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ABSTRACT Human activity recognition (HAR) based on sensor networks is an important research direction

in the fields of pervasive computing and body area network. Existing researches often use statistical machine

learning methods to manually extract and construct features of different motions. However, in the face of

extremely fast-growing waveform data with no obvious laws, the traditional feature engineering methods

are becoming more and more incapable. With the development of deep learning technology, we do not

need to manually extract features and can improve the performance in complex human activity recognition

problems. By migrating deep neural network experience in image recognition, we propose a deep learning

model (InnoHAR) based on the combination of inception neural network and recurrent neural network.

The model inputs the waveform data of multi-channel sensors end-to-end. Multi-dimensional features are

extracted by inception-like modules by using various kernel-based convolution layers. Combined with GRU,

modeling for time series features is realized, making full use of data characteristics to complete classification

tasks. Through experimental verification on three most widely used public HAR datasets, our proposed

method shows consistent superior performance and has good generalization performance, when compared

with the state-of-the-art.

INDEX TERMS Complex human activity, inception neural network, wearable sensor, computational

efficiency.

I. INTRODUCTION

Body area network (BAN) [1], [2] is an extension of

traditional wireless sensor network, aiming to provide ideal

wireless setting for pervasive hearlth care. Human activity

recognition (HAR) is a major goal of BAN, which tries

to realize the discrimination of complex human actions

and behaviors by observing the human body parts and the

surrounding environment [1], [8]. During the last decade,

more and more technologies and methods have been

applied to sensor-based HAR [4], [5], [9]. It has been widely

used in medical care [3]–[5], athletic competition [6], smart

home [7] and many other applications.

Deep learning makes computer vision (CV) effi-

cient to solve the problem of human activity recogni-

tion [7], [13], [15]. However, there are still many deficiencies

in the CV-based human activity recognition scheme, such as:

1) the interference of complex and variable backgrounds on

activity recognition; 2) the difficulty of positioning, tracking

and recognition caused by multiple active subjects simulta-

neously appearing in the picture; 3) the demands for strict

environment conditions for light, brightness and contrast.

Besides, targets are easily occluded and it significantly limits

the applications of CV in actual scenes.

Wearable sensors are also widely used in human activity

recognition and motion capture applications, due to their

ease of deployment, high precision, low power consump-

tion, etc. [1], [4]. For instance, bio-sensors are generally used

to monitor vital signs such as electrocardiography (ECG),

electromyography (EMG), blood pressure, heart rate and

temperature [5]. Illnesses such as seizures, hypertension, dys-

thymias, and asthma can be diagnosed and treated by physio-

logical monitoring. Inclinometers and goniometers are other

types of sensors that are used to measure upper/lower limbs

kinematics [6]. Even though there are potential gains of a
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remote monitoring system using wearable sensors, there are

still challenges in terms of technological advancements to

design wearable sensors that are easy to use and comfort-

able for the wearer [7], [11]. An effective spatial-temporal

recognition methods to process multi-scaled and noise-mixed

signals is another challenge that needs to be addressed.

Statistical learning methods have been widely used

to solve activity recognition problems [12], [20].

Chavarriaga et al. [21] used a Naïve Bayes(NB) and a

K-Nearest Neighbor(KNN) classifier to recognize seven

motions, such as walking, running and jumping. However,

they relied on hand-crafted features and could not find

discriminative features to accurately distinguish different

activities. The feature extraction methods such as symbolic

representation [22], statistics of raw data [23] and transform

coding [24] are widely applied in human activity recognition,

but they are heuristic and require expert knowledge to design

features [14].

In recent years, with the popularity of deep learning

technology, it has also been introduced into the applica-

tions of human activity recognition. Distinguished from sta-

tistical machine learning methods, deep learning makes it

more convenient to extract and classify complex data in

the face of a large number of different sensor sources.

For example, Convolutional Neural Network (CNN) [9] can

automatically extract features, but also fully learn com-

plex high-dimensional nonlinear ones [10], [14]. A few

researchers have already done some studies on the appli-

cations of deep learning for human activity recognition

using wearable sensors. Most of these existing research

have only used deep learning as a black box, and the

data has been scratched. For example, Ronao and Cho [22]

and Yang et al. [25] perform feature extraction of the

sliding window using only shallow convolutional neural

networks. Ordóñez and Roggen [19] use LSTM on this basis,

adding timing considerations for human gesture recogni-

tion. Yang et al. [25] used deep convolutional neural net-

works to automatically learn features from the original inputs.

Through the deep structure, the learning features are consid-

ered as higher-level abstract representations of low-level raw

time-series signals.

Besides, other challenges also exist in HAR problems,

such as large variability of a given action, similarity between

classes, time consumption, and the high proportion of Null

class [21]. Above mentioned deep convolutional neural net-

works ignored the temporal dependencies on the features,

and was not suitable to recognize real-time sensor signals.

Applying the time dependence to the features obtained from

the original sensors is a key factor for the success of sequen-

tial human activity recognition. Ordóñez and Roggen [19]

proposed deep convolutional network with utilizing of CNN

and LSTM. This paper took advantage of LSTM to solve

sequential human activity recognition problem and achieved a

good precision. Hammerla et al. [2] rigorously explore deep,

convolutional, and recurrent approaches across three repre-

sentative datasets that contain movement data captured with

wearable sensors. Chen et al. [14] posit that feature embed-

ding from deep neural networks may convey complementary

information and propose a distilling strategy to improve its

performance, with handcrafted features utilized to assist a

deep long short-term memory (LSTM) network. However,

these complex network framework suffered from low effi-

ciency and can hardly meet real-time requirements in practice

applications. All of these challenges have led researchers

to develop representation methods of systematic features

and efficient recognition methods to effectively solve these

problems.

Above works use CNN and LSTM to extract the waveform

data of human activity. Compared with the classical feature

engineering/machine learning method, the existing public

datasets have greatly improved the power of deep learning.

In view of above mentioned problems, this paper proposes

a multi-level neural network structure model based on the

combination of Inception Neural Network and GRU. The

main contributions are as follows:

• With the use of different scales based convolution ker-

nels, such as 1x1, 1x3, and 1x5, feature extraction and

splicing of waveform data are performed to realize

multi-scaled human body feature extraction for different

durations.

• Pooling layers are applied to filter the interference

noise brought by the unconscious jitter of human body,

in order to decrease the misjudgment;

• With the concatenation of different scales based convo-

lution layers, pooling layers, andmultiple nonlinear acti-

vation, above mentioned advantages are superimposed

and enlarged, so that the high-dimensional features of a

single human activity are more easily extracted, which

greatly reduces the interference and misidentification

caused by no obvious segmentation.

• By comparison experiments on three most widely used

public datasets, it is proved that the blindly superposition

of network layers and the accumulation of parameters,

in addition to multiplying the training and verification

time, reduces the efficiency of learning and prediction.

It cannot improve the accuracy of recognition, but lead

to a decline in prediction results, perhaps because the

network is too deep and insufficient data volume makes

the structure difficult to be fully trained.

The rest of this paper is organized as follows: In Section II,

we provide a primer on the relevant background in deep learn-

ing for human activity recognition. A detailed description is

presented in Section III, illustrating the structure of our pro-

posed InnoHAR model. Experiment setup are demonstrated

in Section IV, and the results and analysis are discussed in

Section IV, which show the superiorities of our proposed

model. Then, conclusions come in Section VI.

II. RELATED WORK

Continuous human action recognition is challenging issue

in machine learning with some difficulties to determine the

parameters and sizing required because highly depended
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upon some issues like feature selection in continuously train-

ing data streaming, the typical of classifier methods and we

have less prior knowledge to determine the final size of

training data, and the size of machine learning architectures.

In human action data features, we have to deal with variance

problem as explained in the survey paper [13], [15], [25].

In a typical classifier approach, it makes uneasy requirements

and conditions for any machine learning methods [24], such

as neural networks [25], dynamic Bayesian networks [7],

extreme learning machine [27], Deep Learning [20] and

many others that may not give good generalization accuracy

and processing speed for all human action recognition cases.

Here, we summarizes state-of-the-arts for e-health monitor-

ing and other proposals for human activity recognition.

A. CONVOLUTIONAL NEURAL NETWORK

Each neuron of Convolutional Neural Network (CNN) [16] is

connected to the local acceptor domain of its previous layer.

It functions like a filter and is then activated by a nonlinear

function, which is formulated as follows:

ai,j = f (

H∑

m=1

K∑

n=1

wm,n · xi+m,j+n + b) (1)

where, ai,j is the corresponding activation, f is a nonlinear

function, wm,n is the H × K weight matrix of the convolu-

tion kernel, b is the offset value, and xi+m,j+n indicates the

activation of the upper neurons connected to the neuron (i, j).

CNN with several convolutional layers can learn hierarchi-

cal representations of data, and deeper convolutional layers

characterize data in a more abstract way.

The input of neural network is generally the original signal,

however, applying features extracted from the original signal

to the neural network tends to improve performance. Extract-

ing more useful features from the original signal requires

sufficient expert knowledge, which inevitably limits a sys-

tematic exploration of the feature space [17]. Convolutional

neural networks have been proposed to address this problem.

Generally, CNN can be considered to comprise two parts. The

first part is the hierarchical feature extractor, which contains

convolutional layers and max-pooling layers. The input of

each layer is the output of its previous layer. As a result,

the original signal is mapped into feature vectors. The second

part is a fully-connected layer, and the feature vectors are

classified by the fully-connected layer.

The most widely used deep learning approach in the

ubiquitous computing field in general and in human activ-

ity recognition using wearables in particular employ CNNs.

CNNs typically contain multiple hidden layers that imple-

ment convolutional filters that extract abstract representations

of input data. Combined with pooling and/or subsampling

layers, and fully connected special layers, CNNs are able

to learn hierarchical data representations and classifiers that

lead to extremely effective analysis systems. A multitude

of applications are based on CNNs, including but not lim-

ited to [25]–[28]. Recently, sophisticated model optimization

techniques have been introduced that actually allow for the

implementation of deep CNNs in resource constrained sce-

narios, most prominently for real-time sensor data analysis

on smartphones and even smart watches [29].

B. LONG SHORT-TERM MEMORY

Long short-term memory (LSTM) inputs are sent to differ-

ent gates, including input gates, output gates, and forgetting

gates, representing the long-term, short-term, and near-term

memory and control of the information. Each LSTM unit

activation is calculated by the following formula:

at = σ (wi,h · xt + wh,h · at−1 + b) (2)

where at and at−1 represent respectively the activation at time

t and t − 1, σ is a nonlinear function, wi,h is a connection

matrix between the input layer and the hidden layer, and wh,h
is a connection matrix to which the hidden layer node is

connected, and b is the offset value.

The defacto standard workflow for activity recognition

in ubiquitous and wearable computing [30] treats individual

frames of sensor data as statistically independent, that is,

isolated portions of data are converted into feature vectors

that are then presented to a classifier without further tempo-

ral context. However, ignoring the temporal context beyond

frame boundaries during modeling may limit the recognition

performance for more challenging tasks. Instead, approaches

that specifically incorporate temporal dependencies of sen-

sor data streams seem more appropriate for human activ-

ity recognition. In response to this, recurrent deep learn-

ing methods have now gained popularity in the field. Most

prominently models based on so-called LSTM units [31]

have been used very successfully. In [19], deep recurrent

neural networks have been used for activity recognition on

the Opportunity benchmark dataset. The LSTM model was

combined with a number of preceding CNN layers in a

deep network that learned rich, abstract sensor representa-

tions and very effectively could cope with the non-trivial

recognition task. Through large scale experimentation in [32]

appropriate training procedures have been analyzed for a

number of deep learning approaches to HAR including deep

LSTM networks. In all of previous works, single LSTM

models have been used and standard training procedures have

been employed for parameter estimation. The majority of

existing methods [19], [30]–[32] are based on (variants of)

sliding-window procedures for frame extraction. The focus

of this paper is on capturing diversity of the data during

training and to incorporate spatial-temporal information into

proposed classifiers.

C. GOOGLENET AND INCEPTION MODULE

GoogLeNet based on the Inception module [9] is a new and

innovative network structure proposed by Google in the sec-

ond half of 2014, whose structure is not limited to the tradi-

tional sequential model [9]. As shown in Fig. 1, with the result

of previous layer as an input, GoogLeNet’s Inception module

enters concatenation of, from left to right, a 1×1 convolution,

VOLUME 7, 2019 9895



C. Xu et al.: InnoHAR: A Deep Neural Network for Complex HAR

FIGURE 1. Inception module based GoogLeNet [9].

a 1 × 1 convolution tandem 3 × 3 convolution, a 1 × 1

convolution tandem a 5 × 5 convolution, and a maximum

pooling layer of 3 × 3 tandem a 1 × 1 convolution. Then,

the results calculated by above sub-module are spliced and

input to the next layer.

Prior to this, the most direct way to improve the perfor-

mance of deep neural networks was to enlarge depth by

increasing the number of layers, and enlarge the width by

increasing the number of nodes in each layer. This is the

easiest and safest way to train high quality models [9], espe-

cially for a given large-scale tagged data set. However, this

simple solution has two major drawbacks. One is that larger

network sizes often mean more parameters, which makes the

expanded network more prone to overfit, especially when the

labeled samples in the training set are limited. The other one is

the exponential increase of computing resource requirements

caused by blindly increase of the network size.

Inception module brings a variety of proven network con-

struction techniques. For example, a 1 × 1 convolution net-

work implements dimensionality reduction of data and linear

combination of multi-channel data. Extensive application of

the pooling layer is useful to achieve dimensionality reduc-

tion, key feature extraction, and filtering.

III. THE PROPOSED ARCHITECTURE

The network structure of proposed InnoHAR deep neural

network model is as shown in Fig. 2. The yellow block is

indicated as the pooling layer, and the gray one is the GRU

layer. Input data firstly passed through four Inception-like

modules, according to the 1 dimensional time-series data

features extracted using 1 × 1, 1 × 3, 1 × 5 convolution ker-

nels, and pooling layer. The specific Inception-like network

structure will be introduced in Section 3-A. At the same time,

after passing by two Inception-like modules, we also connect

it with max-pooling layer to help the network better eliminate

misjudgment caused by noise disturbance. Finally, the output

is passed through two GRU layers, so that the model can

better extract the sequential temporal dependencies, as shown

in Section 3-B.

A. SPATIAL FEATURES EXTRACTION

In the aspect of feature extraction from sensor waveform

data, we use GoogLeNet’s Inception module for reference,

to implement Inception on three most widely used datasets,

as shown in Fig. 3. In each Inception-like module, we also use

a 1×1 convolution kernel to directly activate the combination

ofmulti-channel information and pass it to the next layer. Two

convolution kernels of 1 × 3 and 1 × 5 are cascaded respec-

tively by a 1× 1 convolution kernel, and the feature informa-

tion of different scales is extracted for the whole model. The

output splicing with only 1x1 convolution, also produces a

ResNet residual connection effect. At the same time, there

is a 1 × 3 pooling layer followed by a 1 × 1 convolution

kernel to provide feature enhancement and filtering. These

Inception-like modules use ELU as a nonlinear activation

function. These substructures are then stitched together and

again passed through the nonlinear activation of ELU and

output to the next layer.

B. TEMPORAL FEATURES EXTRACTION

In the extraction of temporal features, we refer to the work

of Ordóñez and Roggen [19], and also select two layers of

LSTM layers for the extraction of temporal features, which

is convenient for comparative analysis of later experiments.

Experience has shown that vanilla RNN has a problem of

gradient disappearance [18], while in many existing experi-

ments, GRU and LSTM show better performance in dealing

with long sequences based problems, while GRU performs

better in terms of time efficiency. Based on the relatively

complex network structure displayed in Section III-A, we use

GRU as the concrete implementation of the loop layer. The

entire network structure delivers satisfactory results in both

predictive performance and time efficiency.

C. PREPROCESSING

In order to minimize the preprocessing work in the early

stage, the end-to-end human activity recognition model is

realized while maintaining the same data as the predecessors.

Taking Opportunity dataset [21] as an example, as shown

in Fig. 4 we used all the 113 channels of sensor data from the

human body, and used the same fixed-length 24-line sliding

window as that of used by Ordóñez and Roggen [19], sliding

12 lines at a time. A total of 9,984 pieces of data were

obtained for testing. We fill the missing values of the sensor

by linear fitting, and each sensor channel is normalized to

the [0,1] interval. This is a totally 18 classes classification

problem, containing NULL classes. Similar procedures are

also applied to the other two datasets.

D. MODEL IMPLEMENTATION

We use Keras 2 to build our network structure. Keras is

a high-level neural network API written in Python with

optional Tensorflow or Theano as the backend. We chose

Tensorflow as the backend in the experiment and run it on

the GPU. The hardware environment is introduced as follows

in Table 1.

IV. EXPERIMENT SETUP

In this paper, we conduct experiments on three benchmark

datasets representative of the problems typical for HAR
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FIGURE 2. Inception Neural Networks for Human Activity Recognition Model Architecture. The yellow block is indicated as the
pooling layer, and the gray one is the GRU layer. The other parts are summarized as convolution layers in Inception-like module,
which is described in Fig. 3.

FIGURE 3. Inception-like module used in our proposed InnoHAR network.

FIGURE 4. Preprocess sensor waveform data using a sliding window.

TABLE 1. Hardware parameters.

(described below) to train and test our model. They are com-

posed of a set of complex human natural activities collected

in an environment where rich sensors are installed [21], [33].

A. OPPORTUNITY DATASET

Opportunity activity recognition dataset [33] is of complex

naturalistic activities with a particularly large number of

atomic activities (more than 27,000) collected in a sensor

rich environment. Overall, it comprises recordings of 12 sub-

jects using 15 networked sensor systems, with 72 sensors

of 10 modalities, integrated in the environment, in objects,

and on the body. These characteristics make it well suited to

benchmark various activity recognition approaches.

FIGURE 5. Position of on-body sensors used in the OPPORTUNITY dataset
(left: IMU sensors; right: 3-axis accelerometers) [21].

We only consider the on-body sensors, including inertial

measurement units and 3-axis accelerometers. The wearing

position of the sensors are shown in Fig. 5. Each sensor chan-

nel is treated as an individual channel, a total of 113 channels.

The sampling frequency of these sensors is 30Hz. OPPOR-

TUNITY dataset contains several gestures and postures, and

we mainly realize the recognition of gestures either includ-

ing or ignoring the Null class. This is an 18-class classifi-

cation problem, the gestures in the dataset are summarized

in Table 2.

B. PAMAP2 DATASET

It consists of recordings from 9 participants (8 males and

1 female) instructed to carry out 18 lifestyle activities,
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TABLE 2. Class labels for mode of Opportunity dataset.

TABLE 3. Class labels for mode of PAMAP2 dataset.

including household activities (lie, sit, stand, walk, run, cycle,

Nordic walk, iron, vacuum clean, rope jump, ascend and

descend stairs) and a variety of leisure activities (watch TV,

computer work, drive car, fold laundry, clean house, play

soccer) [37], as summarized in Table 3. Accelerometer, gyro-

scope, magnetometer, temperature and heart rate data are

recorded from inertial measurement units located on the hand,

chest and ankle over 10 hours (in total). The resulting dataset

has 52 dimensions. We used runs 1 and 2 for subject 5 in

our validation set and runs 1 and 2 for subject 6 in our test

set. The remaining data is used for training. In our analysis,

we downsampled the accelerometer data to 33.3Hz in order

to have a temporal resolution comparable to the Opportunity

dataset. For frame-by-frame analysis, we replicate previous

work with non-overlapping sliding windows of 5.12 seconds

duration with one second stepping between adjacent windows

(78% overlap) [37]. The training-set contains approx. 473k

samples (14k frames).

C. SMARTPHONE DATASET

Smartphone database is built from the recordings of 30 sub-

jects performing activities of daily living (ADL) while car-

rying a waist-mounted smartphone with embedded inertial

sensors [38].

The experiments have been carried out with a group

of 30 volunteers within an age bracket of 19-48 years. Each

person performed six activities (WALKING, WALKING_

UPSTAIRS,WALKING_DOWNSTAIRS, SITTING, STAN-

DING, LAYING) wearing a smartphone (Samsung Galaxy

S II) on the waist. Using its embedded accelerometer

and gyroscope, we captured 3-axial linear acceleration and

3-axial angular velocity at a constant rate of 50Hz. The exper-

iments have been video-recorded to label the data manually.

The obtained dataset has been randomly partitioned into two

sets, where 70% of the volunteers was selected for generating

the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were

pre-processed by applying noise filters and then sampled

in fixed-width sliding windows of 2.56 sec and 50% over-

lap (128 readings/window). The sensor acceleration signal,

which has gravitational and body motion components, was

separated using a Butterworth low-pass filter into body accel-

eration and gravity. The gravitational force is assumed to have

only low frequency components, therefore a filter with 0.3 Hz

cutoff frequency was used. From each window, a vector

of features was obtained by calculating variables from the

time and frequency domain, using proposed and comparative

methods.

D. PERFORMANCE MEASURE

Human activity datasets collected in natural scenes are often

imbalanced between classes [26]. Some classes may contain

a large number of samples while other classes have only a

few samples. The gestures of OPPORTUNITY dataset are

extremely imbalanced, the Null class accounts for more than

70% of all the data. The classifier predicts the classification

accuracy of each class, Null class can achieve very high accu-

racy. The overall classification accuracy is not an appropriate

index for performance evaluation. F-measure (F1) considers

the correct classification of each class as equally important.

It takes into account both the precision and the recall of each

class to compute the score and can evaluate the model better

than the precision. Precision is defined as P =
TP

TP+RP
, and

recall corresponds to R =
TP

TP+PN
, where TP and FP are

the number of true and false positives, respectively, and FN

corresponds to the number of false negatives. Class imbalance

is countered by weighting classes according to their sample

proportion:

F1 =

∑

i

2 ∗ wi
precisioni · recalli

precisioni + recalli
(3)

where wi = ni/N is the proportion of samples of the ith class,

with ni being the number of samples of the ith class and N

being the total number of samples.

V. RESULTS AND ANALYSIS

With the consideration of human activity recognition

applications, we apply our proposed InnoHAR model

on above-mentioned three public dataset for verification.

We compared our results with both baseline classifiers and

state-of-the-arts deep networks. All proceeded results are
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TABLE 4. Best results (F-measure) obtained for each model and dataset, along with some baselines for comparison.

FIGURE 6. Confusion matrix of proposed method and two state-of-the-arts in one test run. The most left one in (a),(b),(c) is the
confusion matrix of CNN [25], the middle one is that of DeepConvLSTM [19] and the most right one is that of proposed method.

verified by F1-score means to ensure the fairness and con-

sistency of the following comparison results. The good per-

formance of recurrent approaches, which model movement

at the sample level, holds the potential for novel (real-time)

applications in HAR, as they alleviate the need for segmenta-

tion of the time-series data.

A. COMPARED WITH BASELINES AND

STATE-OF-THE-ARTS

In recent years, we have also seen some methods of deep

neural network used in human activity recognition [7], [16],

[19], [23], [25]. Others have tried to use deep neural network

to re-attack Opportunity data sets andOpportunity Challenge,

such as Yang et al. [25] and Ordóñez and Roggen [19]. Deep-

ConvLSTM is the previous state-of-the-arts model on Oppor-

tunity dataset. We test and evaluate the recognition accuracy

of Yang et al. [25] CNN, DeepConvLSTM and our proposed

InnoHAR human activity recognition network model under

the same experiment scenario.

Furthermore, we generalize and verify these three models

to three most widely used public datasets, namely Oppor-

tunity dataset [21], PAMAP2 dataset [37] and smartphone

dataset [38]. Table 4 shows the evaluation results of the above

various deep neural models.
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In terms of overall performance, the experimental

results show that our proposed InnoHAR model based on

Inception-like module has better performance than both

CNN [25] andDeepConvLSTM [19]. For Opportunit dataset,

our proposed model has a significant increase of about 9%

compared with the CNN model of Yang et al. [25], as well

as a 3% improvement compared with DeepConvLSTM. For

PAMAP2 dataset, we can also observe nearly a 5% gap

between the best (proposed model) and worst (CNN [25]),

and InnoHAR also has a 3% performance advantage over

DeepConvLSTM. For smartphones dataset, InnoHAR is also

superior to the other two methods and maintains good gener-

alization performance.

To be more specific, Fig. 6 shows the confusion matrix

of proposed method and two state-of-the-arts in one test

run, from which we can see that proposed method maintains

consistent superior performance on different public datasets

and has good generalization performance in the recognition

of complex human activities. It could be because of the

multi-scaled and spatial-temporal feature extraction charac-

teristics, due to the combination of inception and GRU.

B. COMPARED WITH IMPROVED STATE-OF-THE-ARTS

At the same time, we also tested the ‘‘simple and safer’’

traditional method in GoingDeeper’s [9] to improve the per-

formance of proposed model. We modified DeepConvLSTM

with adding a layer of CNN with the same kernel size

as the original ones; in DeepConvLSTM with bi-LSTM,

we replace the original unidirectional LSTM layers with two

bi-LSTM with positive and negative bidirection, and these

two bi-LSTMs are spliced into the next layer.

FIGURE 7. Performance comparison with modified state-of-the-arts on
typical public datasets.

In Fig. 7, we can see that when an additional CNN

layer is added to simply increase the depth of model,

the recognition accuracy model is not improved as expected,

but has a certain degree of decline. We speculate that

because a large CNN layer contains a huge number of

parameters, and the CNN layer is connected in a fully

FIGURE 8. MinnowBoard Turbot Dual Core Board [27].

connectionmanner. Each additional layer may cause an expo-

nential rise in model parameters. In case that the amount

of data is not large enough, the gradient change of the last

layer cannot be fully transmitted to the previous level by

Back-Propagation (BP) algorithm, which leads to over-fitting

of the whole model, resulting in decreasing the recognition

accuracy.

In contrast, when DeepConvLSTMwas transformed into a

bidirectional LSTM, the accuracy did increase slightly. How-

ever, LSTMwas used as a network layer for timing modeling.

The calculation of the latter node must wait until that of

the previous node completes. It is difficult to parallelize the

calculation by GPU. Therefore, in actual training process,

a large part of time is often occupied in trainging process,

but the income is relatively little.

C. EFFICIENCY ANALYSIS

Considering running time and efficiency, we did not sim-

ply count the running time and present the result as

usual. We believe that human activity recognition should be

proceeded in following steps: 1) train a model with collected

sensor data; 2) import this model into an embedded sys-

tem; 3) the embeded system reads real-time data and run

pre-trained model, working out the prediction. Therefore,

regardless of the recognition accuracy, we must consider the

actual operation of the model in real-time systems, which can

not exceed the limit of computing resources consumption,

affecting the real-time prediction.

The embedded system we used in this experiment was the

MinnowBoard Turbot Dual Core Board [27]. It is a small

embedded platform released by Intel that is equipped with

Intel Atom E3826 processor, with 1.46 GHz clock speed and

2GB DDR3L 1067MT/s DRAM. It is an outstanding embed-

ded platform with both performance and price advantages.

We run Ubuntu 14.04 operating system on it, testing

our proposed model with the same framework and package

dependencies. We import the model json file and weight file

into the system. We start timing after the model is loaded

and begins to predict. In the prediction of all previous test
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data, our model took 152.02 s and completed the prediction

of all 9894 sliding windows. The predicted speed reached

65.09 pieces/s. The original test data is recorded at 30 Hz,

and our model can easily predict the real-time activity on this

platform.

VI. CONCLUSION

In this paper, we conceptually proposed an InnoHAR model

for wearable sensor based human activity recognition appli-

cations by concatenating convolution kernels of different

scales and splicing with max-pooling layers. Compared

with baselines and state-of-the-arts, our proposed method

shows consistent superior performance and has good gen-

eralization performance on three most widely used pub-

lic datasets. In the experiment, we also proved that our

innovative structure has more potential in realtime applica-

tions by practice test on MinnowBoard Turbot Dual Core

Board.

For our future work direction, we will first continue to

adjust our network structure, including the size of kernels

and the connection method. Besides, we may explore further

the problem of data imbalance in real-life human activity

recognition applications.
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