x))

<fi(y ■ (x,y),y(x,y)))y>liix,x))lÁ

= fi(y,x)(y,y)(x,y))l/'fi{x, x))*

<ll(y. y>llH/«y. *><*. y»*V«*. *»H

so fiiy, x)(x, y)) < ||y||x/((x, x)).   Since this holds for every positive linear func-

tional / on B,  (ii) follows.
Item (iii) is an immediate consequence of (ii).

We remark that 2.3 is also proved in §2 of 17].

2.4 Definition.   A pre-Hilbert B-module X which is complete with respect

t°   ll'llx  W1H be callecl a HHbert B-module.
2.5 Remark.   If X  is a pre-Hilbert B-module, a  its completion with respect

II*Hx»  it follows easily from 2.3 that the module action of  B  on X  and the B-

valued inner product on X extend to X in such a way as to make X a Hubert B-module.
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We now introduce a natural B-module analogue of the algebra of bounded

operators on a Hilbert space.   For a pre-Hilbert B-module X, we let (l(X) denote

the set of operators  T £ B(X) for which there is an operator  T* £ BiX) such that

(Tx, y) =(x, T*y) Vx, y e X.   That is, u(X) is the set of bounded operators on X

which possess bounded adjoints with respect to the B-valued inner product.   It is

easy to see that for T £ G.(X), the adjoint T* is unique and belongs to d(X), so

u(X) is a *-algebra with involution  T —» T*.   Without risk of confusion, we de-

note the operator norm on B(X) by  |r||y   A routine computation establishes that

\\T*T\\X = \\T\\X  VT e <2(X).   If X  is a Hilbert B-module, it is straightforward to
show that (l(X) is closed in  ß(X), so in this case (Í(X) is a B*-algebra.

The algebra (l(X) consists entirely of module maps, i.e. if T £ (l(X), then

T(x • b) = (Tx) • b Vx £ X,  b £ B.   To see this, take y £ X and observe that
(T(x • b), y) ={x ■ b, T*y) =(x, T*y)b = (iTx) • b, y).   This is enough to show that
T(x • b) = (Tx) • b.   One might guess by analogy with Hilbert space that every

module map in  B(X) belongs to (l(X) when X is complete.   This is not the case,

however, as the following example shows.   Suppose that /  is a closed right ideal

of a B*-algebra  B with  1  such that no element of /* acts as a left multiplicative

identity on /.   (For instance,  B could be the algebra of complex valued contin-

uous functions on the unit interval, /  the ideal of functions in B which vanish

at  0.)  Let X be the right B-module J xB with B-valued inner product defined

by  ((zz,, b{), ia2, b2)) = a*ax + b*b1  tot <2p a2 £ J, bx,b2 £ B.   For ia, b) £ X
we have   \\ia, b)\\x = \\a*a +b*b\\l/2,  so

maxlH, ||*||l < IK«. ¿)||X<(||«||2 + ||H|2)'/2,

whence it follows that X is complete with respect to  IMIx"   Define  T £ B(X) by

T(zz, b) = (0, a) for ia, b) £ X.   T is clearly a module map, but we claim that T 4

(l(X).   For suppose that  T has an adjoint  T* and let  T*(0, l) = ia, ß).   For any

ia, b) £ X we have a = (T(a, b), (0, l)> = (ia, b), (a, #3)> = a*a + ß*b.   From this
we see that ß = 0 and  a*a = a Vue/.   But a* £ /*; and this contradicts our

assumption about /.   Hence  T 4 (l(X).   We remark that although u(X) need not

contain all bounded module maps of  X  into itself, it always contains nontrivial

operators if X is nontrivial.   For instance, we may take x, y £ X and define

x ® y 6 BiX) by  x ® yiw) = x • (w, y) tot w £ X.   It is easy to see that x® y £

Q-iX) with (x ® y)* = y ® x.

2.6   Proposition.   For T £ Q(X), we have (Tx, Tx) < ||T||£(x, x) Vx e X.

Proof. Take x £ X and let / be a positive linear functional on B. Repeated

application of the Cauchy-Schwarz inequality for the pseudo inner product /((•, •))

on X yields
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¡i(Tx, Tx)) = fi(T*Tx. x))

<fi(T*Tx, T*Tx))Vlfi(x, x)fA

<fi(T*T)2x, iT*T)2x))y*fi(x, %»*+*

</(((T*T)2"x,(T*T)2"x))2""/((x, x»«+- + 2'B

< (11/11 lkl|2)2"n||7-||x/((x,x))^-+2_n
for n = 1, 2, • • • , and in the limit we have

fiiTx, rx))<||T||x/((x, x)),

as desired.
For the balance of this section, A  will be a B*-algebra,  B a closed *-sub-

algebra of A, X a pre-Hilbert B-module, and  V a pre-Hilbert A-module.   Denote

the B- and A-valued inner products on X and   V by (•» A and (•, -)A, respec-

tively.   Notice that   Y is a right B-module.   We will give a characterization of the

bounded B-module maps of X  into  Y in terms of the inner products  (•, •/„  and

(•, ')A-   To avoid unnecessary complications, we assume that A has  1  and that

1 e B.   (Otherwise, we could regard  Y as a pre-Hilbert A-module and X as a

pre-Hilbert B -module, where  B    is the subalgebra of A     generated by  1  and B.)

We begin by dealing with maps of B  into A.

2.7   Proposition.   Let  t:  B —»A  be a linear map such that for some real K

> 0 we have  r(x)Mx) < Kx*x  Vx £ B.   Then Ax) = Kl)x  Vx £ B.

Proof.    For each x £ B, we have x*r(l)Ml)x < ||r(l)||2x*x < Xx*x, and (since
(r(x) + r(l)x)*(r(x) + Kl)x) > 0)

- (xMDMx) + r(x)MDx) < r(x)Mx) + x*r(l )Ml )x < 2Xx*x,

so

(r(x) - r(l)x)*(r(x) - r(l)x) < 2Xx*x - (x*r(l )*r(x) + r(x)*r(l)x) < 4Kx*x.

Define  rQ: B -» A by z"0(x) = (2K1/2)_ Hrix) - Al)x), so rQ(l) = 0 and 2-0(x)*rn(x)
< x*x Vx £ B.   We must show that t   = 0.

We may assume that A = B(//) for some Hubert space  //,  so B is a closed

*-subalgebra of B(W) with I £ B.   For T £ B, <f £ H, we have rQ(T)*r0(T) < T*T
and hence  H'o^^ll - li^ll'*"  From this it follows routinely that rQ extends to a

linear map—call the extension !"Q also-from  B    (the strong operator closure of B

in BiH)) into ß(H)    with the property that r0(T)*r0(T) < T*T  VT e B".   For any
projection  P £ B", we have r0(P)*rQ(P) < P and also r0iP)*rQiP) =

rQil - P)*r0il - P)<l - P, forcing rQiP) = 0.   Since  B" is a W*-algebra, it is the
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closed linear span of its projections, so we must have rQ = 0 and the proof is

complete.
It should be mentioned that in the case  B = A,  2.7 follows from a result of

B. E. Johnson [3]-

2.8 Theorem.   For a linear map  T: X —» V the following are equivalent.

(i)   T is bounded and Tix • b) = (Tx) ■ b Vx e X, b £ B.
(ii)   There is a real  K > 0 such that (Tx, Tx)A < K(x, x)g Vx e X.

Proof.    To see that (i) implies (ii), assume that  Tix • b) = (Tx) • b  Vx £ X,

b £ B and that  ||T|| < 1.   We will show that in this case,  (Tx, Tx)A < (x, x)„  Vx
£ X.   Take x £ X and for tz = 1, 2, • • •   set h   = ((x, x)B + n~  )~        and x   = x

• hn.   We have (*n. *n)B = «x, x)¿x. x)ß + n'1)'1 < 1, so ||xj|x < 1, so   ||7*Jy < 1,
so (Tx  , Tx  ). < 1  for tz = 1, 2, —.   But (Tx  , Tx  ). = h  (Tx, Tx)Ah  ,  sotz' n'A  — '     ' n' n r, n 'A   n'

(Tx, Fx)A < h~    =(x, x)B + n~l  for tz = 1, 2, • • • , and hence (Tx, Tx)A <  (x, x)ß

For the other direction, we assume that  (Tx, Tx)A <(x, x)„ Vx £ X,  so

clearly T is bounded with  ||T| < 1.   Take x £ X, y £ Y, and consider the map

r: B —» A  given by r(b) = (T(x • b), y)A  for b £ B.   Appealing to 2.3, we have

r(b)*r(b) = (y, T(x ■ b))A(T(x . b), y)A

< \\y\\2Y(T(x ■ b), T(x ■ b))A < \\y\\2y(x . b, x . b)B

= \\y\\2Yb*(x, x)Bb<\\y\\2Y\\x\\2xb*b       Wb£B

and hence by 2.7, Ab) = ADb Vè e B, i.e. (Tix • b), y)A = (Tx, y)Ab = ((Tx) . b, y)A Wb
£ B.  As x and y were arbitrary, (i) holds and the proof is complete.

2.9 Remark.   It follows from the proof of 2.8 that for a bounded B-module map

T:  X— Y,   \\T\\ = inftK1 '2: (Tx, Tx)A < K(x, x)ß  Vx £ X\.

3.   Self-duality and modules over W*-algebras.   For a pre-Hilbert B-module X,

we let X   denote the set of bounded B-module maps of X into B.   By 2.8 (with

A - B = V),  X    is precisely the set of linear maps   r:  X —> B  for which there is

a real   K > 0 such that  r(x)*r(x) < K(x, x) Vx £ X.   Each x £ X gives rise to a

map x £ X' defined by x(y) = (y, x) for y £ X  (see 2.3).   We will call X self-dual
if X = X ,  i.e. if every map in X   arises by taking B-valued inner products with

some fixed x £ X.   For a trivial example, we note that if B has  1, then B  is it-

self a self-dual Hilbert B-module.   If X is self-dual, X must be complete.   (Other-
wise, look at maps in X   of the form z where z belongs to the completion of X

but not to X itself.)   The converse is false; completeness is not enough to insure

self-duality.   For example, let / be a closed right ideal of B with the property

that no element of /* acts as a left identity on /.   Then the injection of J  into

B  is a map in /    which is not of the form x tot any x £ J.
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If we define scalar multiplication on X   by (Ar)(x) = Ar(x) for A e C, r £ X ,

x e X  (so that we have  (Ax)   = Ax for x £ X, A £ C) and add maps in X   point-

wise, then  X   becomes a linear space.   X   becomes a right B-module if we set

(/" • b)ix) = b*Ax) tor t £ X ,  b £ B, x £ X.   The map x —» x  is then a one-to-one

module map of X into X .   We shall frequently regard X as a submodule of X

by identifying  X with X.
It is natural to ask whether X    is a pre-Hilbert B-module, that is, whether

(•» •) can be extended to a B-valued inner product on X .   It turns out that this

can be done, at least when  B  is a W*-algebra, but showing this requires some

preparation.   We begin by introducing some notation.   Let / be a positive linear

functional on  B.   We have already observed that /((•, •)) is a pseudo inner pro-

duct on X and that  N   = \x £ X: fi(x, x)) = 0, is a linear subspace of X.   It fol-

lows that X/N. is a pre-Hilbert space in the inner product  (•, •), defined by

(x + N,, y + N.). = fi(x, y)) for x, y £ X.   We let H   denote the Hubert space com-

pletion of X/N. and write   ||-||, for the norm on //, gotten from its inner product.

Consider t £ X'.   We have  r(x)*r(x) < ||r||2(x, x) Vx e X by 2.9, so if x £ N

then firix)*rix)) = 0 = fiAx)).   This means that the map x + N   —*/(Hx)) is a well-

defined linear functional on X/N      It is in fact bounded with norm not exceeding

H U/H172, since for x £ X we have   |/(Kx))| < \\f\\UlfiÁxYrix))U2 <
H/ll 1/2||rH/«x, x»1/2 = ||/||1/2||r|| ||x + Nf\\f.   From this, we see that there is a
unique vector r. £ H. such that   ||r ||   < ||r|| ||/||1/2  and  (x + N , r)  = fiAx)) Vx £

X.   Notice that y, = y + N, Vy e X.
Suppose that g  is another positive linear functional on  S with g < /■   We

then have   N.ÇN    and the natural map x + N   —» x + N    of X/N   into X/N    is

contractive and extends to a contractive map  V.     oí H. into //  .   For x e X.r     l.g I g '
we have  V.   ix.) =_x + N   = x  .   The next proposition says that every r £ x' is

similarly well-behaved with respect to the maps   V,    .

3.1   Proposition.   Let  X  be a pre-Hilbert B-module, f and g  positive lin-

ear functionals on  B with  e < f.   Then   V.   (r.) = r    Vr £ X'.

Proof.   Take  t £ X .   Since X/N. is dense in //. we can find a sequence

iy   + zV,! in X/N. such that   ||y   + N. - r.\\. ~* 0.   We have  V.   (f.) =» / / Jn I        f"f j,g    I
lim    V     iy    + N ) = lim   (y   + N  ).   To see that r   = lim   (y   + N ), it sufficesn     I,g    n I 72   J n g g n   Jn g
to show that g«x, y^)) —, giAx)) Vx 6 X.   Take x e X.   We have

\giix,yn)-Ax))\2

< llgllg«*. yn){yn. *) - Ax)(yn, x) - (x, yJAx)* + KxMx)*)

< 11/11/«*. yn)iyn. *> - Ax)(yn, x) - (x, yn)Ax)* + r(x)r(x)*)
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for tz = 1, 2, • • • .   Observe that /«x, y ¿tix)*) = /((x ■ Ax)*, y J) - f(r(x . r(x)*))

= /(Kx)r(x)*) by our choice of the sequence ly   + N.}.   We will be done once we

show that f((x, y  )(y  , x) - Ax)(y   , x)) —* 0.
For each tz we have

/«*. yn)iyn, *) - r(xXyn, x)) = /«* . (yn, x), yn) - T(x . (yn, x)))

= (x.(yn,x) + Nf,yn+Nf-rf)f.
Moreover, the sequence  \x • (y  , x) + N À is   ||-||.-bounded.   Indeed, we have

||x . (yn, x) + Nf \\2 = f((x . (yn, x), x . (yn, x ))) = f((x, yn)(x, x)(y n> x))

< Mjfc/«*. yn){yn- *»<IMIx/(H*llxOv yB»= \Hxb„ + N,^
(the last inequality by virtue of 2.3), and  iy   + N \ is a bounded sequence.   Since

||y   + N   - t ||   —» 0, the proof is complete.
For the balance of this section, B will be a W*-algebra unless it is explicity

stated that this restriction on B  is unnecessary.   We will denote the predual of

B by M, the set of normal positive linear functionals on  B  by P, and regard M

as a subspace of B*, the conjugate space of B, and  P as a subset of M; M is

then the linear span of P in B*.   For basic facts about M/*-algebras, we refer the

reader to S. Sakai [8].

3.2   Theorem.   Let  X be a pre-Hilbert B-module.   The B-valued inner pro-

duct (•, •) extends to X   x X    in such a way as to make  X    into a self-dual Hil-

bert B-module.   In particular, the extended inner product satisfies (x, r) - Ax) Vx

£ X,   T  £ X'.

Proof.   Consider r, tp £ X .   We proceed to define their inner product (r, tp) £

B.   First, define  Y: P -* C by Tif) = (r., ipf)f for f £ P.   We wish to extend T
to a linear functional on M.

Claim 1.   If A,.A   e C, /,,..., /   e P are such that 2" , A./. = 0,1 rz '   ' 1 ' 'zz ; = l     y j '
then 2" . A.r(/.)= 0.

Proof of Claim.   Let / = 2"=1/y, so / e P and / > /   (/ = 1, • • • ,. n).   For
x, y e X, we have

n n n

£ A;(v//!/ .v/. fix + N/]> y+ N?f = X \<« + Nf.>y + Nf)f. = £ Vy«*-y>) = °
7=1 ' ' 7=1     ' 7 '    ' ;=1

by assumption, so  2"=I A.V* . V    .  = 0.   Now observe that

Z \n/;) = Z A/r,, ^.),. = E W, , r/f V/p ̂
; = 1 7=1 ' '    '       ;=1

-¿Vv7./.v/.///^/)/-0'
7=1 ' '
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the second equality holding by virtue of 3.1.

This is enough to show that T extends to a linear functional (call it T al-

so) on M, the linear span of  P.

Claim 2.   r is bounded.
Proof of claim.   Take g £ M.   By 1.14.3 of [8] we may write g = /j - f2 +

z(/3 - fA) with fv f2, /3, /4 £ P and  2j=, ||/.|| < 2||g||,   We then have
4 4

TOI < Z K--/. tfv >, I < I Ik/11/ ll-A/ L
,=1 ' '    ' 7=1        '     ' >     '

<Zll/7IIHII^II<2||r|||^||||g||.
7=1

This proves the claim.
Now B is isometric to M* under the natural duality, so there is a unique

element   (r, ifi)£ B  such that  IXg) = gi(r, yj)) Vg e M and in particular (r., yj.). =

fi(r, i/f))   V/ £ P.   That the map   (•, •): X' x X' —> B defined in this way is con-
jugate-bilinear follows from the linearity of the maps r —> t    of X    into H. for

/ £ P.   We now show that (•» •) satisfies properties (i)—(iv) of 2.1.

For (i), we have für, r)) = irf, r)   > 0 Vr e X', / £ P.   This is enough to

show that A r) > 0 Vr e X'.
For (ii), suppose  r £ X' and (r, r) = 0.   Then r. = 0 V/eP, so /(Hx)) = 0

V/eP, x e X.   This is enough to show that r = 0.

For (iii), take  r, t/r e X'.   For any / £ P we have /((r, i/f)) = irf, yjf)f =

(0,, r)f = fué, t)) = fiiyj, r)*), which shows that <r, i» = <«/r, r)*.
For (iv), consider t, ifj £ X , b £ B, and / e P. Define a functional /fc on B

by /fc(a) = fiab). Then /, e A4 and we may write /, = ^=1 A./, with each /. £ P
and each A. £ C.   Let g = / + S4 j /y,  so g £ P and g>f,fl,f2,f}), /4-   We have

4 4

/(A 4>)b) = £ A./.((r, </>» = £ A/r,, ^ )f
,=1 , = 1 > '     '

= ¿ Va a  ,.^)/;
;=1 ; 7 ■

by 3.1.   For any x e X, on the other hand,

Z X/f, , Vg;    (x + N ))    = Z A   (r      x + /V   ),
7=1 7 ' '        7=1        1       ' '

4

= .£ V/(r°f)*) = /fe(r(x)*}
7 = 1

= fib*Ax)) = für . b)ix)) = ((r • fc)7 , x + AT,),

= ((r.i)     1/       (x + N))r
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Since  X/N    [s dense in H  , we must have
8 s'

4

/((r,^)=EVV V8 /*V/.

= Hr . b)f, Vg> fAg)f = «r . fc)7, Af)f = fi(T. b, A)).

This holds  V/ e P,  so  (r, ip)b = (r • b, A) as desired.

The B-valued inner product on X   which we have constructed is an extension

of that on X  (viewed as a sub module of X ).   For x, y   £ X and / £ P, we have

fiix, y)) = ixf, yj) = (x + Nf, y + Nf)f = fiix, y)), so (x, y ) = (x, y).   Also, for re    '
X', x £ X, f £ P, we have fiix, r)) = ix,, r)  = fiAx)), so (x, t) = r(x).

It remains to show that X    is self-dual.   Consider A £ (X ) .   The restriction

of A to X belongs to X , so we can find a r e X   such that fp(X)= Ax) Vx e X.

Define  AQ £ ix')' by c^d/») = A(A) - (A, t) fot A e X'.   We have AQix) = \0\ and
wish to show that AQ = 0.   Take A £ X   and / £ P.   We can find a sequence

iy„ + NA »n X//V. converging to </»,.   Letting  X > 0 be such that A0ia)*AQia) <
fv(f7, a) Vzj £ X , we have for « = 1, 2, • ■ •

fiA0i<p)*A0iA)) = /(rp0(,A - yB)*¿0ty - y„)) < X/((.A - ;„, tp - y„».

But

f«if>-yn,</>-yn))

= ll^-(yn + VH/2     (« = i.2,...)
so fi(A -yn,</>- yj) — 0, forcing fiAA\p)*AQiA)) = 0.   This holds  V/ e P, so
AQiA) = 0 as desired and the proof is complete.

3.3   Remark.   There are ostensibly two ways of norming X , namely as

bounded operators from X into B on the one hand, and by  Irllx'  on the other.
In fact, these two norms are identical.   Letting   ||.||  denote the operator norm on

X', we have, for r e X'  and x 6 X,  Ax)*Ax) = (r, £)(x, r)   < ||r||2.,(x, x) by 2.3,

so  Hi < ||r||x, by 2.9.   But we have seen that   H^^ < ||r|| ||/||1/2   V/ e P,  so

||r|ß, = ||(r, r)\\ = supiH^L2: / £ P,  \\f\\ = 1} < ||r||2, forcing  ||r||x< = ||r||.
It follows from §2 of [12] that 3-2 also holds when B is a commutative AW*-

algebra.   Whether 3.2 holds for modules over arbitrary   AW*- algebras is unknown

at present, but at any rate we cannot expect it to hold in much greater generality

than this, as the following example shows.   Let  B be the algebra of complex-val-

ued continuous functions on the unit interval, X the ideal of functions in B which

vanish at   0,  thought of as a Hilbert B-module.   One checks easily that  X    may
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be identified (as a normed right B-module) with the algebra of bounded complex-

valued continuous functions on the half-open interval (0, l].   Once this identifi-

cation is made, it is not hard to show that the presence of functions in X   which

do not admit continuous extensions to the closed unit interval implies that the

natural B-valued inner product on  X cannot be extended to a B-valued inner pro-

duct on  X .
One pleasant property of self-dual Hubert B-modules is that every bounded

module map between two such has an adjoint.   The following proposition (which

does not require that  B be a W*-algebra) is proved in much the same way as the

corresponding fact about Hubert spaces.

3.4 Proposition.   Let  X be a self-dual Hilbert B-module,   Y a pre-Hilbert
B-module, and T: X  —* Y a bounded module map.   Then there is a bounded mod-

ule map  T*:   Y -> X  such that (x, T*y) = (Tx, y) Vx £ X, y £ Y.

3.5 Corollary.   // X  is a self-dual Hilbert B-module, every module map in

BiX) belongs to 3(X).

If B  is a U'*-algebra, bounded module maps between two pre-Hilbert B-mod-

ules extend uniquely to bounded module maps between the corresponding self-

dual modules.

3.6 Proposition.    Let  X and  Y be pre-Hilbert B-modules and  T: X —» Y  a
bounded module map.   Then  T extends uniquely to a bounded module map  T: X
— Y'.

Proof.   Define  T#:   Y -* X' by iT^yKx) = (Tx, y)  for y £ Y, x  £ X.   Notice
that   ||(T#y)(x)|| < ||T|| ||x|| ||y||, so by 3.3  T#  is bounded with   ||T#y||x, <
\\T\\ llylly Vy e Y-   We also have iT#iy ■ b))ix) = (Tx, y . b) = b*(Tx, y) = ((T#y) • ¿>)(x)
\/b £ B,  so  T# is a bounded module map.   Define f: X' —» Y' by  (7>)(y) =
(T y, t) for y £ Y, r £ X .   Since  T is just (T ) , T is a bounded module map al-

so.   It is immediate that  ifx)iy) = (Tx)  iy)  Vx £ X, y £ Y,  so   /   is an extension

of  T.
To prove that   T is unique in the desired sense, it suffices to show that if

V: X   —> Y   is a bounded module map with  V(X) = |0i, then V = 0.   Indeed, let
V*:   Y   —' X   be the adjoint of V guaranteed by 3-4.   For yj £ Y , x £ X, we have
iV*yj)ix) = (x, V*yj) = (Vx, if/) = 0,  so V* = 0, so  V = 0.   This completes the proof.

If X is a pre-Hilbert B-module, the preceding proposition says in particular

that every  T £ u(X) extends uniquely to a module map T £ B(X ).   By 3.5,  T £

S(X').   The map T -? of (?(X) into fl(x') is clearly linear.   For T, U£ QiX)
the operators   TO and  (/)* are  extensions   of  Til and  T*, respectively, so we

must have   iTU)    = TU and  (T*)    = (7*)*,  i.e.   T —> T is a *-homomorphism.
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Since  f = 0 implies  T = 0, this map is a ^-isomorphism.   We record this infor-

mation as a corollary to 3.6.

3.7   Corollary.    Let  X be a pre-Hilbert B-module.    Each  T £ Cl(X) extends
to a unique  T £ u(X ).   The map  T —* T is a *-isomorphism of (f(X) into (l(X ).

We now proceed to investigate some of the special properties of self-dual

modules over W*-algebras.   First, we will show that if X is a self-dual Hilbert

B-module (over a W*-algebra B), then X and (l(X) are conjugate spaces, so in

particular u(X) is a W*-algebra.   To this end, we introduce some notation.   Let

Y be the linear space X with "twisted" scalar multiplication (i.e.  A • x = Ax

for X £ C, x £ Y), and consider the algebraic tensor product M ® V,  M as usual

being the pre-dual of B.   We norm M ® V with the greatest cross-norm.   For x £

X, we define a linear functional x  on  M ® Y by

\;=1 /      7=1

for /,,.'•, /    e M, y j, — , y    £ Y.   The functional x is well defined and in

fact bounded with  ||x|| < ||x||v, since

C/'®"')<HxEH//IIIMx
7=1

V/j ,-•.,/   £ M, y j, • • • , y    £ Y, which by definition of the greatest cross-norm

yields the desired inequality.   We actually have   ||x|| = ||x||x.   Indeed, let ig   1 be

a sequence of functionals of norm   1   in  M  such that   |g  ((x, x))|  —' ||x||x.   Each

tensor gn ® x £ M ® Y has norm   ||gj ||x||x = ||x||x, and  |i(gn ® x)|  — ||x||x,

so  llxllx - 11*11  anc* hence  ||x|| = ||x||x.   The map x —> x is thus a linear isometry
of X into (M ® Y)*.

3.8   Proposition.    Let X be a self-dual Hilbert B-module.   Then X  is a con-

jugate space.

Proof.   It will suffice to show that  X is weak*-closed in (M ® Y)*, since

X will then be isometric with the conjugate space of a quotient space of  M ® Y.

Let |xa| be a net in  X converging weak* to some  F £ (M ® Y)*-.   For y £ X, de-

fine a linear functional A    on M by A (g) = Fig ® y) for g £ M.   The functional

A-    is clearly bounded with norm not exceeding  ||F|| ||y||x, and we conclude that
there is a unique element Ay) £ B with  ||Ky)|| < ||F|| ||y||x and F(g ® y) = g(Ay)*)
Vg eM.

The map r is clearly linear and we have just seen that it is bounded.   We

claim that it is a module map (and therefore belongs to X').   Indeed, take y £ X,
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b £ B, f £ M and define g £ M by gia) = fib*a) for a £ B.   We have

/(r(y . b)*) = Fif ® (y • b)) = lim xaif ® (y . b)) = lim /«xa. y • b))

= lim g«xa, y)) = F(g ® y) = g(r(y)*) = fib*Ay)*).

This holds for every / £ M, so Ay • b) = Ay)b as claimed.
Since  X is self-dual, we can find an x„ e X such that Ay) = (y, xQ) Vy £ X.

It follows that  F = xQ and hence that X is weak*-closed in  ÍM ® Y)*.   This
completes the proof.

3.9 Remark.   We let J   denote the weak*-topology which X has by virtue

of being a conjugate  space in the manner demonstrated above.   Closed, norm-

bounded convex subsets of X are J-compact.   A bounded net IxJ in X converges

with respect to J   to x £ X  ii and only if fi(xa, y)) —» fi(x, y))  V/ £ M, y £ X.
An elaboration of the technique employed in the proof of 3.8 can be used to

show that tl(X) is a conjugate space under the circumstances which we are con-

sidering.   Let   Y be as above, and norm  X ® Y ® M with the greatest ctoss-norm.

For T £ u(X), define a linear functional f on X ® Y ® M by

f(2>.®y7®gy)   =¿g7.«Tx., y.»

for x ., y . e X, g . e M  (/' = 1, • • • , 72).   T is well defined and it is easy to see

that  f £ÍX ®Y ®M)* with  || f || = ||r||x.   The map T -» f is thus a linear iso-
metry of fl(X) into (X ® Y ® M)*.

3.10 Proposition.   Le/ X be a self-dual Hilbert B-module.   Then u(X) is
a W*-algebra.

Proof. It suffices to show that U-(X) ¡s a conjugate space, and for this in

turn it suffices to show that Q-iX) is weak*-closed in (X ® Y ® M)*. Let \Ta\

be a net in S(X) with ÍTj converging weak* to some <£ £ (X ® Y ® M)*. For
x, y e X, define r : M —> C by t ig) = <ï)(x ® y ® g) for g £ M. The func-
tional r is clearly linear and bounded with norm not greater than \\<t>\\ ||x||x||y||x,

so there is a unique element Txiy) e B with H-'^.Cy)|| < ||$|| ||x||x||y||x such that

$(x ® y ® g) = girxiy))  Vg £ M.
Claim.   For x, y e X, ¿> e B, we have  Tx.biy) ■ ^(y)^ and r (y • è) = ¿*rx(y).

Proof of claim.   We establish only the first equality; the second is proved

similarly.   Take f £ M and define g e M by g(fl) = /(a/>) for a £ B.   We have

firx.biy)) = *((« • è) ® y ® /) = limaTa((x . &) ® y ® /) = lima /«Ta(x • fc), y» =
lima g«Tax, y» = $(x ® y ® g) = g(Ay)) = /(rx(y)/>).   This holds V/ 6 M,  so

rx.biy) = rxiy)b.
For any y £ X, the map x —» r iy) is thus a bounded module map of X into
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B.   Since  X is self-dual, we can find a unique   Uy e X such that rj,y) = (x, Uy)

Vx £ X.   U is clearly linear, and in fact a module map since for x, y £ X, b £ B

we have (x, U(y • b)) = r (y . b) = b*rx(y) = (x, (Uy) • b).   Moreover, for any y £ X,

we have   \\Uy\\2x = \\(Uy, Uy)\\ = \\rUy(y)\\ < ||*|| \\Uy\\x\\y\\x, whence  \\Uy\\x <
ll^ll llyllx*   ^> being a bounded module map, belongs to S(X) by 3-5.   Let T = U*.
It is immediate that <£ = T, which completes the proof of the proposition.

Our next result gives a "polar decomposition" for elements of a self-dual

module over a W*-algebra.   Its proof mimics that of 1.12.1 in [8].

3.11   Proposition.    Let  X be a self-dual Hilbert B-module.   Each x eX  can

be written x = u • (x, x)       , where  u £ X  is such that  (zz, zz) z's the range projec-

tion of (x, x)      .   This decomposition is unique in the sense that if x = v • b

where b > 0 and (v» v) is the range projection of b, then v - u and b = <x, x)

Proof.   Take x £ X and for tz = 1, 2, • • •   set h   = ((x, x) + 72" )        and x   =
x 4     .   We have (x  , x  ) = (x, x)«x, x) +t2-1)-1, so  ||x  ||x < 1  for tz = 1, 2n
•••.   Let y be a J-accumulation point of the sequence \x   \ (see 3.9).   Since

\\h   -(x, x)      M —» 0 and x    • h   = x (n = 1, 2, • • •), we conclude that x = y •
1   n        / n        n ' J

(x, x)      .   Let p be the range projection of (x, x)1     .   We have p(x, x)       =
(x,x)1/2p = (x,x)1/2,  so x = y - p(x,x)U2  and  (x, x) =   (x, x)1/2p(y, y)X(x, x)W2.

Hence (x, x)1/2(/> - p(y, y)p)(x, x)l/2 = 0.   Since   ||y||x < 1,  we have p -

P(y>y)P>0, so (x,x)1/2(p-p(y, y)p)U2 = 0.   This forces p(p - p(y, y)p)1 /2 =
0 and hence p = p(y, y)p.   Now let zz = y • p.  We have zz • (x, x)l/2 =

y • p(x, x)1/2 = x and (u, u) = p(y, y)p = p as desired.

To prove the uniqueness of the decomposition , suppose x = v • b, where

b > 0 and (v, v)  is the range projection of b.   Then (x, x) = b(v, v)b = b2, so
b =(x, x)1'2, and (vy v) = p.   We have (v-v-p,v-v-p) = p-p-p + p=0,

so v = v • p and likewise   zz = u • p.   Also,  (x, u) = (x, x)1/2 = (v, u)(x, x)1/2,  i.e.

(p -(zz, zz))(x, x)1/2 = 0.   This forces  (p - (v, u))p = p - {v • p, a) = p -(v, u) = 0.

Hence (u-v,u-v)=p-p-p + p = 0, so zz = zz and the proof is complete.
Our next project is to obtain a "direct sum" decomposition for self-dual Hil-

bert B-modules over a W*-algebra  B.   The summands here will be right ideals of

B of the form pB, where p £ B  is a projection, viewed as (self-dual) Hilbert B-

modules with B-valued inner product (pa, pb) = b*pa for a, b £ B.   First, we

must develop a notion of "direct sum" appropriate to such a decomposition.

Let / be an index set, and  ÍXa: a £ I\ a collection of pre-Hilbert B-modules

indexed by /.   Let A denote the set of finite subsets of /, directed upwards by

inclusion.   For /-tuples x = \xj, y = {y J (*a, ya e Xa Va e /) and Sei, we

set (x, y)s = l\(xa, yj: a £ S\.   Let X denote the set of /-tuples x = \x J such

that sup|||(x, x)s\\: Se?i<oo.   Notice that for x £ X, the net j(x„x),-: S eîi
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is norm-bounded and increasing; we let (x, x) denote its least upper bound.   Take

x, y £ X and consider the net l(x, y)s: S £ j\.   We claim that this net is norm-

bounded and ultraweakly convergent.   For each state f oí   B and each S £ j, we

have

l/«*.y)5)|<Dlf/i<««.y«»|ïa€il
<Zí/(<*a.O)*/(<ya.ya>>*:ae*l

< (Eí/«a. *«»- a es\Y0f«ya. y*»■* e*•)*
= /((x, x)s)Kfi(y, y)s)V>

< IK*. *>slñl<y. y)sllH < IK*. *>llMIKy. y)llH-
This is enough to show that   ||(x, y)J < 2||(x, x)||! /2 ||(y, y)||1 '2   VS 6 5,  i.e. the
net in question is norm-bounded.   To see that it converges ultraweakly, it there-

fore suffices to show that the net \f((x, y)s): S £ j\ is Cauchy V/ £ P.   Take

f £ P and consider S, 5p S2 £<S with S Ç Sj Ci J^.   We have

|/((x, y)Sj - (x, y)s)\ = |/((x, y)Sl\s2 - <*. y^ss^l

< I/«*- y>fl\j2)l + I/«*. y>j2\s,>l

< /«*, ^^/«y. y)^)* + /((x, x)s^s)»ß<y. y)^)*.

But the last quantity may be made as small as desited by choosing   5  sufficiently

large (since  / is normal), so we are done.   We let (x, y)  denote the ultraweak

limit of the net \(x, y)s: S £ A}.   It is now clear that S   is a right B-module under

coordinatewise operations and that (•, •) defined as above is a B-valued inner

product on  X.   We call the pre-Hilbert B-module  X  the ultraweak direct sum of

the modules  Xa and write X = UDSjXa:  a e /j.   It is routine to show that X  is

self-dual if and only if each  Xa is.

3.12   Theorem.   Let X be a self-dual Hilbert B-module.   There is a collec-
tion [pa: a £ l\ of inot necessarily distinct) nonzero projections in B such that

X and UDS(paB: a £ I] are isomorphic as Hilbert B-modules.

Proof. Let \ea: a £ I\ be a subset of X which is maximal with respect to

the following properties: (i) {ea, ea) is a nonzero projection; (ii) (ea,eg)=0

for a / ß.   (Such a set clearly exists by virtue of 3.11 and Zorn's lemma.)   Let

Pa = ien., ea) for each a e /.   (Notice that  (ea - ea • pa, ea - ea • pa)= 0, so ea

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INNER PRODUCT MODULES OVER ß*-ALGEBRAS 459

= ea • pa Va £ 1.)   For S £ J  (= set of finite subsets of /) and x £ X, one sees

by imitating the proof of Bessel's inequality for Hilbert space that

Y,\(ea. x)(x, ea): a £ S\ <(x, x).

Since (x, ea) = pa(x, ea) Va £ I, this shows that the /-tuple  \(x, ea):  a £ 1} be-

longs to UDSjpaB: a £ I\.  We define  T: X —> UDS{paB: a e /} by Tx = \(x, ea)\.
It is clear that  T is a module map.   We wish to show that T is onto and that

(Tx, Tx) = (x, x) Vx £ X.
Consider \pabj £ UDSSpaBÎ and for each Sêî, set ys = 2)ea ■ ba: a £ S\.

We have (ys, ys) = (ípat>ai, i/V^a^s  ^ e ^>  so the net \ys: S £$] is norm-
bounded in X.   Let y be a J-accumulation point of this net (see 3.9).   For each

f £ M and a £ I, f((y, ea)) is an accumulation point of \fiiys, ea))- S £ ¿\.   But

for sufficiently large  S, (ys, ea)= (ea - ba, ea)= paba, so (y, ea)= paba Va e

/, i.e.  Ty = \paba\, showing that  T is onto.

It follows routinely from 3.11 that if x £ X and (x, ea)= 0  Va £ I, then the
range projection of (x, x)        is orthogonal to each  ea and hence  0 by the max-

imality of ¡ea: a £ /J.   This means that  T is one-to-one.   Finally, take x eX

and for each S £ J set xs = 2{ea • (x, ea):  a £ S\.   We have seen that \(x, ea)\

= fpa,'x, ea)¡ £ UDS¡paB!, so the net ix^.: S £ j\ is norm-bounded and any J ^ac-

cumulation y thereof satisfies (y, ea) = (x, ea) Va e /.   It follows that the net

\xs\ is J-convergent to x.   For each / € M we have /((x, x)) = lims /((x, x^.)) =

lim5 /«xs> xs)) = Hm5 /((Tx, Tx>s) = f((Tx, Tx», so <x, x)= (Tx, Tx) and the
proof is complete.

4.   Extension of a module by a bigger algebra.   Let A  be a B*-algebra with

1, B  a closed *-subalgebra of A  with  1 £ß, and X a pre-Hilbert B-module.   In
this section we construct an "extension"  X©A  of X by A which is a pre-Hil-

bert A-module and show that under certain circumstances  (X0A)   is isometrically

isomorphic to the right A-module of all bounded B-module maps of X  into A.

One consequence of this is that the set of bounded B-module maps of X into

B** can be made into a self-dual Hilbert B**-module.

Consider the algebraic tensor product  X ® A,  which becomes a right A-mod-

ule when we set (x ® zz) • a   = x ® zzzz      for x £ X, a, a    £ A.   Define  [>, •]: X ®

A x X ® A — A  by
[n m -,

Z xi ® v E y< ® az = S a?<v yf>v
7=1 z = i J     '.i

It is immediate that  [• , •] is well defined and conjugate-bilinear, and that  [z, w]
= [w, z]* and  [z • a, w] = [z, w]a  Vz, w e X <8 A, a £ A.   For x,, — , x    £ X

1 n
and b,, • • • , b    £ B we havez w
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£ b*{xf x.)b. = /¿ x. . b.,   ¿ x. . b\  > 0,
i.i \l = l 1=1 /

so by 6.1 the matrix  [(x ., x.)] in B.  ., the B*-algebra oí n x n matrices with

entries in B,  is positive.   Hence it is positive as an element of the larger B*-

algebra A.  . and by 6.1 again, S. . a%x., x )a . > 0  Va  , • • • , a    £ A,  i.e.  [z, z]

> 0 Vz e X ® A.   If we let N = \z £ X ® A:  [z, z] = 0(, then zV is an A-submod-
ule of X ® A and  Y = (X®A)//V is a pre-Hilbert A-module in a natural way (see

2.2).   A direct computation shows that  (x • b) ® 1 - x ® b £ N Vx £ X, b £ B, so

the map x —> x ® 1 + N is a B-module map of X  into  Y.   Moreover, we have

(x ® 1 + N, y ® 1 + N) = (x, y) Vx, y £ X so we may regard X as a B-submodule

of   Y.   We call  Y the extension of X by A  and write   Y = X © A.
Let  M(X, A) denote the set of bounded B-module maps of X into A, made

into a linear space by adding maps pointwise and "twisting" the natural scalar

multiplication (i.e.  (A0)(x) = Xcpix) for A £ C,  cp £ MÍX, A), x £ X).   MÍX, A) be-
comes a right A-module when we define  cp • a  for cp £ M(X, A) and a £ A  by

icp • a)ix) = a*cj>ix) Vx £ X.   Notice that each r £ (X © A)   gives rise to a map

rR £ MiX, A) by restriction to X; explicitly,  rRix) = Ax ® 1 + N) for x £ X.   If
(X © A)   and  M(X, A) are normed as linear spaces of bounded linear maps, it is

clear that the map r —, rR is a contractive A-module map of (X © A)   into

MiX, A).   We shall see that under certain conditions (which obtain in reasonable

generality), this map is an isometry of (X © A)   onto M(X, A).

We will need the following lemma.

4.1 Lemma. Let d be a B*-algebra with 1, and S a set of positive linear

functionals on u. of norm not exceeding 1 such that \\a\\ = supi/(a): f £ S\ Va £

â with a > 0.   Then if b £ 0. is selfadjoint and fib) > 0  Vf £ S, we have  b > 0.

Proof.   Let  [A, A] be the smallest closed subinterval of the real line con-

taining the spectrum of b.   We must show that A > 0.   Since A - b > 0, we have

A - A = ||A - è|| = sup |A||/ || - fib): f £ S\

< supiA - fib): f eS\ - A - inf \fib): f £ S\,
so A > inf \fib): / £ S\ > 0, which is what we wanted.

4.2 Theorem.    With A  and B as above, the following are equivalent:

(i)   For each pre-Hilbert B-module  X, the restriction map of (X © A)   into

M(X, A) is an isometry onto;

(ii)   for  any subset   \c..: i, j = 1, •••, n\ of A  such that  2.. è*c „b. > 0

V¿>, , • • -, b    € B, we have  1. . a*c . .a . > 0  Va,, • • • , a    £ A.
1 72 ' I   ]       I     I)    ]   — 1 71

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INNER PRODUCT MODULES OVER ß*-ALGEBRAS 461

Proof.   We first show that (i) implies (ii).   Suppose we have c.. £ A  (i? j = 1,

• • • , tz) such that

(1) Z   ̂ C..b.>   °       ybV-   'K63'
i, i

Let X be the direct sum of n copies of B,  made into a Hilbert B-module with

B-valued inner product defined by

((b,,... ,bn),(ßv... ,ßn))= Zßn.
7 = 1

for b ., ß. £ B  (/ = 1, • • • , tz).   One checks that X © A   is just the direct sum of tz

copies of A  (with A-valued inner product defined in like manner) via the identifica-

tion (b,, - • • , b  ) ® a + N —» ib, a, • • • , b a). Now consider the B*-algebrain in v

S(X © A), which is easily seen to be *-isomorphic with the B*-algebra A .  .  of

tz x tz matrices with entries in A.   For T £ (f(X © A), T > 0, we have (using the

assumption that the restriction map is an isometry)

= supi||A||Xo/1:yeXOA,||y||XQj4<li

= supi||(x, r«y>||:yeX0A,xeX, ||y||X0¿<l, MX<1|

= supi||<T*x,y>||:yeX©/L x6X, \\y\\x@A < 1, ||*||X<U

= supj||T^x||X0A:xeX, ||*||X<1¡

= supí||(T^x, T1/jx)|^:xeX,||x||x<li

= supí||(Tx, x)||'/j:xeX, ||x||x<l]

i.e.   ||T||XQj4 = sup|||(Tx, x)||: x e X, ||x||x <1}.   Let S be the family of func-
tional  U —>f\(Ux,.x)) on 3(X © A), where / is a state of A and x e X,  ||x||x

< 1.   For T £ QiX © A), T > 0, we have just shown that ||T||X0A =
suplg(T): g £ S], so S satisfies the hypotheses of 4.1.

Now let  T £ (l(X © A) be the operator corresponding to the matrix  [c..] £

A,  y   We see from (1) that g(T) > 0 Vg £ S.   It also follows easily from (1) that

T =T* (i.e.  c    = c*{ tot z, 7 = 1, • • • , n), and we conclude from 4.1 that  T > 0.

By 6.1, this means that 2. . a*c . a . > 0 Va j, — , a    £ A t which is what we

wanted.

For the other direction, assume that (ii) holds and let   X be a pre-Hilbert B-

module.   To establish (i), it will suffice to show that given A £ M(X, A) with

\\A\\ < 1, we can extend   A to a unique  r £ (X © A)' with  ||r|| < 1.

Consider rQ: X® A —> A defined by r^l"     x. ®i?7.) = 27=1 A(x.)a..   rn is
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clearly an A-module map.   Moreover, for b^, • • • , b    £ B, Xj, • • • , x    e X we have

£ bfcpix^cpix.iï. = £ <M*; ■ M***, • V = W ¿ *i • MjWz *f • M

72

<
*Z = 1 2=1 ' Z.  Z= 1

the inequality holding by virtue of 2.8 and our assumption that   ||cS|| < 1.   By (ii),

we must have

£ a*cpix.)*cpix.)a. < £ a*(x., x.)a.     Vbj, • • • , ttn 6 A, Xj, •• • , xn 6 X,
i. i i, j

i.e.

r0iz)*r0iz)<Vz, z]     Vz £ X ® A.

This shows that the map t; X © A —» A  given by K2?=1 x. ® a . + zV) =
S"=1 cpix.)a. is well defined and satisfies  Ky)*Ky) < (y, y) Vy e X © A (so  ||r||

< 1).   Hence  r e (X © A)'.   Notice that r(x ® 1 + N) = cpix) Vx £ X, so r is an

extension of cp.   This completes the proof.

We mention two situations in which the pair (A, B) (where  A  has   1  and  1 £

B) satisfies (ii) of 4.2.   If A  is commutative, it follows from a result of M.

Takesaki [ll] that the pure states of A.  .  all have the form  Vc ..] ~~'2.    A.A.7r(c..),
i") z; 7.7    z  ;       i;

where  77 is a multiplicative linear functional on A  and A,, ••• , A    £ C are suchr I 71

that 2"=1 |A.|    = 1.   Ftom this it is immediate that (ii) holds whenever A  is com-

mutative.   We claim that (ii) also holds whenever A  is a W*-algebra and B  is

ultraweakly dense in  A.   In this situation, balls about  0 in  B  of finite radius are

dense in the corresponding balls of A  with respect to the strong*-topology of A

(see 1.8 of 18J).   Moreover, the involution on A  is strong*-continuous and multipli-

cation is jointly strong*-continuous on norm-bounded subsets of A.   Hence if

c. £ A  ii, j = 1, ... , 72) and  2. . b*c . b. > 0 V/,,, ... , b    £ B, then 2. . a*c..a.
i] ' ill    r  in - 1 72 ' 1,]    1   1,  ]

> 0  Va   , . . . , «    £ A.— 1 77

We remark in passing that it is not difficult to find pairs  (A, B) for which

(ii) fails.   For example, let A  be the algebra of 2 x 2 complex matrices and B

the subalgebra of A  consisting of complex multiples of the identity matrix.   If we

let
(0 0\ /0 -1\

n - \0 l)' C12 - \0 0 /'

(1 0\ (0 l\
"22- \p 0/' fll "   \0 0/'

C21 *c12'
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then  2. . X.X.c> 0  VA., A, £C, but  1. .a*c.jz. = i   ? " *).1.7     i   1   11 - 1'     2 ' z,7     z    i;   7 -10
If  B  is an arbitrary B*-algebra with  1,  and  X a pre-Hilbert B-module, it ap-

pears that we cannot in general expect to be able to extend the B-valued inner

product on X to a B-valued inner product on X   as in 3.2.   We can, however, ob-

tain a reasonably satisfactory general substitute for 3-2 by considering bounded

B-module maps of X  into B**, the second conjugate space of B.   By 3.2,

(X©B**)' is a self-dual Hilbert B**-module with a B**-valued inner product extending

that of X © B**.   Since  B** is a H/*-algebra containing B as an ultraweakly

dense subalgebra, (ii) of 4.2 holds   for the pair (B**, B) and we may therefore

transfer the inner product on (X © B**)   over to M(X, B**).   X may be regarded

as a B-submodule of M(X, B**) in an obvious way, and it is clear that the B**-

valued inner product which we have put on M(X, B**) extends the B-valued inner

product on X.   We thus obtain the following corollary as a special case of 4.2.

4.3   Corollary.   Let  B be a B*-algebra with  1 and X a pre-Hilbert B-module.
Then the B-valued inner product on X   can be extended to a B**-valued inner

product on M(X, B**) in such a way as to make the latter into a self-dual B**-

module-

5.   Representation of completely positive maps.   Let B be a B*-algebra, A

a *-algebra, and  <p: A —> B a linear map.   We call A positive if <p(a*a) > 0

Vzz £ A.   For n = 1, 2, • • •, A induces a map <p    from the algebra A.  . of n x n

matrices with entries in A  (made into a *-algebra by setting [a..]* = [a*.]  V ma-

trices  [a..] £ A.  .) into the corresponding B*-algebra B,  > defined by A ([a..]) =

lA(a.)]; we say that A is completely positive if each of the induced maps  A    is

positive.   It should be noted that positivity does not in general imply complete

positivity.   For example, the map from the algebra of 2 x 2 complex matrices onto

itself which sends each matrix to its transpose is positive but not completely

positive (see [l].)

5.1   Remark.   A linear map A: A —> B is completely positive if and only if

S„ b*A(a*a.)b. > 0 Var •••, «n eA,^,...,^ e B.   To see this, observe that
the matrices in A^ of the form M*M  (M £ A.  A' ate precisely those which can

be written as the sum of n or fewer matrices of the form [a*a.] (a,, • • • , a    £ A).
1     7 1 71

The remark now follows from 6.1.

Let A: A —> B  be completely positive and suppose in addition that c6(a*) =

A(a)    Va e A.   (This additional assumption is frequently superfluous, for instance

if A  has  1.)   The map  A gives rise to a pre-Hilbert B-module as follows.   Con-

sider the algebraic tensor product A 2) B, which becomes a right B-module when
we set (a ® b) • ß = a ®&/3 for b, ß £ B, a  £ A.   Define  [•, •]: A ® B x A ® B —»
B by
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[E a,r • *,, £ a. ® /si = Z ßWia-Wj
L; = l z = l J       ,'.'

for flj, • • •, « , a.j, • ••, a.    e A, èj, ..., b , ßx, ■ • •, ß    £ B.   [>, •] is clearly
well defined and conjugate-bilinear.   We have  [x, x] > 0   Vx £ A ® B (since  cp is

completely positive),  [x, y] = [y„x]*  Vx, y £ A ® B (since 0 is a *-map), and

[x • b, y] = [x, y]/>  Vx,y £ A® B, b £ B (by inspection).   By 2.2, the set N =
¡x £ A ® B: [x; x] = 0! is a submodule of A ® B  and xQ = (A ® ß)/N is a pre-

Hilbert B-module with B-valued inner product (x + N, y + N) = [x, y] for x, y e
A ®B.

The construction of XQ is a generalization of the process whereby a hermi-

tian positive linear functional on A gives rise to a pre-Hilbert space. It should

be compared with a similar construction carried out by W. F. Stinespring [9].

Following T. W. Palmer [5], we call an element v oí the *-algebra A quasi-

unitary ii vv* = v*v = v + v* and say that A  is a U*-algebra ii it is the linear

span of its quasi-unitary elements.   All Banach *-algebras are fi*-algebras [6].

Notice that if A  has   1, then u £ A  is unitary (i.e.. zz*zz = uu* = l) if and only if

1 — u is quasi-unitary, so in this case A  is a i/*-algebra if and only if it is

spanned by its unitaries.
Let X be a Hilbert B-module.   Given a *-homomorphism n: A —' u(X) (hence-

forth called a ""-representation of A  on X) and an element e £ X, we may define

a linear map cp: A —► B by cHa) = (7r(a)e, e)  tor a £ A.   Using 5.1, an easy com-

putation shows that çS is completely positive.   The following theorem says that

if A  is a (i*-algebra with  1, then all completely positive maps of A  into B arise

in this manner.   Its proof is modeled on that of a result of W. F. Stinespring [9l.

5.2   Theorem.    Let A  be a U*algebra with 1,  B a B*-algebra with  1, and
cf>:  A —' B a completely positive map.   There is a Hilbert B-module  X, a ^-repre-

sentation  n of A  on  X, and an element  e £ X such that cpia) = (7r(a)e, e) Va £ A

and the set \nia)ie • b): a £ A, b £ B\ spans a dense subspace of X.

Proof.   First observe that  cp is automatically a *-map.   (For each positive

linear functional / on B, the map a —, ficpia)) is a positive linear functional on

A.   Since A has  1, each such functional is hermitian and we have ficpia*)) =

ficf>ia)) = ficpia)*) for every a £ A  and every positive linear functional / on   B.

This shows that cpia*) = cpia)* Va £ A.)   Notice also that A ® B  becomes a left

A-module when we define a ■ (a ® b) = aa ® b for a, a £ A, b £ B.   If [•, '] and

N are defined as in the construction of the pre-Hilbert B-module XQ at the begin-

ning of this section, then N is an A-submodule of A ®B.   Indeed, if u £ A  is

unitary, a direct computation shows that Vu • x, u • x\= Vx, x] Vx £ A ® B, so in

particular u • N C_ N.   Since A  is spanned by its unitaries, we have  A • N Ç_ N.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INNER PRODUCT MODULES OVER ß*-ALGEBRAS 465

For each a £ A, we may thus define a B-module map zr0(a) of XQ into itself

by 7t0(a)(x + N) = a • x + N tot x £ A ® B.   For any unitary u £ A, nQiu) is an

isometry of  Xn,  so each  ^q        1S a l*near combination of isometries and there-

fore bounded.   Since [a • x, y] = [x, a* • y] Va £ A, x, y £ A ® B, we have  nQia)

e'(2(X0) with ^0ia*) = ffr/a^* ^a e A-   Let * ^e tne Gilbert B-module completion

of XQ.   Each  nQ(a) extends uniquely to an operator- n(a) £ u(X).   It is clear that

n is a *-representation of A  on X.

Finally, set e = 1 ® 1 + N.   For a £ A,  b £ B, we have   nia)(e • b) = a ® b
+ N, so the linear span of the set ¡77(a)(e • b): a £ A, b £ B\ is precisely XQ,

which is dense in  X.   We have  (nia)e, e) = [a ® 1, 1 ® l] = Aia)  Va £ A, which

completes the proof.

Suppose in addition that  rp(l) = 1.   Then (e, e) = 1 and it follows that the

operator e ® e £ (l(X) is a projection.   It is a routine matter to verify that the

map b —* (e • b) ® e  is a *-isomorphism of B  onto the closed *-subalgebra

(e ® e)Q(X)(e ® e) of Ö(X).   Notice that (e • <p(a)) ® e = (e ® e)n(a)ie ® e) Va e

A.   These observations yield the following corollary to 5.2.

5.3 Corollary.   Let A and B be as above, and A: A —• B a completely

positive map such that 0(1 ) = 1.   There is a B*-algebra u  containing  B, a pro-

jection p £ (X such that  B = pup, and a *-homomorphism n: A —> (l such that

Aia) = pnia)p  Va £ A.

Let A  be a U*-algebra with  1, and  B a W*-algebra.   Our goal is a descrip-

tion of the order structure of the set of completely positive maps from A  into B

similar to that given in 1.4.2 of [l] for the case B = BiH), H a Hilbert space.

Let A: A —» B be a completely positive map.   If X, n, and e are as in 5.2, we

may define a *-representation  n  of A  on the se If-dual Hilbert B-module X   by

composing the *-isomorphism  T —• T of CliX) into u(X ) (see 3.7) with n, i.e.

we set  nia) = nia)~ £ u(X ) Va £ A.   Suppose  i/>: A —• B  is another completely

positive map.   We write A < A if A - tp is completely positive and let [0t tzS] de-

note the set of completely positive maps from A  into B which are < A.

For T eítXx'), define  AT: A -^ B by 0T(a) = (rîr(a)ê, ê) for a e A. Notice
that Af - A and that the map T —» r/i^ is a linear map of (3(X ) into the space of

linear transformations of A  into B.   The proof of the next proposition is much
like that of 1.4.2 ¡n [1].

5.4 Proposition.   The map  T —< Aj  is an affine order isomorphism of \T £

IriA) :  0< T < /x,) onto [0, A] iwhere  niA)' denotes the commutant of rr"iA) in
dix')).

Proof.   First we show that  T —> <pT is one-to-one on niA)'.   Indeed, it T £
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2t(A)' and <A = 0, a direct computation shows that  (Tin{a^){e • b,)) ,

in(a2)ie . b2)f)=0 av a2 £ A, by b2 £ B, so <T(X0), X0)=0, so (T(X), X)=0, so T
= 0 by the uniqueness assertion of 3.7.   Next, we claim that cf>T is completely

positive if T £ niA)   and T > 0.   For a^, • • •, a    £ A, ¿>  , •• •, b    £ B, set x =
2" , 7r(a.)(e • b.) £ X.   One checks that

;=i       7 ;

T.b*<pTia*aj)bj= iTÍ,x)= {T*x, T>A£)>0
i,i

so cf>r  is completely positive by 5.1.   This is enough to show that  T —> cpT is
an affine order isomorphism of \T £ niA) :  0 < T < 1} into [0, r/>J.

To show that this isomorphism is onto, take  yj £ [0, cf>].   From 5.2 we get a

"•"-representation p of A  on a Hilbert B-module   V and a d £ Y such that t/Ha) =

(pia)d, d) Va £ A and the set    \pia)id • b): a £ A, b £ B\ spans a dense subspace

V0 of  Y.   Since 4> <<f>, it follows routinely that there is a well-defined bounded

module map W:  XQ -> YQ   such that  Winia)ie • b)) = pia)id • b)  Va £ A,  b £ B
and  iWx, Wx) < (x, x) Vx £ XQ.   W extends to a bounded module map W: X —> Y.

A straightforward computation shows that the maps  Wnia) and  pia)W agree on

XQ   Va £ A, whence  Wnia) = pia)W  Va £ A.   We appeal to 3.6 to get a bounded

module map W: X   —> Y   extending  W.    It is clear from the proof of 3.6 that

(Wt, Wr)<{r, r) Vr £ x'.   Let #*: Y' — X' be the adjoint of W given by 3.4 and
set  T = $*W,   so T efl(X') and  T = T*.   For r e X', we have (Tr, r)=(Wr, Wr),
so 0 < (Tr, t) < (r, r).   From this it follows (see the proof of 6.1) that  0 < T < I.

Notice that for a £ A, the bounded module maps   Wjfia) and p(a)W of  X' in-

to  Y   are both extensions of Wnia) = pia)W, so by the uniqueness assertion of

3.6 we have $5K(a) = p(a)#  Va £ A.   It follows from this that nia)W* = W**pia)
Va £ A.   Hence for any   a e A, we have  Tnia) = ÏÏ*\Vn(a) = #¡o(a)W = nia)^*W =

nia)T, i.e.  T £ XiA)'.
Finally, cpj = yj, since for a e A  we have cp~ia) = (,T77(a)ê, c) = (W77(a)ê,

$ê) = iWnia)e, We) = (pia)d, d) =   if/ia).   This completes the proof.

With A and B as above and  b £ B, b > 0, we denote the set of completely

positive maps cp: A —* B such that </i(l) = è by 2(A, B, ¿7).   Notice that
2(A, B, />) is a convex subset of the space of linear maps from A  into B.   The

following characterization of the set of extreme points of 2(A. B, b) follows from

5.4 in exactly the same way that 1.4.6 of [l] follows from 1.4.2.

5.4  Theorem.   Let A be a U*-algebra with 1, B a W*-algebra, and cp £
2(A, B, b) where b £ B, b > 0.   Then (in the notation of 5.2) cp is an extreme

point of 2(A„B, b) if and only if the map  T —> (Tê, ê) of ö(x') into B  is one-
to-one on rriA) .
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6.   Appendix:   Positivitv of matrices over B*-algebras.   Let B be a B*-alge-

bra and for tz = 1, 2, —, let B.  . denote the B*-algebra of tz x tz matrices with

entries in B.   The following criterion for the positivity of a matrix in  B.  . is

used several times in this paper.

6.1   Proposition.   Let c.. £ B ii, j = 1, • • •, «).   The matrix  [c..] £ B.  . z's

> 0   if and only if 1. . a*c . .a . > 0 Va. , • • • , a    £ B.— ' J      ' 1,7        Z      1J    J   — 1 71

Proof.   Without loss of generality, we may assume that B has  1.   Let X be
the direct sum of tz copies of B, made into a Hilbert B-module with B-valued

inner product defined by {(bi, • • • » *„), (ßl.ßj> - £"„, ß*bj for b ., ß. £ B
ij = 1, • •• , n).   (That X is complete with respect to ||-||x follows from the fact

that

maxill^.H: / = 1, ... , rz! < \\(bv •••

V(í>., .. • , b  ) £ X.)   For 7 = 1, • • • , tz,  let e . be the element of X with /ch co-1 71 j

ordinäre  1  and all other coordinates  0.   It is routine to show that the map  T —»

[(Te., e.)l is a *-isomorphism of u(X) onto B.  ..

Let  T be the operator in tl(X) corresponding to the matrix [c] £ B.  .,  so

for ib,, • • • , b  J £ X, the ¿th coordinate of Tib,, • • •, b ) is  2"     c, b . ik = 1,
1 71 ' i 71 1 = 1       kj   j '

• •• , n).   It is clear that S. . a*c ..a. > 0 Va., •• • , a    £ B if and only if (Tx, x)1.7      I     1J    7 — ! 77 ' '

> 0 Vx £ X.   On the other hand,  [c..] > 0 if and only if T > 0.   Now certainly if
T > 0, then   (Tx, x) = (THx, TVlx) > 0 Vx £ X.   Conversely, suppose  (Tx, x) > 0
Vx £ X.   We may write T = U + ¿V for selfadjoint (7, V e Û\X). Since (Ux, x) and <Vx, x)

are selfadjoint Vx £ X, it follows that (Vx, x) = 0 Vx £ X and hence (exactly as for

a bounded operator on a Hilbert space) V = 0,  i.e.  T is selfadjoint.   We have

f((Tx, x)) > 0 for each x £ X and each positive linear functional / on B.   It fol-

lows from 4.1, applied to the family S of functionals on u(X) of the form    W —*

fi(Wx, x)) where x £ X with  ||x||x= 1  and / is a state of B, that  T > 0.   This
completes the proof.
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