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In today’s Internet, there are many challenges such as low latency support for interactive 
communication, security and privacy of user data, as well as development and deployment 
of new transport mechanisms. QUIC is a new transport protocol that addresses these 
challenges with focus on HTTP/2 transmission as a first use case. The first QUIC working 
group meeting took place at IETF-97 in November, 2016, and it has begun the 
standardization process. This article introduces the key features of QUIC and discusses 
the potential challenges that require further consideration. 
 

Introduction    

Networks these days need to handle a lot more connections, with a growing demand for low latency 
without sacrificing security and reliability. However, applications are often limited by the use of 
TCP as the underlying transport. TCP, without the TCP Fast Open extension, introduces one 
Round-trip Time (RTT) of latency due to its handshake. It may slow down performance when 
packet loss occurs and when packets are retransmitted with long delays leading to Head-of-line 
blocking. Moreover, building a transport over UDP allows user-space implementation, enabling 
faster protocol evolution. 
 
To tackle these issues, a new transport protocol called QUIC has been proposed. QUIC is defined 
on top of UDP and its design is inspired by the best practices of multiple existing protocols 
including TCP, TLS, and HTTP/2. QUIC aims to reduce connection latency, by sending data 
directly when establishing a connection in the best case (so-called “0-RTT” approach). 
Furthermore, it provides multiplexing features optimized for HTTP/2 and richer feedback 
information that might allow for new congestion control approaches. Moreover, as encapsulated in 
UDP, QUIC can be easily implemented in user space instead of the system kernel, which enables 
faster deployment as part of application update cycles. 
 
The QUIC protocol is currently being standardized by the IETF QUIC working group. The IETF 
community showed strong interest in standardization of QUIC. A previous version has been 
deployed in most of the Google services as well as the Chrome browser, and is being implemented 
by a few third party developers. It should be noted that the standardization process of QUIC is fully 
open to community input that might lead to significant differences in the protocol design as 
compared to the currently version deployed by Google. 



 

Design Overview 

 
Figure 1. QUIC Architecture 

 
The layering approach of QUIC is shown in Figure 1. QUIC incorporates congestion control and 
loss recovery features similar to TCP, while providing richer signaling capabilities. Additionally, 
QUIC decreases network latency by offering fewer RTTs for connection set up. QUIC incorporates 
the key negotiation features of TLS 1.3, requiring all connections to be encrypted. The motivation 
behind mandatory encryption is not just to ensure security and privacy of user data, but also to 
prevent middle boxes from tampering with the packet information, which can hinder the future 
evolution of the QUIC protocol. Further, QUIC also subsumes features of HTTP/2 such as 
multi-streaming, while avoiding problems like Head-of-Line blocking that occurs when TCP is 
used because all packets (of potentially different HTTP/2 streams) have to be delivered in order.  
 

Connection Establishment  
A majority of services nowadays require secure and reliable network connection, and TCP+TLS are 
widely used for fitting this purpose. One issue with TCP+TLS (1.2) is that it takes at least two 
RTTs to set up a secure connection which brings a significant latency overhead. QUIC improves on 
this by tightly integrating with TLS1.3 leading to a minimum of zero RTTs to establish an 
encrypted connection, meaning that payload data can be sent on the first packet if a previous 
encryption session is resumed. 

 



 

Figure 2. Handshake RTT of different protocols 

 

First-time Connection Establishment 
With successful version negotiation, QUIC uses one RTT for the first-time connection 
establishment by combing the transport and crypto handshake, which is two RTTs less than the 
widely used TCP+TLS 1.2 and one RTT less than TCP+TLS 1.3 as shown in Figure 2 (a). QUIC 
combines the transport and crypto handshake to minimize connection latency, carrying both the 
TLS handshake and the relevant QUIC transport set up parameters in the first packet of the 
connection.  
 
When the QUIC client is connecting to a server for the first time, it sends the Client Hello message 
to the server for key negotiation, along with some basic QUIC options and parameters such as the 
connection identifier as well as the preferred version number. The client encodes the handshake 
according to the version number it proposed. If the server does not support the version, it would 
trigger the client to go through an additional version negotiation process. Otherwise, the server 
replies with the Server Hello message, certificate, and session information that the client can use 
the next time it connects to the server. The client can then send its encrypted requests to the server, 
taking a total of one RTT for connection setup.  
 
The parameters negotiated during the first connection are contained in a cryptographic cookie 
stored on the client. It is used to authenticate the client when the client connects to the same server 
again. The cookie also contains the server’s Diffie-Hellman value which is used to calculate the 
encryption key. This information is the basis for the 0-RTT connection establishment. 
 

0-RTT Connection Establishment 



Many connections are established between clients and servers which had communicated before, 
making it possible to reduce negotiation latency if the server could recognize the client during 
subsequent connections. Not requiring one RTT for the transport handshake and utilizing session 
resumption for encryption allows a QUIC client to immediately send data to the server which it had 
connected to before, as shown in figure 2 (b). 
 
To resume a cryptographic session, the client sends its cached cryptographic cookie and 
Diffie-Hellman value to the server along with the encrypted payload. The server authenticates the 
client through information contained in the cookie. After successful authentication, it can calculate 
the encryption key using the Diffie-Hellman value stored in the cookie and the value sent by the 
client. The server can then decrypt the payload data, e.g. a HTTP/2 request, and send its encrypted 
response immediately back to the client.  
 
 

Stream-Multiplexing 

 
Figure 2. Multiplexing Comparison 

 
Stream-multiplexing is a method for sending multiple streams of data over a single transport 
connection. Browsers usually open multiple concurrent TCP connections when accessing a website 
because HTTP1.1 could only request one resource at a time, as shown in figure 3 (a), which 
consisted of short data transfers over independent connections. This introduced additional latencies 
and the complexity of managing multiple connections. 
 
HTTP/2 addresses this problem by multiplexing multiple streams into one TCP connection if 
multiple requests are sent to the same server. However, even if the payload data of the different 
stream are independent, all data transmitted over the same TCP connection will be deliver in order 
to the application, leading to Head-of-Line Blocking of missing data on one stream for data 



successfully transmitted and received on other streams, as illustrated in figure 3 (b). 
  
QUIC supports multiplexing of concurrent HTTP streams on a single connection without requiring   
ordered delivery of all packets of the transport connection. In QUIC, all data is still transmitted 
fully reliably. One QUIC packet can carry multiple frames of the same or different streams. All the 
frames belonging to the same stream are delivered in-order, but the missing frames of other streams 
do not block the delivery of other streams’ payload data.  
 
QUIC also adapts two levels of flow control similar to HTTP/2 over TCP. Connection level flow 
control allows adjustment of the aggregate buffer for the entire connection. Stream-level flow 
control allows the receiver to adjust how much data it is willing to allocate for each stream, 
avoiding that a single stream consumes all the buffer resources and thus could block other stream 
transmissions. 
 

Congestion control and loss recovery 
The QUIC working group in the IETF is currently chartered to only use standardized congestion 
control as the default congestion control algorithm, which is at the moment just NewReno1 and 
Cubic2. Cubic is a widely used congestion control mechanism and is an under-going activity in the 
IETF TCPM working group. Similar as most TCP implementation today, QUIC aims for a 
pluggable congestion control interface which allows experimentation with different congestion 
control algorithms.  
  
However, QUIC provides a slightly different environment for congestion control than TCP does. 
First, it inherently adopts modern loss recovery mechanisms such as F-RTO1 and Early Retransmit4. 
Further, it offers more detailed feedback information for loss detection. For example, it uses 
monotonically increasing packet number but does not retransmit on the packet-level (only on a 
per-frame base). This allows QUIC to distinguish retransmissions from the originally sent packets, 
avoiding retransmission ambiguities, similar to the idea of TCP RACK5. Additionally, QUIC 
carries information about the delay between when a packet was received and when the ACK was 
sent. This information allows the original sender to achieve a better estimation of the path RTT. 
QUIC also adopts the TCP’s selective acknowledgement mechanism, and supports up to 255 ACK 
ranges, making it more resilient to re-ordering and loss. 
 

Challenges and Future Directions 

The first QUIC working group meeting was held at IETF-97 and the initial working group 
documents have been adopted shortly after, focusing on the design of the core transport protocol6, 
the congestion control and loss recovery mechanism7, using TLS 1.3 for key negotiation8, and a 
mapping for HTTP/29. The QUIC working group charter foresees multipath support and optional 
forward error correction as the next step but are currently out of scope until all action item of the 
current milestone list have been completed. Further, the working group also focuses on network 
management issues that QUIC may introduce, aiming to produce an applicability and 
manageability statement in parallel to the actual protocol work. Aside from these work, QUIC also 
provides the potential for research in a number of other areas.  
 



Congestion Control in Special Network Scenarios 
Congestion control mechanisms in transport protocols need to adapt to many different scenarios 
with distinct varying network characteristics. Here, wireless networks are a key challenge for 
congestion control research. Traditionally, TCP congestion control regards packet loss as 
congestion occurrence. For wireless networks, however, loss often indicates transmission errors, 
especially in the case of mobility of the connecting client. The more fine-grained information 
provided by QUIC can help to distinguish other loss events from congestion events and therefore a 
large performance improvement could be achieved in situations with high non-congestion related 
loss rates.  
 
Other specific network scenarios such as datacenter which requires low latency for short flows10, 
and virtual reality (VR) which has high demand for user-perceived latency, might also benefit from 
the more actuate timing information provided by QUIC’s feedback scheme. Furthermore, 
customizing QUIC to specific network scenarios could be more easily achieved in user space 
implementations of QUIC, which provides a platform for easier experimentation and faster 
deployment.  
 
Forward Error Correction  
Packet loss leads to congestion window reduction and thereby decreases the throughput, despite of 
whether the loss is congestion related or not. However, even if congestion occurred and the sending 
rate is correctly reduced, packet loss still causes additional delay due to potentially slow recovery 
mechanisms based on either duplicate acknowledgements or even retransmission timeouts, e.g. if 
tail lost occurs. Coding is a method of using redundant information sent with packets for forward 
error correction (FEC), providing better loss tolerance and pro-active, faster recovery.  
One of the issues of coding is the additional time introduced for encoding and decoding, which is 
against QUIC’s low-latency design principle. Further, as the amount of redundant information 
affects the performance of coding-based loss recovery, it is a trade off with bandwidth consumption. 
Coding could be used to improve performance for scenarios with high packet loss such as wireless 
networks, but it would also introduce more energy consumption, causing issues for 
power-constrained mobile terminals. While coding has been well deployed in the link layer, it is 
still a point of research for transport layer protocols like QUIC and TCP11. 

Application-Based Optimization  
Currently, the working group will focus on providing a mapping of HTTP/2 to QUIC as the initial 
use case. However, QUIC can also be used for other applications. Especially as future versions of 
QUIC might incorporate FEC, it could be applied to applications such as real-time communication, 
video streaming, which are tolerant to loss but latency-sensitive. The performance of QUIC may 
thus be optimized based on application requirements, which requires an interface for the application 
to configure, e.g., the content type and tolerance of packet loss.  

Prioritization 

Web content usually has dependencies between the web objects, which may limit performance12. 
For example, a JavaScript file should be loaded prior to a file triggered by the script. Given that 
QUIC provides multiple, independent streams to transmit these web objects, it is possible for QUIC 
to prioritize between streams based on these dependencies. However, setting the priority levels 
correctly considering dynamic object load time and current network status is an open field for 



additional research. 
 

Security and Privacy  
QUIC provides secure transport by integrating the security functionality of TLS and enforcing the 
encryption of all connection data. However, similar as TLS1.3, 0-RTT resumption in QUIC may 
also introduce new security threats. A typical kind of issue is the replay or manipulation of packet 
from a previous connection handshake. Furthermore, if such an attack causes the client and server 
to perform a full handshake, consuming computational resources and memory space, it could be 
used as an additional DoS attack vector13. Further analysis and research is valuable in this space. 
  
The unencrypted information such as a connection identifier is susceptible to the threat of pervasive 
monitoring attacks. However, some information is needed for economically viable network 
management supporting the current common practice of firewalls, load balancers, NAT traversal 
and such. In order to conserve privacy while allowing for functions such as IP-address mobility, it 
is suggested that QUIC use new identifiers for each encrypted communication session to avoid 
linkability14. This tussle is the subject of an on-going discussion in the QUIC working group and 
will be even further relevant when work is extended to include multipath support for QUIC. 
 

Conclusion 
QUIC is a new transport protocol currently under standardization in the IETF, introducing features 
such as 0-RTT connection establishment, stream multiplexing avoiding (packet-based) head-of-line 
blocking, and improved signaling for loss recovery and congestion control. Given these changed 
characteristics compared to TCP, QUIC provides new challenges and opportunities for research. 
Moreover, as QUIC is based on top of UDP, it provides a platform for easy experiment and 
potentially fast adoption and deployment of research results. 
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