
InnoDB Database Forensics:
Reconstructing Data Manipulation Queries from Redo Logs

Peter Frühwirt, Peter Kieseberg, Sebastian Schrittwieser, Markus Huber, and Edgar Weippl
SBA-Research

Vienna, Austria
Email: pfruehwirt,pkieseberg,sschrittwieser,mhuber,weippl@sba-research.org

Abstract—InnoDB is a powerful open-source storage engine
for MySQL that gained much popularity during the recent
years. This paper proposes methods for forensic analysis of
InnoDB databases by analyzing the redo logs, primarily used
for crash recovery within the storage engine. This new method
can be very useful in forensic investigations where the attacker
got admin privileges, or was the admin himself. While such a
powerful attacker could cover tracks by manipulating the log
files intended for fraud detection, data cannot be changed easily
in the redo logs. Based on a prototype implementation, we show
methods for recovering Insert, Delete and Update statements
issued against a database.

Keywords-InnoDB, digital forensics, databases, log files;

I. INTRODUCTION AND BACKGROUND

When executing a SQL statement, the InnoDB storage
engine keeps parts of the statements in several storage
locations [16]. Thus, forensic analysis engaging with these
locations can reveal recent activities, can help creating
a (partial) timeline of past events and recover deleted
or modified data [17]. While this fact is well known in
computer forensics research and several forensic tools [7]
as well as approaches [8], [10], [14], [23] exist to analyze
data, the systematic analysis of database systems has only
recently begun [11], [12], [15], [22]. Still, to this day,
none of these approaches incorporate the data stored in
InnoDB’s redo logs, which not only constitute a rich vault
of information regarding transactions, but even allow the
reconstruction of previous states of the database.

Since version 5.51 InnoDB is the default storage
engine for MySQL databases. It is transaction-safe and
supports commits, rollbacks and crash-recovery [3],
[21]. Transaction-safe means that every change of data
is implemented as an atomic mini-transaction (mtr),
which is logged for redo purposes. Therefore, every data
manipulation leads to at least one call of the function
mtr_commit(), which writes the log records to the
InnoDB redo log. Since MySQL version 5.1, InnoDB
compresses the written data with a special algorithm [5]2.

1See http://blogs.innodb.com/wp/2010/09/mysql-5-5-innodb-as-default-
storage-engine/

2See Appendix A for a description of the algorithm

In our research, we disassembled the redo log files, which
are used internally for crash-recovery, in order to identify
and recover transactions for digital forensic purposes.

In Section II we describe the general structure of the log
files that are used in the course of our analysis, in Section III
we detail our approach for identifying recent operations, as
well as using the redo information for recovering overwritten
data. Section IV gives a detailed demonstration on the
capabilities of our forensic method by analyzing example
log entries. In Section V we conclude our work and give
an outlook to future plans regarding the development of
additional methods for recovering more complex statement
types.

II. LOG FILE STRUCTURE

A. General Structure

As default behavior, InnoDB uses two log files
ib_logfile0 and ib_logfile1 with the default size
of five megabytes each if MySQL is launched with the
innodb_file_ per_table option activated [4]. Both
files have the same structure and InnoDB rotates between
them and eventually overwrites old data. Similar to the data
files [9], the log files are separated into several fragments
(see Figure 1):

1) One Header block containing general information on
the log file.

2) Two Checkpoints securing the log files against corrup-
tion.

3) Several Log Blocks containing the actual log data.
The header block combined with the two checkpoints and
padding is often referred to as file header and is exactly
2048 bytes long. Each log block contains a header, a trailer
and several log block entries. Since each log block is exactly
512 bytes long, log block entries can be split and stored in
two log blocks (see the description of the log block header
for further information).

B. Header Block

The first part of the log file consists of the header block,
which contains general information about the file. This block
has a fixed length of 48 bytes and starts at offset 0x00, i.e.



Figure 1. Structure of the log files

at the beginning of the file header. Table I gives an overview
on the contents of the header block.

Offset Length Interpretation
0x00 4 Group Number of the log file
0x04 8 First log sequence number (lsn) of this log file
0x0C 4 Archived log file number
0x10 32 This field is used by InnoDB Hot Backup. It con-

tains the ibbackup and the creation time in which
the backup was created. It is used for displaying
information to the user when mysqld is started for
the first time on a restored database.

Table I
INTERPRETATION OF THE HEADER BLOCK

C. Checkpoints

InnoDB uses a checkpoint system in the log files. It
flushes changes and modifications of database pages from
the doublewrite-buffer [2], [6], [13] into small batches,
because processing everything in one single batch would
hinder the processing of SQL statements issued by users
during the checkpoint process.

Crash Recovery: The system of checkpoints is vitally
important for crash recovery: The two checkpoints in each
log file are written on a rotating basis. Because of this
method there always exists at least one valid checkpoint
in the case of recovery. During crash recovery [1], [18]
InnoDB loads the two checkpoints and compares their
contents. Each checkpoint contains an eight byte long log
sequence number (lsn). The lsn guarantees that the data
pages contain all previous changes to the database (i.e.
all entries with a smaller lsn). Therefore, each change
that is not written to the disk has to be stored in the
logs for crash recovery or rollbacks. InnoDB is forced to
create the checkpoints in order to flush data to the disk [18].

Location in the log files: The two checkpoints are
located in the log files ib_logfile0 and ib_logfile1
at addresses 0x200 and 0x400 respectively. Every checkpoint
has the same structure with a fixed length of 304 bytes.

A detailed explanation of the checkpoint structure can
be found in Table II. When flushing the log data to the
disk, the current checkpoint information is written to
the currently unfinished log block header by the method
log_group_checkpoint() [19].

Offset Length Interpretation
0x00 8 Log checkpoint number
0x08 8 Log sequence number of checkpoint
0x10 4 Offset to the log entry, calculated by

log_group_calc_lsn_offset() [19]
0x14 4 Size of the buffer (a fixed value: 2 · 1024 · 1024)
0x18 8 Archived log sequence number. If

UNIV_LOG_ARCHIVE is not activated, InnoDB
inserts FF FF FF FF FF FF FF FF here.

0x20 256 Spacing and padding
0x120 4 Checksum 1 (validating the contents from offset

0x00 to 0x19F)
0x124 4 Checksum 2 (validating the block without the log

sequence number, but including checksum 1, i.e.
values from 0x08 to0x124)

0x128 4 Current fsp free limit in tablespace 0, given in units
of one megabyte; used by ibbackup to decide if
unused ends of non-auto-extending data files in space
0 can be truncated [20]

0x12C 4 Magic number that tells if the checkpoint contains
the field above (added to InnoDB version 3.23.50
[20])

Table II
INTERPRETATION OF THE CHECKPOINTS

D. Structure of the Log Blocks

The log file entries are stored in the log blocks (the log
files are not organized in pages but in blocks). Every block
allocates 512 byte of data, thus matching the standard
disk sector size at the time of the implementation of
InnoDB [24]. Each block is separated into three parts:
The log block header, data and the log block footer. This
structure is used by InnoDB in order to provide better
performance and to allows fast navigation in the logs.

In the following subchapters, we discuss the structures
of header and trailer records, in Section III we demonstrate
how to reconstruct previous queries from the actual content
of the log blocks.

1) Log Block Header: The first 14 bytes of each block
are called the log block header. This header contains all the
information needed by the InnoDB Storage Engine in order
to manage and read the log data. After every 512 bytes
InnoDB automatically creates a new header, thus generating
a new log block. Since the log file header containing the
header block, the checkpoints and additional padding is
exactly 2048 bytes long, the absolute address of the first
log block header in a log file is 0x800.



Offset Length Interpretation
0x00 4 Log block header number. If the most significant bit

is 1, the following block is the first block in a log
flush write segment. [20].

0x04 2 Number of bytes written to this block.
0x06 2 Offset to the first start of a log record group of this

block (see II-D3 for further details).
0x08 4 Number of the currently active checkpoint (see II-C).
0x0C 2 Hdr-size

Table III
INTERPRETATION OF THE LOG BLOCK HEADER

As described in Section II-C, the currently active log
block always holds a reference to the currently active
checkpoint. This information is updated every time log
contents is flushed to the disk.

2) Log Block Trailer: The log block trailer only contains
a checksum for verification of the validity of the log block.

Offset Length Interpretation
0x00 4 Checksum of the log block contents. In

InnoDB versions 3.23.52 or earlier this did
not contain the checksum but the same value as
LOG_BLOCK_HDR_NO [20].

Table IV
INTERPRETATION OF THE LOG BLOCK TRAILER

3) Splitting log entries over log blocks: In case a log
entry is too big to fit into the remaining space left in the
currently active 512-byte log block, it is split over two log
blocks. To this end, the currently active block is filled up
until the last four bytes that are needed for the log block
trailer. A new log block is then generated, holding a log
block header and the remaining contents of the split log
entry. The offset at position 0x04 and 0x05 in the log block
header is used to specify the beginning of the next log entry,
i.e. the byte after the end of the split entry (see Table 2).
This is needed in order to identify the beginning of the next
entry without having to refer to the log block before, thus
enhancing navigation in the log file drastically.

III. QUERY RECONSTRUCTION

In this section we demonstrate how to reconstruct
executed queries on the basis of information derived from
the log files described in the last chapter. As several parts
of the data are stored in a compressed form (see Appendix
A), it is not always possible to give an exact length
definition for each field, since the length of these fields
is determined by the decompression routine. These values
are marked with a circle symbol (◦) in the field “length”.
Length definitions containing an asterisk are defined by
other fields in the log entry, whereas the number before the
asterisk refers to the field where the length was defined.

Figure 2. Splitting a log entry over two log blocks

In this paper, we focus on the analysis of InnoDB’s new
compact file format, which is recognized by the prefix
mlog comp in the log types. Older versions of InnoDB logs
need much more space and are not in the scope of this paper.

In our analysis, we focus on three different basic
statements, Insert, Delete and Update, since they form the
majority of all log entries. Furthermore they are of main
interest in most cases of forensic analysis.

Descriptions of the log entries: Since the lengths,
amounts and the positions of the relevant fields inside the
log entries are highly variable, we refrain from giving any
offsets for the data fields in question. In order to provide
a certain amount of clarity, the fields are numbered in
ascending order and fields being of the same type (e.g. a
variable number of fields containing length definitions) are
given the same value.

A. Statement Identification

All log entries can be identified by their log entry type
which is provided by the first byte of each entry. A complete
list of all existing log entry types can be found in the source
code 3. However, for our forensic analysis, all information
needed can be harvested from only a few, distinctive log
entries (see Table IX).

1st byte Name Description
0x14 mlog undo insert Identifies data manipulation state-

ments.
0x26 mlog comp rec insert Insertion of a new record.

Table V
DISTINCTIVE LOG ENTRIES

For every data manipulation statement, InnoDB creates at
least one new log entry of the type mlog_undo_insert.

3innobase/include/mtr0mtr.h



This log type stores the identification number of the affected
table, an identifier for the statement type (Insert, Update,
Delete . . .), as well as additional information that is largely
depending on the specific statements type.

Field nr. Length Interpretation
1 1 Log entry type (always 0x14).
2 ◦ Tablespace id.
3 ◦ Page id.
4 2 Length of the log entry.
5 1 Data manipulation type.
. . . variable Rest of the log entry, depending on the data

manipulation type.

Table VI
GENERAL STRUCTURE OF A MLOG UNDO INSERT LOG ENTRY

The most important field for the identification of the
statement is the field holding the data manipulation type. In
our analysis, we focus on the values for this key parameter
shown in Table VII.

Data manipulation type Description
0x0B Insert statement.
0x1C Update statement.
0x0E Mark for Delete.

Table VII
ANALYZED VALUES FOR THE DATA MANIPULATION TYPE

The form of each mlog_undo_insert log entry is
very much depending on the content of the actual statement
it represents. Therefore, there is no general structure for
the log entries, but every type of entry is represented
differently, to allow an economical form of storing the log
entries without any padding. In the case of Update and
Delete statements, the remaining log_undo_insert log
entry specifies the statement completely, whereas in the
case of Inserts, the mlog_comp_rec_insert log entry
following the log_undo_insert log entry provides
information on parameters of the statement.

B. Reconstructing Insert Statements

In the case of Update or Delete statements, most of the
information needed is stored in this mlog_undo_insert
log entry, which is not valid in the case of Insert statements.
In the course of inserting a new record into a table, InnoDB
creates nine log entries in the log files (see Table VIII for
an ordered list).

While most of the log entries are not relevant
for the forensic analysis outlined in this paper, the
mlog_comp_rec_insert-log entry (log entry code
0x26) contains a variety of detailed information that can
be used to reconstruct the logged Insert statement (the

Log entry type Name Log entry type Name
0x01 8byte 0x1F multi rec end
0x18 undo hdr reuse 0x14 undo insert
0x02 2byte 0x26 comp rec insert
0x02 2byte 0x02 2byte
0x02 2byte

Table VIII
ALL LOG ENTRIES FOR AN INSERT STATEMENT

identification of the Insert statement was done by checking
the data manipulation type in the mlog_undo_insert
entry right before).

Table IX gives a detailed description of the fields found
inside the mlog_comp_rec_insert log entry for Insert
statements.

Field nr. Length Interpretation
1 1 Log entry type (fixed value: 0x26)
2 ◦ Tablespace ID
3 ◦ Page ID
4 2 Number of fields in this entry (n)
5 2 Number of unique fields (nunique)
6 2 Length of the 1st unique field (primaryKey).
. . . 2 Length entries for unique fields.
7 2 Length of the last unique field.
8 2 Length of the transaction ID )
9 2 Length of the data rollback pointer

10 2 Length of the 1st non-unique column.
. . . Length definitions for other non-unique

columns.
11 2 Length of the last non-unique column.
12 2 Offset
13 ◦ Length of the end segment.
14 1 Info and status bits.
15 ◦ Origin offset.
16 1 Mismatch index.
17 ◦ Length of the 1st dynamic field like varchar.

. . . Length entries for dynamic fields.
18 ◦ Length of the last dynamic field.
19 5 Unknown
20 6* Data for the first unique column.

. . . Data for unique columns.
21 7* Data for the last unique column.
22 8* Transaction ID
23 9* Data rollback pointer
24 11* Data for the last non-unique column.

. . . Data for non-unique columns.
25 10* Data for the first non-unique column.
. . .

Table IX
MLOG COMP REC INSERT LOG ENTRY FOR INSERT STATEMENTS

The structure of log entries of log entry type
comp_rec_insert is quite complex. After the first
general log entry data fields (log entry type, tablespace ID
and page ID), which also define the database table used,
two data entries holding information on the columns of
the underlying table are provided: n and nunique. n defines
the number of data fields that can be expected in this



log record, whereas nunique specifies the number of data
fields holding primary keys. The number n of data fields
is not equal to the number of columns in the table, since
definitions for system internal fields like the transaction
ID and the data rollback pointer are stored in data fields too.

Following the definition of nunique, the next 2·nunique bytes
are reserved for the definition of the lengths of these unique
columns, two bytes for each column. Furthermore, the
lengths of data fields holding the transaction ID and the data
rollback pointer are defined. The following 2 · (n− nunique)
bytes hold the length definitions for the columns that do not
contain primary keys. It must be taken into account that the
length definitions given in the section refer to the lengths
defined by the table definition, not the actual length of the
inserted data. In case of static data types like int, the actual
length is always the defined length, however in the case of
dynamic data types like varchar (containing data of variable
length), the above mentioned length definitions only hold
the fixed value 0x8000. The actual length of the data to be
inserted is defined later in the log entry. Figure 3 shows
the context between the length definitions and the data fields.

The following bytes contain various information about
the record which is not needed for the reconstruction of the
Insert statement.

The following fields hold the length information of
all columns containing dynamic data types (the length
definitions of these columns are filled with the fixed value
0x8000 as mentioned before), each one byte long and in
compressed form (see Figure 3). The next five bytes are
additional bytes and flags, which are not needed for our
forensic approach.

Finally, the content of the inserted record is defined
column by column: The first nunique fields hold the data of
the primary key columns (lengths of the fields are defined
before in the record), followed by one field holding the
transaction ID and one field holding the data rollback
pointer. These are followed by the n − nunique − 2 fields
holding the non-primary key columns, lengths again with
respect to the definitions given before at the start of the
record. Still, for the correct interpretation of the data fields
(especially the data type), knowledge on the underlying
table definition is needed, which can be derived from an
analysis of the .frm files [9].

C. Update

In case of Update statements, two log entries are
needed for the reconstruction: The mlog_undo_insert
log entry (which in case of Insert statements is only
used for determining the statements type) is needed for

Figure 3. Context between the data fields in a mlog comp rec insert log
entry

recovering the data that was overwritten, the following
mlog_comp_rec_insert log entry is needed for
reconstructing the data that was inserted in the course of
the Update. In this demonstration we focus on Update
statements which do not change the value of a primary key,
since these would result in more log entries and changes in
the overall index structure.

1) Reconstruction of the overwritten data: As InnoDB
internally stores overwritten data for recovery and rollbacks,
we focus on the mlog_undo_insert log entry for our
forensic purposes.

Field nr. Length Interpretation
1 1 Log entry type (fixed value: 0x94).
2 ◦ Tablespace ID
3 ◦ Page ID
4 2 Length of the log entry
5 1 Data manipulation type (0x1C = update existing

record)
6 2 Table ID
7 6 Last transaction ID on updated field
8 ◦ Last data rollback pointer
9 1 Length of the primary key

10 9* Affected primary key
. . .
11 1 Number of changed fields
12 1 Field id of first changed field
13 1 Length of first changed field
14 13* Overwritten data value of first changed field
. . .

Table X
MLOG UNDO INSERT LOG ENTRY FOR UPDATE STATEMENTS

For an interpretation of the first five fields, please refer
to section III-A.

The next two bytes hold a table identifier. This identifier
can also be found in the table definition (it is stored
in the .frm files at address 0x26). In combination with
this information it is possible to derive the name of the table.

The next six bytes hold the transaction identification
number and the following compressed field holds the
data rollback pointer of the data field. The transaction ID
identifies the last executed transaction before the Update.
By using these references it is possible to reconstruct the



complete history holding all changes of a data set, even
spanning multiple Updates of the same records while
maintaining the correct order.

The following fields hold information on the updated
primary fields involved. For each primary key, there is a
field holding the length of the new value (one byte) and
one containing the updated value itself. This is repeated
for every primary key of the underlying table, thus it is
important to know the number of primary keys for the
forensic analysis. The next byte defines the number of
non-primary columns affected by the Update, therefore the
following three fields exist for each updated non-primary
column: The id of the changed field, length information on
the updated value and the new value for the field.

2) Reconstruction of the executed query: InnoDB creates
a mlog comp rec insert log entry containing information
on the newly inserted data after the mlog undo insert entry,
i.e. the updating with new data is logged similar to an
Insert statement. The created mlog comp rec insert
log entry possesses the same structure as the log
entry described in Section III-B, thus the only way to
distinguish Update statements from Inserts lies in the
evaluation of the mlog undo insert entry preceding the
mlog comp rec insert entry.

D. Delete

The reconstruction of Delete statements is similar to
reconstructing Update queries. Basically, two forms of
Delete operations have to be discerned: Physical deletion of
a data row and execution of queries, which mark a record as
deleted. In the current analysis we only consider the second
form, since physical deletion can happen at an arbitrary time.

Log records of statements which mark records as
deleted are very short, they usually only generate four log
entries. For forensic reconstruction, only the data in the
mlog undo insert log entry is needed. Table XI shows
the log entry for an executed Delete statement which
is rather similar to the one generated in the course of
an Update statement without information on the values
of the deleted record, except the primary keys involved.
Still, these can be identified by using field number 7, the
last transaction id on the deleted record. For an detailed
interpretation of the log record, please refer to Section III-C.

As a precondition for a correct analysis the number of
primary keys of the table needs to be known. Otherwise it
is not possible to calculate the number of affected primary
key fields (fields 9 and 10). Note that this log record only
gives information on the primary key of the record marked

Field nr. Length Interpretation
1 1 Log entry type (fixed value: 0x94).
2 ◦ Tablespace ID
3 ◦ Page ID
4 2 Length of the log entry
5 1 Data manipulation type (0x0E = delete record)
6 2 Table ID
7 6 Last transaction ID on deleted record
8 ◦ Last data rollback pointer
9 1 Length of the primary key

10 4 Affected primary key
. . .
11 3 Unknown
12 1 Length of primaryKey field
13 4 PrimaryKey of deleted field

Table XI
MLOG UNDO INSERT LOG ENTRY FOR DELETE STATEMENTS

as deleted.

IV. DEMONSTRATION

In this section we demonstrate the techniques outlined in
Section III by analyzing real-life log entries derived from a
demonstration database.

A. Demonstration database

All examples in this Section are presented with respect
to the following table model (listing in Table 1).

Listing 1. Used table structure
CREATE TABLE ‘ f r u i t s ‘ (

‘ primaryKey ‘ i n t ( 1 0 ) NOT NULL,
‘ f i e l d 1 ‘ varchar ( 2 5 5 ) NOT NULL,
‘ f i e l d 2 ‘ varchar ( 2 5 5 ) NOT NULL,
‘ f i e l d 3 ‘ varchar ( 2 5 5 ) NOT NULL,

PRIMARY KEY ( ‘ pr imaryKey ‘ )
) ENGINE=InnoDB DEFAULT CHARSET= u t f 8 ;

We used two simple data types (integer and
varchar) in order to demonstrate the procedure of
reconstruction. InnoDB stores values of an integer field
with a fixed length of 4 bytes. The other fields of the
type varchar have variable lengths, most other data
types can be reconstructed in the same way except for the
interpretation of their content. For our forensic analysis,
knowledge on the exact table structure is required, which
can be reconstructed from the table description file (.frm
file) [9].

B. Reconstructing Inserts

In our example we use the excerpt shown in Table XII
containing a comp_rec_insert log entry. In order to
improve the clarity of our example, the blocks inside the
log entry are distinguished by colors.



0x00000 26 58 03 00 06 00 01 80
0x00008 04 80 06 80 07 80 00 80
0x00010 00 80 00 00 63 59 00 08
0x00018 00 04 05 0A 00 00 30 FF
0x00020 56 80 00 00 04 00 00 00
0x00028 00 40 01 00 00 00 00 33
0x00030 21 28 73 74 72 61 77 62
0x00038 65 72 72 79 61 70 70 62
0x00040 65 6B 69 77 69 XX XX XX

Table XII
EXAMPLE FOR A COMP REC INSERT LOG ENTRY

The first entry (containing the value 0x26) marks the
entry as comp_rec_insert log entry. The two bytes
at offset 0x03 and 0x04 denote the number of data fields
in this Insert statement (0x0006, i.e. 6 data fields), the
two bytes at offset 0x05 and 0x06 the number of unique
columns (0x0001, i.e. one unique column). Since two of the
data fields are reserved for transaction ID and data rollback
pointer, we can derive that four columns were inserted,
with one being a column containing unique values. The
length of the unique column is given in the two bytes at
offset 0x07 and 0x08 (encoded as signed integers, thus
0x8004 represents 4) followed by the length definitions for
the transaction ID and data rollback pointer (0x8006 and
0x8007 respectively). The length definitions for the three
remaining data columns are set to the key value 0x8000,
thus denoting columns of dynamic length — the values
of the actual data inserted can be found at offsets 0x19,
0x1A and 0x1B respectively (containing the values 0x04,
0x05 and 0xA). Using the length definitions, the rest of
the log entry can be split into the data inserted into the
table: An unique column containing the value 0x80000004,
a transaction ID (signed integer 0x00000000332128)
and a data rollback pointer (value 0x00000000332128),
followed by the data in the non-unique columns number
3 (value 0x73747261776265727279), number 2 (value
0x6170706265) and number 1 (value 0x6B697769).

Together with knowledge on the table model extracted
from the corresponding .frm files, we can derive the correct
interpretation of the data fields: The primary key field holds
an integer (4), the non-unique columns one to three ASCII-
encoded strings (”kiwi”, ”apple” and ”strawberry”). Thus, it
is possible to reconstruct the Insert statement (see Listing
2).

Listing 2. Reconstructed Insert Statement
INSERT INTO f r u i t s

( primaryKey , f i e l d 1 , f i e l d 2 , f i e l d 3 )
VALUES ( 4 , ’ s t r a w b e r r y ’ , ’ a p p l e ’ , ’ k iw i ’ ) ;

C. Reconstructing updated data

In this demonstration, we reconstruct data that was over-
written by an Update statement. Since, from the logging

0x00000 94 00 33 00 1B 1C 00 68
0x00008 00 00 00 00 40 01 00 00
0x00010 33 21 28 04 80 00 00 04
0x00018 01 04 05 61 70 70 6C 65

Table XIII
EXAMPLE OF A MLOG UNDO INSERT LOG ENTRY FOR AN UPDATE

STATEMENT

0x00000 94 00 33 00 1E 0E 00 66
0x00008 00 00 00 00 28 01 E0 80
0x00010 00 00 00 2D 01 01 10 04
0x00018 80 00 00 01 00 08 00 04
0x00020 80 00 00 01 XX XX XX XX

Table XIV
EXAMPLE OF A MLOG UNDO INSERT LOG ENTRY FOR A DELETE

STATEMENT

point of view, an Update can be considered as overwriting
a data field together with an additional Insert statement,
we only demonstrate recovering the overwritten data, a
demonstration on recovery of the inserted data can be found
in Section IV-B.

In our example we use the record shown in Table XIII.
After interpreting the header identifying this log entry
as an Update, the table ID (0x0068) (which is the Table
“fruits” according to the .frm file), the last transaction id
on the updated field (0x000000004001) and the last data
rollback pointer (0x0000332128) can be retrieved. The
byte at address 0x13 identifies the length of the value for
the primary key field (0x80000004), which is the signed
integer representation of 4, i.e. the primary key field with
value 4 was updated. Furthermore, we conclude that one
(address 0x00018) data field, the fourth (address 0x00019),
got changed and that the old value was 0x6170706C65, i.e.
“apple”.

D. Reconstructing Deletes

This example refers to the excerpt shown in Table XIV
containing a mlog_undo_insert log entry. Again, the
blocks inside the log entry are distinguished using colors.

Together with knowledge on the table structure, we
can reconstruct the query (see Listing 3): The row where
the primary key with id one (addresses 0x18-0x0x1B)
containing the original value 0x80000001 (addresses 0x20-
0x23) was deleted.

Listing 3. Reconstructed Delete statement
DELETE FROM f r u i t s
WHERE pr imaryKey =1;



E. Prototype implementation

We validated our approach described in this paper with
a prototype implementation written in Java. Our tool first
analyzes the structure of an InnoDB table based on the
its format stored in the table definition file (.frm). As
described in the paper, the table’s structure is ultimately
required for further analysis of the redo log files as it is used
for calculating offsets in the log files, which are parsed in
the second analysis step performed by our tool. We assume
a static table structure, thus, Alter table statements are
not supported in the current version of the tool. The result
of the analysis is a history of Insert, Delete and Update
statements. Additional types of SQL statements can be added
easily because of the modular architecture of the tool. It
allows deep insights into the history of a InnoDB table, thus
it’s main application area is the forensic investigation of a
MySQL database using InnoDB as storage engine.

V. CONCLUSION

In this paper we defined forensic methods for
reconstructing basic SQL statements from InnoDB’s
redo logs. Our techniques make it possible to gain deep
insights in the complete history of tables, including the
possibility of restoring deleted or updated values. Since
InnoDB stores log information for every single transaction,
these methods are to be considered powerful allies in
the task of reconstructing whole timelines and table
histories for forensic purposes. We verified our methods by
implementing a prototype for recovering Insert, Delete and
Update statements.

For future research we aim at raising the prototype version
of our forensic tool to a more enhanced state, which includes
the ability of recovering data in more complex scenarios with
DDL (Data Definition Language) statements such as Create
Table/Alter Table/Drop Table.

APPENDIX

InnoDB uses a special compression method for writing
unsigned integers (smaller than 232), where the most signif-
icant bits (msbs) are used to store the length of the data.
Table XV gives an overview on the encoding-modes.

First byte Compressed data
0[rest] The first byte is interpreted as number smaller than 128.
10[rest] The first byte is xored with 0x80, this and the second

byte are interpreted as number.
110[rest] The first byte is xored with 0xC0, this and the following

two bytes are interpreted as number.
1110[rest] The first byte is xored with 0xE0, this and the following

three bytes are interpreted as number.
1111[rest] The first byte is omitted, the following 4 bytes are

interpreted as number.

Table XV
COMPRESSING UNSIGNED INTEGERS

ACKNOWLEDGMENTS

The research was funded by COMET K1 and grant
825747 by the FFG - Austrian Research Promotion Agency.

REFERENCES

[1] Innodb checkpoints (11.08.2010). http://dev.mysql.com/doc/
mysql-backup-excerpt/5.0/en/innodb-checkpoints.html.

[2] Mysql performance blog - innodb double write (11.08.2010).
http://www.mysqlperformanceblog.com/2006/08/04/
innodb-double-write/.

[3] Storage engines (28.07.2010). http://dev.mysql.com/doc/
refman/5.1/en/storage-engines.html.

[4] Using per-table tablespaces (11.08.2010). http://dev.mysql.
com/doc/refman/5.1/en/multiple-tablespaces.html.

[5] Changes in release 5.1.x (production).
http://dev.mysql.com/doc/refman/5.1/en/news-5-1-x.html,
2008.

[6] R. Bannon, A. Chin, F. Kassam, and A. Roszko. Innodb
concrete architecture. University of Waterloo, 2002.

[7] G. Francia and K. Clinton. Computer forensics laboratory
and tools. Journal of Computing Sciences in Colleges, 20(6),
June 2005.

[8] G. Francia, M. Trifas, D. Brown, R. Francia, and C. Scott.
Visualization and management of digital forensics data. In
Proceedings of the 3rd annual conference on Information
security curriculum development, 2006.

[9] P. Frühwirt, M. Huber, M. Mulazzani, and E. Weippl. Innodb
database forensics. In Proceedings of the 24th International
Conference on Advanced Information Networking and Appli-
cations (AINA 2010), 2010.

[10] H. Jin and J. Lotspiech. Forensic analysis for tamper
resistant software. 14th International Symposium on Software
Reliability Engineering, November 2003.

[11] P. Kieseberg, S. Schrittwieser, L. Morgan, M. Mulazzani,
M. Huber, and E. Weippl. Using the structure of b+-trees for
enhancing logging mechanisms of databases. In Proceedings
of the 13th International Conference on Information Integra-
tion and Web-based Applications and Services, pages 301–
304. ACM, 2011.

[12] P. Kieseberg, S. Schrittwieser, M. Mulazzani, M. Huber,
and E. Weippl. Trees cannot lie: Using data structures for
forensics purposes. In Intelligence and Security Informatics
Conference (EISIC), 2011 European, pages 282–285. IEEE,
2011.

[13] M. Kruckenberg and J. Pipes. Pro MySQL. Apress, 2005.

[14] J. T. McDonald, Y. Kim, and A. Yasinsac. Software issues in
digital forensics. ACM SIGOPS Operating Systems Review,
42(3), April 2008.

[15] M. Olivier. On metadata context in database forensics. Digital
Investigation, 4(3-4), March 2009.



[16] K. Pavlou and R. Snodgrass. Forensic analysis of database
tampering. ACM Transactions on Database Systems (TODS),
33(4), November 2008.

[17] P. Stahlberg, G. Miklau, and B. N. Levin. Threats to privacy
in the forensic analysis of database systems. In Proceedings
of the 2007 ACM SIGMOD international conference on
Management of data, 2010.

[18] H. Tuuri. Crash recovery and media recovery in innodb. In
MySQL Conference, April 2009.

[19] H. Tuuri. Mysql source code (5.1.32). /src/storage/in-
nobase/log/log0log.c, 2009.

[20] H. Tuuri. Mysql source code (5.1.32). /src/storage/in-
nobase/include/log0log.h, 2009.

[21] M. Widenius and D. Axmark. MySQL reference manual:
documentation from the source. O’Reilly, 2002.

[22] P. Wright and D. Burleson. Oracle Forensics: Oracle Security
Best Practices (Oracle In-Focus series). Paperback, 2008.

[23] P.-H. Yen, C.-H. Yang, and T.-N. Ahn. Design and im-
plementation of a live-analysis digital forensic system. In
Proceedings of the 2009 International Conference on Hybrid
Information Technology, 2009.

[24] P. Zaitsev. Innodb architecture and performance optimization.
In O’Reilly MySQLConference and Expo, April 2009.


