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Abstract

A large population of long-lived consumers faces stochastic opportunities to adopt an
innovation of uncertain quality. Consumers are social learners: Over time, news about the
product’s quality is generated endogenously, based on the experiences of past adopters. We
analyze how the potential for social learning in an economy affects consumers’ informational
incentives and how these in turn shape the aggregate adoption dynamics of an innovation.
Our main results highlight the importance of two features of the economy: The extent to
which consumers are forward-looking and the nature of news events through which social
learning occurs. When consumers are forward-looking social learners, the trade-off between
the benefit of adopting the innovation at any given time and the option value of waiting
for endogenous news can generate rich aggregate adoption dynamics, even in the absence
of any consumer heterogeneity. The dynamics of this trade-off and the extent to which it
is affected by increased opportunities for social learning interact in interesting ways with
the news process of the economy. For a class of Poisson learning processes, we establish the
existence and uniqueness of equilibria. In line with empirical findings, equilibrium adoption
patterns are either S-shaped or feature successions of concave bursts. In the former case,
our analysis predicts a novel saturation effect : Due to informational free-riding, increased
opportunities for social learning necessarily lead to temporary slow-downs in learning and
do not produce welfare gains.
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1 Introduction

Suppose an innovation of uncertain quality, such as a novel medical treatment or a new piece
of software, is released into the market. In recent years, the rise of internet-based review sites,
retail platforms, search engines, video-sharing websites, and social networking sites (such as
Yelp, Amazon, Google, YouTube, and Facebook) has greatly increased the potential for social
learning about the innovation: An individual’s treatment success story or discovery of a bug
in the software is much more likely to find its way into the public domain; and there are more
people than ever who have access to this common pool of consumer-generated information.

We analyze how the potential for social learning in an economy affects consumers’ informa-
tional incentives and how these in turn shape the aggregate adoption dynamics of an innovation.
Our main results highlight the importance of two features of the economy: The extent to which
consumers are forward-looking and the nature of news events through which social learning
occurs. In choosing whether to adopt an innovation, forward-looking consumers recognize the
option value of waiting for more information. With social learning, information is created en-
dogenously, based on the consumption experiences of past adopters. In equilibrium, adoption
levels must therefore strike a balance: If too many consumers adopt at any given time, then
too much information is available in the future and all consumers would rather wait; conversely,
if too few consumers adopt, it might not be worthwhile for anyone to wait. We show that
the dynamics of this trade-off and the extent to which it is affected by increased opportunities
for social learning depend crucially on the kind of information consumers expect to acquire by
waiting. In line with numerous empirical findings, our analysis predicts adoption patterns that
are either S-shaped or feature successions of concave bursts, suggesting novel micro-foundations
for these observations. We also make new predictions regarding the impact of increased op-
portunities for social learning on consumer welfare, on equilibrium learning dynamics, and on
observed adoption behavior.

In our model, an innovation of fixed, but uncertain quality (better or worse than the status
quo) is introduced to a large population of forward-looking consumers. Consumers are (ex ante)
identical, sharing the same prior about the quality of the innovation, the same discount rate, and
the same tastes for good and bad quality. At each instant in continuous time, consumers receive
stochastic opportunities to adopt the innovation. A consumer who receives an opportunity
must choose whether to irreversibly adopt the innovation or to delay his decision until the
next opportunity. In equilibrium, consumers optimally trade off the opportunity cost of delays
against the benefit to learning more about the quality of the innovation.

Learning about the innovation is summarized by a public signal process, representing news
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that is obtained endogenously—based on the experiences of previous adopters; and possibly also
from exogenous sources, such as professional critics or government watchdog agencies. Formally,
we employ a variation of the Poisson learning models pioneered by Keller et al. (2005), Keller and
Rady (2010), and Keller and Rady (2013). As in these models, our analysis distinguishes between
bad news markets, in which signal arrivals (breakdowns) indicate bad quality and the absence of
signals makes consumers more optimistic about the innovation; and good news markets, in which
signal arrivals (breakthroughs) suggest good quality and the absence of signals makes consumers
more pessimistic. To capture social learning, we assume that the informativeness of signals is
increasing in the number of previous adopters.

The automobile industry is an example of a market in which learning is predominantly
via bad news events, as evidenced by the wide-spread social media coverage of a battery fire
in a Tesla Model S electric car in October 2013 or of the 2009-2011 Toyota vehicle recalls.
By contrast, in the market for (essentially side-effect free) herbal remedies or other alternative
medical treatments, learning is mostly via good news: Occasional reports of success stories boost
consumers’ confidence in a treatment, while consumers grow more skeptical of its effectiveness
in the absence of any such reports.1

The heart of our paper, Sections 5 and 6, analyzes and contrasts equilibrium adoption
behavior in bad and good news markets. For tractability, we focus on perfect bad (respectively
good) news environments, in which a single signal arrival conclusively indicates bad (respectively
good) quality, so that equilibrium dynamics are non-trivial only in the absence of signals. A
key insight facilitating our analysis is that consumers’ equilibrium incentives across time must
satisfy a quasi-single crossing property (Theorem 4.1): Absent signals, there can be at most
one transition from strict preference for adoption to strict preference for waiting, or vice versa,
with a possible period of indifference in between. This enables us to establish the existence of
unique2 equilibria. Equilibrium adoption dynamics admit simple closed-form descriptions which
are Markovian in current beliefs and in the mass of consumers who have not yet adopted.

Section 5 studies the perfect bad news case. In the absence of breakdowns, consumers
grow increasingly optimistic about the innovation over time. As a result of the single-crossing
property, the unique equilibrium is then characterized by two times 0 ≤ t∗1 ≤ t∗2, which depend on
the fundamentals (Theorem 5.1): Until time t∗1, no adoption takes place and consumers acquire
information only from exogenous sources; from time t∗2 on, all consumers adopt immediately
when given a chance, unless a breakdown occurs, in which case adoption comes to a permanent

1Cf. Board and Meyer–ter–Vehn (2013) and MacLeod (2007) for additional examples of bad news and good
news markets.

2Uniqueness is in terms of aggregate adoption behavior.
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standstill. If t∗1 < t∗2, then throughout [t∗1, t
∗
2) only some consumers adopt whenever given

a chance, with the flow of new adopters uniquely determined by an ODE that guarantees
consumers’ indifference between adopting and delaying throughout this interval. Given that
consumers are forward-looking, t∗1 < t∗2 occurs in economies with a sufficiently large potential
for social learning and not too optimistic consumers (by contrast, if consumers are myopic or if
there are no possibilities for social learning, then necessarily t∗1 = t∗2).

We highlight two key implications for aggregate adoption dynamics and consumer welfare:
First, provided t∗1 < t∗2, the innovation’s adoption curve (which plots the percentage of

adopters in the population against time) has the characteristic S-shaped growth pattern that
has been widely observed in empirical studies:3 Up to time t∗1 adoption is flat, on [t∗1, t

∗
2) adoption

levels increase convexly, and from time t∗2 there is a concave increase. Moreover, an increase
in the potential for social learning prolongs the period of convex growth and leads to strictly
lower expected adoption levels across time. The possibility of S-shaped adoption curves in
our model is notable because we assume consumers to be (ex ante) identical, whereas most
alternative explanations in the literature rely on specific distributions of consumer heterogeneity
to generate a region of convex growth. In our model, convex growth is driven by informational
incentives: As consumers grow increasingly optimistic, their opportunity cost to delaying goes
up. To maintain indifference between adopting and delaying throughout [t∗1, t

∗
2), this increase is

offset by an increase in the flow of new adopters, which raises the odds that waiting will produce
information allowing consumers to avoid a bad innovation.

Second, we predict a saturation effect : If the potential for social learning is great enough
that t∗1 < t∗2, then holding fixed other fundamentals, any additional increase in opportunities
for social learning has no impact at all on (ex ante) equilibrium welfare levels. This is in
stark contrast to the cooperative benchmark in which consumers coordinate on socially optimal
adoption levels: Here increased opportunities for social learning are always strictly beneficial
and can in fact be used to approximate first-best (complete information) payoffs in the limit.
Relative to the cooperative benchmark, equilibrium adoption behavior displays two inefficiencies:
First, adoption generally begins too late; second, once adoption begins it initially occurs at
an inefficiently low rate, because during [t∗1, t

∗
2) consumers who do not adopt when given a

chance effectively free-ride on the information generated by consumers who do adopt. Increased
opportunities for social learning exacerbate the second inefficiency by prolonging the period of
free-riding. As a result, greater opportunities for social learning do not translate into uniformly
faster learning about the quality of the innovation, but rather lead to strictly slower learning

3See, for example, Griliches (1957), Mansfield (1961), Mansfield (1968), Davies (1979), and Gort and Klepper
(1982), among many others.
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over some periods and faster learning over others. These two effects balance out to produce
the saturation effect. In Section 7, we further build on this non-monotonicity in the speed of
learning to construct an example involving consumers with heterogeneous discount rates, where
increased opportunities for social learning are not only not beneficial, but in fact strictly hurt
aggregate welfare.

In Section 6 we study learning via perfect good news. Here consumers grow increasingly
pessimistic about the innovation in the absence of breakthroughs. Hence, the single-crossing
property for equilibrium incentives implies adoption up to some time t∗ (which depends on the
fundamentals) and no adoption from t∗ on, unless there is a breakthrough, after which all con-
sumers adopt upon their first opportunity (Theorem 6.1). Interestingly, in contrast with the
perfect bad news case, equilibrium adoption behavior is all-or-nothing : Regardless of the poten-
tial for social learning, there are no periods during which only some consumers adopt when given
a chance. This highlights a fundamental way in which the nature of information transmission in
an economy affects consumers’ adoption incentives. During a period of time when, absent sig-
nals, a consumer is prepared to adopt the innovation, he will be willing to delay his decision only
if he expects to acquire decision-relevant information in the meantime: Since originally he is
prepared to adopt the innovation, such information must make him strictly prefer not to adopt.
When learning is via bad news, breakdowns have this effect, since they reveal the innovation to
be bad. By contrast, breakthroughs in the perfect good news environment conclusively reveal
the innovation to be good and hence cannot be decision-relevant to a consumer who is already
willing to adopt.

The all-or-nothing nature of the good news equilibrium has the following implications for
adoption dynamics and welfare:

First, adoption occurs in concave “bursts”: Up to time t∗ adoption levels increase con-
cavely, then adoption flattens out, possibly followed by another region of concave growth if
a breakthrough occurs. While less commonly observed than S-shaped growth, this pattern is
reminiscent of the “fast-break” product life cycles studied in the marketing literature4, with
movies, music, and other “leisure-enhancing” products as canonical examples.5 We predict that
increased opportunities for social learning bring forward t∗, compressing the initial period of
concave growth, but do not affect the probability of adoption picking up again after coming to
a temporary standstill.

Second, even in economies with rich opportunities for social learning, an increase in the
potential for social learning is (essentially) always strictly beneficial and speeds up learning at

4Cf. Keillor (2007)
5For additional examples in the context of industrial process innovations, see Davies (1979).
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all times. Nevertheless, equilibrium behavior is generally socially inefficient: Relative to the
cooperative benchmark, adoption takes place at an optimal rate until time t∗, but consumers
stop adopting too soon.

1.1 Related Literature and Outline

Our paper proposes a model of innovation adoption by consumers who learn from each other’s
experiences and are forward-looking. Having a tractable model that can incorporate these two
assumptions, examine the informational externalities they give rise to, and derive predictions
for the effect of increased opportunities for social learning is desirable, as there is considerable
empirical evidence for both assumptions. For example, a growing literature in development
economics documents the effect of learning from others’ experiences on the adoption of new
agricultural technologies, as in Foster and Rosenzweig (1995) or Conley and Udry (2010). This
literature also finds evidence for forward-looking behavior: Bandiera and Rasul (2006) analyze
the decision of farmers in Mozambique to adopt a new crop, sunflower. They find that farmers
whose network of friends and family contains many adopters of the new crop are less likely
to initially adopt it themselves. Relatedly, Munshi (2004) compares farmers’ willingness to
experiment with new high-yield varieties (HYV) across rice and wheat growing areas in India.
Farmers in rice growing regions, which compared with wheat growing regions display greater
heterogeneity in growing conditions that make learning from others’ experiences less feasible,
are found to be more likely to experiment with HYV than farmers in wheat growing areas.

At a theoretical level, the key feature of our model is that social learning and forward-
looking incentives jointly give rise to informational externalities that do not arise in the absence
of either assumption. In relation to existing models of innovation adoption, this has at least
two interesting implications.

First, many models of innovation adoption rely on consumer heterogeneity as a key ingredient
in fitting observed adoption data. Our analysis suggests that in existing learning-based models6

heterogeneity is only crucial because of the common assumption that either consumers are
forward-looking but news is generated purely exogenously, as in Jensen (1982), or that learning
is social but consumers are myopic, as in Young (2009) or Ellison and Fudenberg (1993):7 In

6For comprehensive surveys of the literature, including also non-learning based explanations of innovation
adoption, such as the epidemic model and the probit model of firm characteristics, see for example Geroski
(2000) and Baptista (1999).

7Two exceptions are Persons and Warther (1997) and Kapur (1995), who feature a form of forward-looking
social learning, but differ substantially from our paper in terms of both setup and focus. Persons and Warther
(1997) focuses on the combination of forward-looking incentives, endogenously generated news, and firm het-
erogeneity to provide rational foundations for seemingly irrational, fad-like patterns in the adoption of financial
innovations. In Kapur (1995), a finite number of firms engage in a sequence of waiting contests to adopt a
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either case, a population of identical consumers would behave according to a simple cutoff rule,
adopting the innovation at beliefs above a certain threshold and not adopting otherwise, and
this rules out convex growth in adoption levels.8 By contrast, in our model consumers are
assumed to be ex ante identical, but the combination of forward-looking behavior and social
learning allows us to provide an alternative micro-foundation for convex growth in terms of
purely informational incentives.

The literature also commonly appeals to variations in consumer heterogeneity in order to
explain qualitative differences in adoption patterns across different products. For example, in
his study of the diffusion of 22 post-war industrial process innovations in the UK, Davies (1979)
uses symmetrical logistic distributions to fit the S-shaped adoption patterns characteristic of
expensive and complex innovations, but lognormal distributions to fit the rapid, essentially
concave growth in adoption levels he observes for less expensive and simpler innovations. Again,
our analysis shows that when consumers are forward-looking social learners, these contrasting
patterns can instead be explained through differences in the informational environment: S-
shaped curves arise in bad news markets with a relatively large potential for social learning, while
concave adoption patterns are characteristic of good news markets (or of bad news markets with
little potential for social learning or with very optimistic consumers). Our focus on the role of the
market learning process in shaping consumers’ informational incentives and generating varied
aggregate adoption dynamics is similar in spirit to Board and Meyer–ter–Vehn (2013), who in
the context of a capital-theoretic model of quality and reputation, highlight the dependence of
firms’ reputational incentives on the news process and contrast reputational dynamics across
different markets.

Second, in addition to providing an alternative explanation for observed data, the infor-
mational externalities that arise from the interaction between forward-looking behavior and
endogenously generated information are important because they suggest caution in evaluating
the effect of increased opportunities for social learning. In contrast to existing models, we pre-
dict that increased opportunities for social learning need not produce welfare gains and may lead

new technology, with each contest ending once a firm adopts. Restricting to MPE, he finds that if more infor-
mation is revealed when more firms adopt during a given waiting contest, then the mean duration of waiting
contests shrinks over time, suggesting a crude approximation of convex diffusion. Since both models are set in
discrete time, they are less tractable and not suited to performing comparative statics analyses with respect to
the potential for social learning in an economy. In addition, discrete time is less suited to highlighting the role
of the market learning process in shaping aggregate adoption dynamics, because when the information process
is sufficiently informative relative to the period length, adoption behavior is qualitatively similar across many
news processes. By contrast, when the period length becomes short as in our continuous time model, differences
become transparent.

8Adoption patterns can exhibit concave growth simply as a result of gradual depletion of the population of
remaining consumers.
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to a temporary slowdown in learning and a strict decline in initial adoption levels. On the other
hand, if learning is modeled as purely exogenous or consumers are assumed to be myopic, then
increased opportunities for social learning necessarily speed up learning and are unambiguously
welfare-improving.

The techniques and framework of this paper are closest to those employed in the strategic
experimentation literature, e.g. Bolton and Harris (1999), Keller et al. (2005), Keller and Rady
(2010), and Keller and Rady (2013). However, our paper differs in two key respects: First, in
our model any individual consumer’s influence on the information seen by others is negligible;
second, adoption of the innovation is irreversible. The first assumption is natural in the context
of the large market applications we have in mind, and for many new products (for example
movies or books, for which consumption is usually a one-time event, or technologies that entail
large switching costs) irreversibility is also more reasonable than the possibility of consumers
continuously switching back and forth between the innovation and the status quo as in the strate-
gic experimentation literature.9 In the strategic experimentation literature, consumers’ direct
influence on opponents’ information and their ability to adjust their experimentation levels as a
function of beliefs produces the so-called encouragement effect : There is an incentive to increase
current experimentation in order to drive up beliefs and induce more future experimentation
by others.10 As a result of the encouragement effect, many comparative statics in those models
differ substantially: For example, an increase in the rate of information transmission may cause
consumers to begin to adopt earlier, whereas in our model, we observe that initially adoption
rates always weakly decrease in response to such a change. Without the encouragement effect,
we are more easily able to study comparative statics on adoption behavior, speed of learning,
and welfare with respect to changes in the social learning environment. Moreover, we obtain
equilibrium uniqueness (at the aggregate level) without any Markovian restriction on strategies.

A number of papers, including Rosenberg et al. (2007), Chamley and Gale (1994), and
Murto and Välimäki (2011), also study the impact of informational externalities on adoption,
investment, or exit behavior, but rely on the assumption that agents hold private information.
Notably, Chamley and Gale (1994) obtain a result somewhat resembling our saturation effect,
according to which in the limit, an increase in the number of players has no effect on the rate
of investment or flow of information. In the context of a two-armed bandit problem in which

9Moreover, if consumers could continuously switch back and forth between the two options, then under the
large market assumption, consumers’ equilibrium strategies would effectively reduce to myopic best response
with respect to beliefs.

10There is no encouragement effect in the perfect good news environment of Keller et al. (2005), but consumers’
ability to influence each other’s beliefs as well as the reversibility of experimentation are once again crucial in
generating asymmetric switching equilibria, in which consumers take turns in experimenting at different beliefs.
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the decision to switch to the safe arm is irreversible, Rosenberg et al. (2007) obtain a similar
uniqueness result to ours in the limit as the number of players becomes large. However, the
specifics of all these models differ substantially from ours, as agents obtain private information
and make inferences about the quality of the product by observing others’ actions, while in our
model all relevant news is public and actions do not reveal additional information.

Finally, Bergemann and Välimäki (1997) and Bergemann and Välimäki (2000) study inno-
vation adoption in the presence of pricing motives by sellers when learning is social. In these
papers, prices that dynamically adjust through time act as an additional instrument through
which the seller can affect the endogenous information generation process. Bergemann and
Välimäki (1997) study a model in which one established firm (with known technology) and
a new firm with a risky innovation compete through prices. They derive the Markov perfect
equilibrium pricing strategies and adoption behavior and demonstrate that adoption is too fast
(relative to the social optimum) when consumers are pessimistic and too slow when consumers
are optimistic. The main difference with our paper is that consumers in their model best re-
spond myopically at each point in time, so that adoption dynamics are driven purely by sellers’
informational and pricing motives. By contrast, in our model consumers are more sophisticated
and consider the option value to waiting, producing interesting adoption dynamics even in the
absence of pricing motives.11 Bergemann and Välimäki (2000) analyze a similar model in which
consumers display forward-looking behavior. As in Bergemann and Välimäki (1997), they find
that pricing motives cause experimentation to be excessive, which is in contrast to our finding
that in the absence of pricing motives there is too little (and, under perfect bad news, too
slow) adoption. They find additionally that when the innovation is launched in many markets
simultaneously, adoption rates become socially optimal in the limit as the number of markets
grows large. Much of the focus in our paper is on analyzing the effect of increased opportunities
for social learning on consumers’ informational incentives. In order to isolate the effect on the
consumer side, our baseline model therefore abstracts away from pricing considerations.

The rest of the paper is organized as follows. Section 2 describes the model, defining formally
the perfect bad news and perfect good news signal processes that we use throughout the paper
as well as the equilibrium concept. Section 3 analyzes the cooperative (socially optimal) bench-
mark which selects an aggregate flow of adoption so as to maximize ex ante aggregate welfare.
Section 4 establishes a quasi-single crossing property for equilibrium incentives that simplifies
the equilibrium analysis in the following sections. Section 5 establishes existence of a unique

11The key distinction is again due to the assumption that adoption is irreversible in our model, so that
potentially adopting a bad product incurs a cost on consumers. On the other hand, in Bergemann and Välimäki
(1997), consumers adopt at every point in time and the adoption decision is freely reversible.
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equilibrium under perfect bad news and studies comparative statics with respect to changes in
the potential for social learning. Section 6 performs the analogous exercise under perfect good
news. Section 7 provides an example, involving consumers with heterogeneous discount rates,
where an increase in the potential for social learning strictly hurts ex ante welfare. Section 8
concludes. Appendix A - I contains proofs omitted from the main text.

2 Model

2.1 The Game

Time t ∈ [0,+∞) is continuous. At time t = 0, an innovation of unknown quality θ ∈ {G =

1, B = −1} and of unlimited supply is released to a continuum population of potential consumers
of mass N̄0 ∈ R+. Consumers are ex ante identical: They have a common prior p0 ∈ (0, 1) that
θ = G; they are forward-looking with common discount rate r > 0; and they have the same
actions and payoffs, as specified below.

At each time t, consumers receive stochastic opportunities to adopt the innovation. Adoption
opportunities are generated independently across consumers and across histories according to a
Poisson process with exogenous arrival rate ρ > 0.12 Upon an adoption opportunity, a consumer
must choose whether to adopt the innovation (at = 1) or to wait (at = 0). If a consumer adopts,
he receives an expected lump sum payoff of Et[θ], conditioned on information available up to
time t, and drops out of the game. If the consumer chooses to wait or does not receive an
adoption opportunity at t, he receives a flow payoff of 0 until his next adoption opportunity,
where he faces the same decision again.

2.2 Learning

Over time, consumers observe public signals that convey information about the quality of the
innovation. To capture the idea of social learning, the informativeness of the public signal at
time t is increasing in the flow Nt of consumers newly adopting the innovation at t, which we
define more precisely in Section 2.3.

Formally, we employ a variation of the Poisson learning model pioneered by Keller et al.
(2005), Keller and Rady (2010), and Keller and Rady (2013).13 Conditional on quality θ,

12Stochasticity of adoption opportunities can be seen as capturing the natural assumption that consumers face
cognitive and time constraints, making it impossible for them to ponder the decision whether or not to adopt
the innovation at every instant in continuous time.

13Keller et al. (2005) have learning via perfect good news Poisson signals, Keller and Rady (2010) study
imperfect good news learning, and Keller and Rady (2013) study perfect and imperfect bad news learning. For
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public signals arrive according to an inhomogeneous Poisson process with arrival rate (εθ +

λθNt)dt, where λθ > 0 and εθ ≥ 0 are exogenous parameters that depend on the quality θ

of the innovation. The signal process summarizes news events that are generated from two
sources. First, the social learning term λNt represents news generated endogenously, based
on the experiences of other consumers: It captures the idea of a flow Nt of new adopters each
generating signals at rate λ dt.14 Thus, the greater the flow of consumers adopting the innovation
at t, the more likely it is for a signal to arrive at t, and hence the absence of a signal at t is more
informative the larger Nt. Second, we also allow for (but do not require) signals to arrive at a
fixed exogenous rate ε dt, which represents information generated independently of consumers’
behavior, for example by professional critics or government watchdog agencies.

For tractability, we focus on learning via perfect Poisson processes, where a single signal
provides conclusive evidence of the quality of the innovation. Learning is via perfect bad news if
εG = λG = 0 and εB = ε ≥ 0, λB = λ > 0, so that the arrival of a signal (called a breakdown) is
conclusive evidence that the innovation is bad. Learning is via perfect good news if εB = λB = 0

and εG = ε ≥ 0, λG = λ > 0, so that a signal arrival (called a breakthrough) is conclusive evidence
for the innovation being good. As motivated in the Introduction, the distinction between bad
news and good news can be seen to reflect the nature of news production in different markets.
In addition, Λ0 := λN̄0 can be seen as a simple measure of the potential for social learning in an
economy, summarizing both the likelihood λ with which individual adopters’ experiences find
their way into the public domain and the size N̄0 of the population which can contribute to and
access the common pool of information.

We briefly summarize the evolution of consumers’ beliefs under bad and good news:

2.2.1 Learning via Perfect Bad News

Under perfect bad news, consumers’ posterior on θ = G permanently jumps to 0 at the first
breakdown. Let pt denote consumers’ no-news posterior, i.e. the belief at t that θ = G con-
ditional on no signals having arrived on [0, t). Given a flow of adopters N , standard Bayesian

other recent work that prominently features learning via Poisson signals, see for example Che and Hörner (2013);
Board and Meyer–ter–Vehn (2013); Halac et al. (2013).

14Note that by letting the social learning component of the signal arrival rate at time t, λNt, depend only on
the flow of adopters Nt at time t itself, we are effectively assuming that each each adopter can generate a signal
only once, namely at the time of adoption. This assumption is natural for “innovations” such as new movies
or medical procedures, for which “consumption” is a one-time event and quality is revealed upon consumption.
For durable goods, such as cars or consumer electronics, it might be more natural to allow adopters to generate
signals repeatedly over time, which can be captured by replacing λNt with λ

´ t
0
Ns ds. This would yield results

that are qualitatively similar to those presented in the following sections.
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updating implies that
pt =

p0

p0 + (1− p0)e−
´ t
0 (ε+λNs)ds

.15 (1)

In particular, if Nτ is continuous in an open interval (s, s+ν) for ν > 0, then pτ for τ ∈ (s, s+ν)

evolves according to the ODE:

ṗτ = (ε+ λNτ ) pτ (1− pτ ).

Note that the no-news posterior is continuous and increasing.

2.2.2 Learning via Perfect Good News

Under perfect good news, consumers’ posterior on θ = G permanently jumps to 1 at the first
breakthrough. Given a flow of adopters N , Bayes’ rule now implies that consumers’ no-news
posterior satisfies

pt =
p0e
−
´ t
0 (ε+λNs)ds

p0e
−
´ t
0 (ε+λNs)ds + (1− p0)

. (2)

In particular, if Nτ is continuous in an open interval (s, s+ν) for ν > 0, then pτ for τ ∈ (s, s+ν)

must satisfy the ODE:
ṗτ = − (ε+ λNτ ) pτ (1− pτ ).

In contrast to the perfect bad news case, the no-news posterior is now continuous and decreasing.

2.3 Equilibrium

Since our main interest is in the aggregate adoption dynamics of the population, we take as the
primitive of our equilibrium concept the aggregate flow (Nt)t≥0 of consumers newly adopting
the innovation over time and do not explicitly model individual consumers’ behavior. Given
our focus on perfect news processes, consumers’ incentives are non-trivial only in the absence of
signals: Under perfect bad news, no new consumers will adopt after a breakdown, while under
perfect good news all remaining consumers will adopt when given a chance after there has been a
breakthrough. Therefore, we henceforth let Nt denote the flow of new adopters at t conditional
on no signals up to time t and define equilibrium in terms of this quantity. Reflecting the
assumption that aggregate adoption behavior is predictable with respect to the news process
of the economy, we require that Nt be a deterministic function of time. We consider all such
functions which are feasible in the following sense:

15Definition 2.1 imposes measurability on N , so this expression is well-defined.
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Definition 2.1. A feasible flow of adopters is a right-continuous function N : [0,+∞)→ R such
that Nt := N(t) ∈ [0, ρN̄t] for all t ∈ [0,+∞), where N̄t := N̄0 −

´ t
0 Nsds.

Here N̄t denotes the mass of consumers remaining in the game at time t. We require that
Nt ≤ ρN̄t so that Nt is consistent with the remaining N̄t consumers independently receiving
adoption opportunities at Poisson rate ρ.

Any feasible adoption process N defines an associated no-news posterior pNt as given by
Equation 1 if learning is via perfect bad news and by Equation 2 if learning is via perfect good
news.

In equilibrium, we require that at each time t, Nt is consistent with optimal behavior by the
remaining N̄t forward-looking consumers: If a consumer receives an adoption opportunity at t,
he optimally trades off his expected payoff to adopting against his value to waiting, given that
he assigns probability pNt to θ = G and that he expects the population’s adoption behavior to
evolve according to the process N . For this we must first define the value to waiting at t.

Let Σt denote the set of all right-continuous functions σ : [t,+∞) → {0, 1}, each of which
defines a potential set of future times at which, absent signals, a given consumer might adopt if
given an opportunity. Under the Poisson process generating adoption opportunities, any σ ∈ Σt

defines a random time τσ at which, absent signals, the consumer will adopt the innovation and
drop out of the game.16

Let WN
t (σ) denote the expected payoff to waiting at t and following σ in the future, given

the aggregate adoption process N . Specifically, if learning is via perfect bad news, σ prescribes
adoption at the random time τσ if and only if there have been no breakdowns prior to τσ,
yielding

WN
t (σ) := E

[
e−r(τ

σ−t)
(
pNt − (1− pNt )e−

´ τσ
t (ε+λNs) ds

)]
,

where the expectation is with respect to the Poisson process generating adoption opportunities.
If learning is via perfect good news, then following σ means that at any adoption opportunity

prior to τσ, adoption occurs only if there has been a breakthrough, and at τσ adoption occurs
whether or not there has been a breakthrough. For any time s ≥ t, denote by τs the random
time at which the first adoption opportunity after s arrives. Then WN

t (σ) is given by
16Formally, we define τσ as follows. Let (Xs)s≥t denote the stochastic process representing the number of

arrivals generated on [t, s] by a Poisson process with arrival rate ρ, and let (Xs−)s>t denote the number of
arrivals on [t, s). Then,

τσ := inf{s ≥ t : σs × (Xs −Xs−) > 0},
where, as per convention, inf ∅ := +∞. It is well known that the hitting time of a right-continuous process of an
open set is an optional time. Therefore, the expectations in the definition of the value to waiting are well-defined.
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E

(pte− ´ τσt (ε+λNs) ds + (1− pt)
)
e−r(τ

σ−t) (2pτσ − 1) + pt

τσˆ

t

(ε+ λNs) e
−
´ s
t (ε+λNk) dke−r(τs−t)ds

 ,
where the expectation is again with respect to the Poisson process generating adoption oppor-
tunities.

The value to waiting at t is the payoff to waiting and behaving optimally in the future:

Definition 2.2. The value to waiting given a feasible adoption process N is the function WN
t :

R+ → R+ defined by WN
t := supσ∈ΣtW

N
t (σ) for all t.

We are now ready to define our equilibrium concept:

Definition 2.3. An equilibrium is a feasible adoption process (Nt)t≥0 such that

(i). WN
t ≥ 2pNt − 1 for all t such that ρN̄t > Nt

(ii). WN
t ≤ 2pNt − 1 for all t such that 0 < Nt.

Thus, Definition 2.3 requires that at any time t, the aggregate flow of new adopters Nt

be consistent with the remaining N̄t consumers optimally trading off the expected payoff to
immediate adoption, 2pNt − 1, against the value to waiting, WN

t .
Note that our definition of equilibrium is essentially Nash equilibrium, i.e. we do not require

subgame perfection. The motivation for this is that in a continuum population any individual
consumer’s behavior has a negligible impact on the aggregate adoption levels so that any history
not on the equilibrium path (in which a different number of consumers than expected previously
adopted) is more than a unilateral deviation from the equilibrium path. Thus, off-path histories
do not affect individual consumers’ incentives on the equilibrium path and are unimportant for
equilibrium analysis.

As usual, the equilibrium value to waiting WN
t admits an alternative characterization as the

solution to a functional equation, which we note here for use in future sections:

Lemma 2.4. Suppose N is an equilibrium. If learning is via perfect bad news, WN
t satisfies the

functional equation

Vt =

ˆ ∞
t

ρe−(r+ρ)(s−t) p
N
t

pNs
max

{(
2pNs − 1

)
, Vs
}
ds.
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If learning is via perfect good news, WN
t satisfies the functional equation

Vt =

ˆ ∞
t

ρe−(r+ρ)(s−t)

(
pNt

(
1− e−

´ s
t (ε+λNk) dk

)
+
pNt e

−
´ s
t (ε+λNk) dk

pNs
max

{(
2pNs − 1

)
, Vs
})

ds.

Proof. The proof is standard. �

3 Cooperative Benchmark

To establish a socially optimal benchmark, we first consider the cooperative problem: This
selects an aggregate flow N of adopters that maximizes ex ante aggregate welfare, taking into
account the effect of N on the public information process; we impose feasibility, but do not
impose the incentive compatibility requirements of the equilibrium in Definition 2.3.17

Clearly, under perfect good news it is optimal to require adoption at the maximal possible
rate once there has been a breakthrough. Similarly, under perfect bad news it is optimal
to terminate adoption as soon as there has been a breakdown. Thus, the objective of the
cooperative problem under perfect good news is:

sup
N
p0

∞̂

0

(εG + λGNτ ) e−
´ τ
0 (εG+λGNs)ds

 τˆ

0

e−rsNsds+ e−rτ
ρ

ρ+ r

N̄0 −
τˆ

0

Nsds

 dτ

+ p0e
−
´∞
0 (εG+λGNs)ds

∞̂

0

e−rsNs ds− (1− p0)

∞̂

0

e−rsNs ds,
18

subject to the feasibility constraint that Nt ∈ [0, ρN̄t] for all t.
Under perfect bad news, the objective is:

sup
N
p0

∞̂

0

e−rsNsds− (1− p0)

∞̂

0

(εB + λBNτ ) e−
´ τ
0 (εB+λBNs)ds

τˆ

0

e−rsNs ds dτ

− (1− p0)e−
´∞
0 (εB+λBNs)ds

∞̂

0

e−rsNsds,
19

17We are not concerned with implementation here, but because beliefs are publicly observed, as long as we
allow for transfers, the solution that we provide will be implementable while respecting individual rationality.

18We impose the convention that e−∞ = 0. Thus whenever εG > 0, e−
´∞
0 (εG+λGNs)ds = 0.
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again subject to the feasibility constraint that Nt ∈ [0, ρN̄t] for all t.
Standard techniques show that the solution to both cooperative problems has an all-or-

nothing form:20 In each problem, there is a cutoff time ts (depending on the parameters) such
that conditional on no signals, there is no (respectively maximal) adoption until time ts under
perfect bad (respectively good) news, and maximal (respectively no) adoption from ts on:

Proposition 3.1. In both problems, there exists an adoption flow N that attains the maximum.
Furthermore, there exists an optimal adoption flow with the property that there exists ts such
that

• Nt = ρN̄t for all t such that (λG − λB)(ts − t) > 0;

• Nt = 0 for all t such that (λG − λB)(ts − t) < 0.

Proof. See Appendix Section I. �

We now solve for the cutoff time, or equivalently the cutoff belief, under both signal struc-
tures.

3.1 Cooperative Benchmark under Perfect Good News

Under perfect good news, letting ε := εG and Λ0 := λGN̄0, the cutoff time ts solves

sup
ts≥0

ρ

r + ρ

(
1− e−(r+ρ)ts

)
N̄0(2p0 − 1) + e−(r+ρ)ts ρ

r + ρ
N̄0

(
πs + (1− πs)ps ε

ε+ r

)
(3)

where πs and ps denote, respectively, the probability of a breakthrough prior to time ts and the
no-news posterior at time ts; that is,

πs := p0

(
1− e−εts−Λ0(1−e−ρts )

)
,

ps :=
p0e
−εts−Λ0(1−e−ρts )

p0e−εt
s−Λ0(1−e−ρts ) + (1− p0)

.

Taking the first order condition of the above, we obtain:

(r + ρ)(1− πs)
((

2− ε

ε+ r

)
ps − 1

)
+ ps(1− πs)

(
ε+ Λ0ρe

−ρts) r

ε+ r
= 0 (4)

19Again we assume that whenever εB > 0, e−
´∞
0 (εB+λBNs) ds = 0.

20This is due to the linearity of the signal arrival rate in Nt.
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if an interior solution exists.
If the left-hand side of Equation 4 is non-positive at all times, then the cooperative cutoff

satisfies ts = 0, so that there is no adoption until a breakthrough. This happens if and only if

(r + ρ)

(
(2p0 − 1)− p0

ε

ε+ r

)
+ p0 (ε+ ρΛ0)

r

ε+ r
≤ 0. (5)

On the other hand, if the left-hand side of Equation 4 is strictly positive at all times, then
ts = +∞ and the cooperative solution calls for maximal adoption irrespective of whether or not
there has been a breakthrough. This happens if and only if ε = 0 and p0

(
1 + e−Λ0

)
≥ 1.

We summarize this in the following proposition:

Proposition 3.2. Under perfect good news, the cooperative cutoff time is as follows:

• If Inequality (5) holds, then ts = 0.

• If ε = 0 and p0

(
1 + e−Λ0

)
≥ 1, then ts = +∞.

• Otherwise, ts satisfies Equation (4).

Note that the cutoff posterior ps depends on the prior. This is in contrast to the strategic
experimentation literature because of our assumption that the stock of remaining consumers is
depleted as consumers drop out following adoption. In strategic experimentation, the coopera-
tive solution only depends on the current belief and does not depend on the initial conditions
since experimenters remain in the game to potentially experiment further in the future.

3.2 Cooperative Benchmark under Perfect Bad News

Under perfect bad news, letting ε := εB and Λ0 := λBN̄0, the cutoff time ts solves:

sup
ts≥0

e−rt
s
N̄0

p0
ρ

ρ+ r
− (1− p0)e−εt

s

∞̂

0

ρe−ετ−Λ0(1−e−ρτ )e−(r+ρ)τdτ

 .

Taking the first order condition, we obtain:

e−εt
s
K(Λ0) =

r

ε+ r

ρ

r + ρ

p0

1− p0

where

K(Λ0) :=

∞̂

0

ρe−ετ−Λ0(1−e−ρτ )e−(r+ρ)τdτ <
ρ

ε+ ρ+ r
.
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Then an easy calculation yields the cutoff posterior:

ps =
K(Λ0)

r
ε+r

ρ
ρ+r +K(Λ0)

<
ε+ r

ε+ 2r
.

We summarize this in the following proposition:

Proposition 3.3. Under perfect bad news, the cooperative solution is given by:

Nt =

0 if pt < ps

ρN̄t if pt ≥ ps,

where
ps =

K(Λ0)
r
ε+r

ρ
ρ+r +K(Λ0)

.

4 Quasi-Single Crossing Property for Equilibrium Incentives

We now proceed to equilibrium analysis. As a preliminary step, we first establish a useful
property of equilibrium incentives under both perfect bad news and perfect good news. Suppose
that Nt≥0 is an arbitrary feasible flow of adopters, with associated no-news posterior pNt≥0 and
value to waiting WN

t≥0 as defined in Definition 2.2. In general, the dynamics of the trade-
off between immediate adoption at time t (yielding expected payoff 2pNt − 1) and delaying
and behaving optimally in the future (yielding expected payoff WN

t ) can be quite difficult to
characterize, with (2pNt − 1) − WN

t changing sign many times. However, when Nt≥0 is an
equilibrium flow, then for any t,

2pNt − 1 < WN
t =⇒ Nt = 0; and

2pNt − 1 > WN
t =⇒ Nt = ρN̄t;

and this imposes considerable discipline on the dynamics of the trade-off. Indeed, the following
theorem establishes that 2pNt − 1 and WN

t must satisfy a quasi-single crossing property:

Theorem 4.1. Suppose that learning is either via perfect bad news (λB > 0 = λG) or via
perfect good news (λG > 0 = λB). Let Nt≥0 be an equilibrium, with corresponding no-news
posteriors pNt≥0 and value to waiting WN

t≥0. Then W
N
t≥0 and 2pNt≥0 − 1 satisfy single-crossing, in

the following sense:

• Whenever (λB − λG)(WN
t − (2pNt − 1)) < 0, then (λB − λG)(WN

τ − (2pNτ − 1)) < 0 for all
τ > t.
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• Whenever (λB − λG)(WN
t − (2pNt − 1)) ≤ 0, then (λB − λG)(WN

τ − (2pNτ − 1)) ≤ 0 for all
τ > t.

Proof. See Appendix Section B. �

The basic intuition is as follows. Consider first the case of learning via perfect bad news and
suppose that immediate adoption is strictly better than waiting today (and hence also in the near
future provided there are no breakdowns).21 Then all consumers adopt upon an opportunity
in the near future, so the no-news posterior strictly increases, while the number of remaining
consumers strictly decreases. Because information is generated endogenously, this means that
the flow of information must be decreasing over time. As a result, immediate adoption becomes
even more attractive relative to waiting, and consequently immediate adoption continues to be
strictly preferable in the future.

Similarly, suppose that learning is via perfect good news and that waiting is strictly more
attractive than immediate adoption today (and hence also in the near future). Then in the near
future, no consumers adopt and information is generated purely via the exogenous news source
(or not at all if ε = 0). As a result, the no-news posterior decreases (weakly) while the number
of remaining consumers does not change. This makes waiting even more attractive relative to
adopting immediately, so that waiting continues to be strictly preferable in the future.

0 t∗1 t∗2

Wait Indifference Adopt

Figure 1: Perfect Bad News

0

Adopt

t∗1 = t∗2

Wait

Figure 2: Perfect Good News

Theorem 4.1 implies that any equilibrium features two threshold times 0 ≤ t∗1 ≤ t∗2 ≤ +∞
21The latter implication follows from the continuity of the equilibrium value to waiting, which is established

in the Appendix.
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given by22

t∗1 := inf{t : (λB − λG)
(
2pNt − 1−WN

t

)
≥ 0},

t∗2 := inf{t : (λB − λG)
(
2pNt − 1−WN

t

)
> 0},

such that if there are no signal arrivals, then under perfect bad (respectively good) news, waiting
(respectively adoption) is strictly preferable before t∗1, and adoption (respectively waiting) is
strictly preferable after t∗2, with indifference in between, as illustrated in Figures 1 and 2. In
Sections 5 and 6 we will build on this observation to establish the existence of unique equilibria
under both perfect bad news and good news. The threshold times, as well as the flow of adopters
between t∗1 and t∗2, are fully pinned down by the parameters.

Looking ahead to Section 6, we will see that under perfect good news, any equilibrium must
in fact satisfy t∗1 = t∗2.23 Depending on parameters, the equilibrium takes three possible forms:
(i) 0 = t∗1 = t∗2; (ii) 0 < t∗1 = t∗2 < +∞; or (iii) 0 < t∗1 = t∗2 = +∞.24 By contrast, under perfect
bad news in Section 5, the equilibrium takes one of six forms depending on parameters: (i)
0 = t∗1 = t∗2 < +∞; (ii) 0 = t∗1 < t∗2 < +∞; (iii) 0 < t∗1 = t∗2 < +∞; (iv) 0 < t∗1 < t∗2 < +∞; (v)
0 < t∗1 = t∗2 = +∞;25 or (vi) 0 = t∗1 < t∗2 = +∞.26 The possibility of a non-empty interval (t∗1, t

∗
2)

of indifference will emerge as a key feature distinguishing bad news markets from good news
markets. Maintaining indifference at times (t∗1, t

∗
2) requires a form of informational free-riding,

which we term partial adoption, whereby only some consumers adopt when given the chance (i.e.
Nt ∈ (0, ρN̄t) at each t ∈ (t∗1, t

∗
2)). We will see that partial adoption has important implications

not just from an efficiency standpoint, but also for the shape of equilibrium adoption curves and
for the impact of increased opportunities for social learning on welfare, learning, and adoption
dynamics.

5 Perfect Bad News

5.1 Equilibrium Characterization

We now build on the analysis of the previous section to establish the existence of a unique
equilibrium when learning is via perfect bad news. Fix parameters r, ρ, N̄0 > 0, ε = εB,
λ = λB ≥ 0, and p0 ∈ (0, 1). Suppose Nt≥0 is an equilibrium flow of adopters. Let pt≥0

22With the usual convention that inf ∅ = +∞.
23With the sole exception of ε = 0 and p0 = 1

2
, in which case it is easy to see that N ≡ 0 and t∗1 = 0 < t∗2 =∞.

24This possibility will arise iff ε = 0 and p0

(
1 + e−λN̄0

)
≥ 1.

25This possibility will arise iff ε = 0 and p0 <
1
2
.

26This possibility will arise iff ε = 0 and p0 = 1
2
.
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and Wt≥0 be the corresponding no-news posterior and value to waiting, and let Λt≥0 := λN̄t≥0

describe the evolution of the economy’s potential for social learning.27 From Theorem 4.1, we
know that there are times 0 ≤ t∗1 ≤ t∗2 ≤ +∞ given by

t∗1 := inf{t : 2pt − 1 ≥Wt},

t∗2 := inf{t : 2pt − 1 > Wt},

such that (appealing also to right-continuity) N must satisfy
Nt = 0 if t < t∗1,

2pt − 1 = Wt if t ∈ [t∗1, t
∗
2)

Nt = ρN̄t if t ≥ t∗2.

In the following we will show that t∗1, t∗2, and the evolution of Nt between t∗1 and t∗2 are
uniquely pinned down by the parameters. We first introduce some notation. For any p ∈ (0, 1)

and Λ ≥ 0, let

G(p,Λ) :=

∞̂

0

ρe−(r+ρ)τ
(
p− (1− p)e−(ετ+Λ(1−e−ρτ))

)
dτ.

G(p,Λ) represents the payoff to adopting at the next opportunity if there have been no break-
downs by then, given that the current belief is p, that the remaining potential for social learning
is Λ, and that absent breakdowns the remaining Λ

λ consumers adopt at their first opportunity
in the future.

Define the posteriors p, p, and p] as follows. Let p be the posterior given by 2p−1 = G(p, 0);
that is,

p :=
(ε+ r)(r + ρ)

2(ε+ r)(r + ρ)− ερ
.

Thus, p is the lowest belief at which a consumer is willing to adopt given that he could also delay,
obtain more information at rate ε and reevaluate his decision at his next adoption opportunity
which is generated at rate ρ.

Define p := limρ→∞ p, that is,

p =
ε+ r

ε+ 2r
;

p is the lowest belief at which a consumer would be willing to adopt given that he could also delay
and obtain more information at rate ε and given that adoption opportunities arrive continuously

27Recall that N̄t := N̄0 −
´ t

0
Ns ds denotes the remaining population at time t.
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in the future.
Define p] := limε→∞ p, that is,

p] =
ρ+ r

ρ+ 2r
.

p] is the lowest belief at which a consumer would be willing to adopt given that he could also
delay until his next opportunity, which is generated at rate ρ, and given that all uncertainty is
completely resolved by then.28

Finally, define the function Λ∗ : (0, 1)→ R+ ∪{+∞} as follows. Let Λ∗(p) ≡ 0 for all p ≤ p,
Λ∗(p) = +∞ for all p ≥ p], and for all p ∈ (p, p]), let Λ∗(p) ∈ R+ be the unique value such that

2p− 1 = G(p,Λ∗(p)).29

Thus, if the current posterior is p ∈ [p, p]) and the current potential for social learning in
the economy is Λ∗(p), then consumers are indifferent between adopting now or at their next
opportunity absent breakdowns, provided that all remaining Λ∗(p)

λ consumers also adopt at their
first opportunity in the future.

We are now ready to state the equilibrium characterization theorem:

Theorem 5.1. Fix r, ρ > 0, ε ≥ 0, and p0 ∈ (0, 1). Let p∗ := min{p, p]}. For every λ, N̄0 > 0,
there is a unique equilibrium. Furthermore, in the unique equilibrium, Nt is Markovian in (pt,Λt)

for all t and satisfies

Nt =


0 if pt ≤ p∗ and Λt > Λ∗(pt),

r(2pt−1)
λ(1−pt) −

ε
λ ∈ (0, ρN̄t) if pt > p∗ and Λt > Λ∗(pt)

ρN̄t if Λt ≤ Λ∗(pt).

(6)

A detailed proof of Theorem 5.1 is provided in Appendix Section C.1. Here we sketch the
basic idea. Before we proceed, however, note the following two special cases of the theorem:
First, if ρ ≤ ε, so that p∗ := min{p, p]} = p], then by Equation (6) and because Λ∗(p) = +∞
for all p ≥ p], Theorem 5.1 asserts that regardless of the other parameters, Nt takes an all-or-
nothing form with cutoff belief p]: Nt = 0 whenever pt < p] and Nt = ρN̄t whenever pt ≥ p].
Second, if ε = 0 and p0 ≤ 1

2 , then it is easy to see that Theorem 5.1 asserts that regardless of
the other parameters, the unique equilibrium is given by Nt = 0 for all t.

28Note that for all p > p], limΛ→∞G(p,Λ) < 2p− 1 and for all p < p], limΛ→∞G(p,Λ) > 2p− 1.
29Note that such a value must exist given that p ∈ (p, p]) and is unique because Λ∗(p) is strictly increasing in

p on this domain.
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Throughout Section 5, we will be particularly interested in the implications of N featuring a
partial adoption region, in which Nt ∈ (0, ρN̄t) is as described by the second line of Equation (6).
Since the two special cases above preclude the existence of such a region regardless of other
parameters, we rule out these cases for the remainder of Section 5 by imposing the following
two conditions:30

Condition 5.2. The rate at which exogenous information arrives is small relative to the rate
at which consumers obtain adoption opportunities: ε < ρ. Thus, p∗ = p < p].

Condition 5.3. Either ε > 0 or p0 ∈ (1
2 , 1).

Given these two conditions, we now sketch the derivation of Theorem 5.1. In order to obtain
the Markovian description of Nt in Equation (6), we note the following lemma, which we prove
in the Appendix. This provides an alternative characterization of the threshold times t∗1 and t∗2,
relating these times to the evolution of (pt,Λt):

Lemma 5.4. Fix r, ρ > 0, ε ≥ 0 and p0 ∈ (0, 1) satisfying Conditions 5.2 and 5.3. Let Nt≥0

be an equilibrium with corresponding no-news posterior pt≥0 and threshold times t∗1 and t∗2, and
let Λt≥0 := λN̄t≥0 describe the evolution of the economy’s potential for social learning. Then

(i). t∗2 = inf{t : Λt < Λ∗(pt)}; and

(ii). t∗1 = min{t∗2, sup{t : pt < p}}.31

Proof. See Appendix Section C.1.2. �

By Lemma 5.4 the first line of Equation (6) corresponds to times t ≤ t∗1, the second line to
t ∈ (t∗1, t

∗
2), and the third line to t ≥ t∗2. Thus, the first and third lines are immediate from the

definition of these threshold times. We now give a heuristic argument outlining the derivation
of the second line, i.e. the equilibrium flow of adoption at times t ∈ (t∗1, t

∗
2), where adoption is

partial. At all these times, consumers must be exactly indifferent between adopting today and
waiting for more information. Maintaining consumer indifference at these times requires that
the cost and benefit of delaying be equal:

Benefit of Delay︷ ︸︸ ︷
(ε+ λNt) (1− pt)dt︸ ︷︷ ︸

Probability of
breakdown

(0− (−1))︸ ︷︷ ︸
Benefit:

Avoid Bad Product

=

Cost of Delay︷ ︸︸ ︷
(1− (ε+ λNt) (1− pt)dt)︸ ︷︷ ︸

Probability of
no breakdown

(2pt+dt − 1)rdt︸ ︷︷ ︸
Cost:

Discounting

. (7)

30In Section D in the Appendix, we discuss in more detail the case where ρ ≤ ε.
31With the convention that if {t ≥ 0 : pt < p} = ∅, then sup{t : pt < p} = 0.
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Delaying one’s decision by an instant is beneficial if a breakdown occurs at that instant,
allowing a consumer to permanently avoid the bad product. The gain in this case is (0− (−1)),
and this possibility arises with an instantaneous probability of (ε+ λNt) (1−pt)dt. On the other
hand, if no breakdown occurs, which happens with instantaneous probability 1− (ε+ λNt) (1−
pt)dt, then consumers incur an opportunity cost of (2pt+dt − 1)rdt, reflecting the time cost of
delayed adoption.32 Ignoring terms of order dt2 and rearranging yields Nt = r(2pt−1)

λ(1−pt) −
ε
λ , as in

Equation (6).33

Finally, Figure 3 illustrates how from Equation 6, we obtain a unique equilibrium as a
function of the parameters. Regions (2) and (3) represent values of (pt,Λt) corresponding to
the first line of Equation (6), so that no adoption takes place in these regions. Region (4)

corresponds to partial adoption as given by the second line of Equation (6). Finally, region (1)

corresponds to the third line of Equation (6) and thus to immediate adoption.
If (p0,Λ0) is in region (2), then initially no adoption takes place and the no-news posterior

drifts upward according to the law of motion ṗt = pt(1 − pt)ε, while Λt remains unchanged
at Λ0. This yields a unique time 0 < t∗1 = t∗2 at which (pt,Λt) hits the boundary separating
regions (2) and (1); from then on consumers adopt immediately upon an opportunity so that
Nt = ρe−ρ(t−t∗2)N̄t∗2

uniquely pins down the evolution of (pt,Λt). If (p0,Λ0) is in region (3), then
again no initial adoption occurs and the no-news posterior drifts upward according to the law of
motion ṗt = pt(1− pt)ε, while Λt remains unchanged at Λ0. However, now this yields a unique
time 0 < t∗1 at which (pt,Λt) hits the boundary separating regions (3) and (4), and at this time
Λt∗1 = Λ0 > Λ(pt∗1) = Λ(p), so that we must have t∗1 < t∗2. From t∗1 on the evolution of (pt,Λt) is
uniquely pinned down by the second line of Equation (6).34 Thus, t∗2 is uniquely given by the
first time t at which Λt = Λ∗(pt), at which point (pt,Λt) enters region (1). Similar arguments
show that when (p0,Λ0) starts in region (4), we have t∗1 = 0 and t∗2 > t∗1 is the first time at

32Note that ρ does not enter into this expression, because in the indifference region consumers obtain the
same continuation payoff regardless of whether or not they obtain an adoption opportunity in the time interval
(t, t+ dt) and hence are indifferent between receiving an opportunity to adopt or not.

33A bit more precisely, ignoring terms of order dt2, the right hand side of Equation 7 is given by
(1−(ε+ λNt) (1−pt)dt)(2(pt+ ṗtdt)−1)rdt = r(2pt−1)dt. Further rearrangement yields the desired expression.

34Specifically, combining the second line of Equation (6) with Equation (1) yields the ODE:

ṗt = rpt(2pt − 1),

which pins down pt uniquely given the initial value pt∗1 = p:

pt =
pt∗1

2pt∗1 − e
r(t−t∗1)(2pt∗1 − 1)

.

Plugging this back into Nt = r(2pt−1)
λ(1−pt)

− ε
λ
uniquely pins down Λt = λN̄t. Note that since pt∗1 >

1
2
, pt given above

is strictly increasing and reaches p] in finite time. Thus t∗2 = inf{t : Λt < Λ∗(pt)} < +∞.
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Figure 3: Partition of (pt,Λt) when ε < ρ

which (pt,Λt), evolving according to the second line of Equation (6), enters region (1). Finally,
if (p0,Λ0) is in region (1), then 0 = t∗1 = t∗2 and absent breakdowns all consumers adopt upon
their first opportunity from the beginning. This completes the description of the equilibrium.

As seen above, whether or not the equilibrium features a period of partial adoption depends
on the fundamentals. More specifically, we can show that if consumers are forward-looking and
not too optimistic, then t∗1 < t∗2 arises whenever the potential for social learning in the economy
is sufficiently large. To state this precisely, first note that from the Markovian description of
equilibrium dynamics, it is easy to see that Λ0 = λN̄0 is a sufficient statistic for equilibrium
when other fundamentals are fixed:

Lemma 5.5. Fix r, ρ > 0, p0 ∈ (0, 1), and ε ≥ 0. Suppose that λ̂ ˆ̄N0 = λ0N̄0. Let N̂t and Nt

denote the unique equilibrium adoption flows under (λ̂, ˆ̄N0) and (λ, N̄0), respectively, and let p̂t,
t̂∗1, t̂

∗
2 and pt, t∗1, t

∗
2 denote the corresponding equilibrium beliefs and cutoff times. Then

(i). t̂∗i = t∗i for i = 1, 2;

(ii). p̂t = pt for all t
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(iii). and λ̂N̂t = λNt for all t.

Proof. Immediate from the proof of Theorem 5.1. �

With this, the condition for partial adoption to arise in equilibrium can be stated as follows:

Lemma 5.6. Fix ρ, ε and p0 satisfying Conditions 5.2 and 5.3. Assume p0 < p]. Then for all
r > 0, there exists Λ̄0(r) > 0 such that t∗1(Λ0) < t∗2(Λ0) if and only if Λ0 > Λ̄0(r).

Proof. Set Λ̄0(r) := max{Λ∗(p0),Λ∗(p)} and see Section F.1 in the Appendix. �

On the other hand, if learning is purely exogenous (λ = 0 and ε > 0) or if consumers are
myopic (“r = +∞”), then there is never any partial adoption, regardless of other parameters.
In the former case, 0 = Λt < Λ∗(p) for all p > p, so by Theorem 5.1 no consumers adopt until
the no-news posterior hits p (at t∗1 = t∗2) and from then on all consumers adopt immediately
when given a chance. The latter case corresponds to p = p = 1

2 and Λ∗(p) = +∞ for all p > 1
2 ,

so t∗1 = t∗2 = inf{t : pt >
1
2}. Thus, the possibility of partial adoption in equilibrium hinges

crucially both on consumers being forward-looking and on there being opportunities for social
learning.

Figure 4: Examples of S-shaped adoption curves (Source: Narayanan and O’Connor (2010),
Figure 2.1.)
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5.2 Shape of Adoption Curve

With the equilibrium characterization in place, we can explore implications for the shape of an
innovation’s adoption curve, which plots the percentage of adopters in the population against
time. Conditional on no breakdowns up to time t, this is given by

At :=

tˆ

0

Ns

N̄0
ds.

Conditional on the innovation being good, observed adoption levels at t will be exactly At.
If the innovation is bad, then observed adoption levels follow At until the first breakdown (which
occurs at a stochastic time), and remain constant from then on. As a result of the equilibrium
characterization in Theorem 5.1, we obtain the following prediction for the shape of the adoption
curve:

Corollary 5.7. In the unique equilibrium of Theorem 5.1, the adoption curve At conditional
on no breakdowns up to time t has the following shape:

• for 0 ≤ t < t∗1, At = 0

• for t∗1 ≤ t < t∗2, At is strictly increasing and convex in t

• for t ≥ t∗2, At is strictly increasing and concave in t.

In particular, if t∗1 < t∗2, then Corollary 5.7 predicts that, possibly after an initial period
of no adoption, the adoption curve conditional on no breakdowns exhibits an S-shaped (i.e.
convex-concave) growth pattern. In the empirical literature on innovation adoption,35 S-shaped
adoption patterns have been widely documented for many different innovations over the past
century, including new agricultural seed varieties, such as hybrid corn; household electronics,
such as refrigerators and color television; and industrial and medical innovations, such as the
diesel locomotive and electrocardiographs. Figure 4 illustrates this for a selection of household
technologies. Figure 5 represents a typical adoption curve generated in our model when ε = 0.

The intuition for S-shaped adoption curves in our model is as follows: There is no adoption
before time t∗1, because initially consumers are pessimistic about the quality of the innovation and
strictly prefer to wait for information from the exogenous news source rather than risk adopting
a bad product. The adoption curve is concave from time t∗2 on, because now consumers are

35See, for example, Griliches (1957), Mansfield (1961), Mansfield (1968), Davies (1979), and Gort and Klepper
(1982), among many others.
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Figure 5: Adoption curve conditional on no breakdowns (ε = 0)

sufficiently optimistic to strictly prefer adopting the innovation when given the chance, so that
the flow of new adopters is depleted at the rate ρ at which adoption opportunities are generated.

More interestingly, the period of convex growth coincides precisely with the period of infor-
mational free-riding (in the form of partial adoption). The reason for this is the fundamental
trade-off between adopting now and waiting for more information that arises when consumers
are forward-looking social learners. During the period (t∗1, t

∗
2) of partial adoption, consumers

are indifferent between adopting immediately and delaying. Conditional on no breakdowns dur-
ing this period, consumers grow increasingly optimistic about the quality of the innovation,
which increases their opportunity cost of delaying adoption. In order to maintain indifference
as captured by equation (7), the benefit to delaying adoption must also increase over time:
Since consumers are forward-looking, this can be achieved by increasing the arrival rate of fu-
ture breakdowns, which improves the odds that waiting will allow consumers to avoid the bad
product. Since consumers are social learners, the arrival rate of information is increasing in
the flow Nt of new adopters. Thus, whenever there is informational free-riding, Nt is strictly
increasing over time. Since Nt represents the rate of change of the proportion At of adopters in
the population, this is equivalent to At being convex.

Once again, this result relies crucially on our two modeling assumptions that learning is social
and that consumers are forward-looking. As we pointed out following Lemma 5.6, if learning
is purely exogenous or if consumers are myopic, then t∗1 = t∗2, in which case the adoption
curve does not feature a region of convex growth. In order to generate S-shaped adoption
patterns in the absence of either of our assumptions, alternative models appeal to specific
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distributions of consumer heterogeneity, for example Jensen (1982) (in a model of exogenous
learning with forward looking consumers) or Young (2009) (in a model of myopic social learning).
The interplay of social learning and forward-looking consumers allows us to explain convex
growth in terms of purely informational incentives, thus suggesting a novel micro-foundation
for S-shaped curves that remains valid even when consumers are fully homogeneous.

5.3 Welfare

We now examine ex ante consumer welfare, as captured by the time 0 equilibrium value to
waiting, W0. Fix r, ρ > 0, ε ≥ 0, and p0 ∈ (0, 1) satisfying Conditions 5.2 and 5.3. Then
Lemma 5.5 and Lemma 2.4 imply that W0 = W0(Λ0) depends only on the potential for social
learning in the economy. The key finding is the possibility of a saturation effect: For sufficiently
large Λ0, additional increases in opportunities for social learning are welfare-neutral.

5.3.1 Nature of Inefficiency

We first note that, as is to be expected, the equilibrium is in general inefficient relative to the
socially optimal cooperative benchmark:

Proposition 5.8. Fix r, ρ > 0, ε ≥ 0, and p0 ∈ (0, 1) satisfying Conditions 5.2 and 5.3. The
unique equilibrium in Theorem 5.1 is socially optimal if and only if Λ0 < Λ∗(p0).

Proof. See Appendix Section E.1. �

Note that if Λ0 < Λ∗(p0), then in equilibrium all consumers adopt immediately upon first
opportunity, which is exactly as prescribed by the cooperative benchmark in Proposition 3.3.
Whenever Λ0 > Λ∗(p0), then the proof of Proposition 5.8 demonstrates two sources of inef-
ficiency relative to the cooperative benchmark. First, provided we also have p0 ≤ p (so that
t∗1 > 0), then adoption begins too late in equilibrium. Second, provided we also have Λ0 > Λ∗(p)

(so that t∗1 < t∗2), then even once consumers begin to adopt, the initial rate of adoption is too
slow due to partial adoption on (t∗1, t

∗
2). Note that both types of inefficiency rely on a sufficiently

large potential for social learning. Moreover, for any p0 > 1/2, the first type arises only if ε is
sufficiently large or r is sufficiently small (in particular, if learning is purely social or if consumers
are myopic, then t∗1 = 0). On the other hand, the second inefficiency relies on consumers being
forward-looking, but can arise even if ε = 0.
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5.3.2 Saturation Effect

The fact that the equilibrium can feature inefficiencies relative to the cooperative benchmark
is to be expected. However, the second type of inefficiency discussed above, which arises when
there is free-riding in the form of partial adoption, has the following more surprising implication:

Proposition 5.9. Fix r, ρ > 0, ε ≥ 0, and p0 ∈ (0, 1) satisfying Conditions 5.2 and 5.3. Let
Λ0 := max{Λ∗(p0),Λ∗(p)}. Then in the unique equilibrium of Theorem 5.1, W0(Λ0) satisfies
the following:

(i). W0(Λ0) is strictly increasing in Λ0 whenever Λ0 < Λ0;

(ii). W0(Λ0) = W0(Λ0) is constant in Λ0 for all Λ0 ≥ Λ0.

Proof. See Appendix Section F.1. �

When p0 < p] so that Λ0 is finite, Proposition 5.9 states that an economy’s ability to harness
its potential for social learning is subject to a saturation effect : If Λ0 is small, increases in Λ0 are
strictly beneficial; however, once Λ0 is sufficiently large, any additional increase in Λ0 is com-
pletely welfare-neutral. This is in stark contrast to the cooperative benchmark: There increases
in Λ0 are always strictly beneficial and for any p0 > 1

2 the first-best (complete information)
payoff of ρ

r+ρp0 can be approximated in the limit as Λ0 →∞. We illustrate this in Figure 6,36

which for varying levels of Λ0 plots the ratio of equilibrium and socially optimal welfare levels.
To see the intuition for Proposition 5.9, suppose that p0 > p, so that t∗1 = 0. Then as long as

Λ0 < Λ0, all consumers adopt immediately upon their first opportunity until there is a break-
down. In this case, a slight increase in Λ0 does not change consumers’ behavior in the absence of
a breakdown; however, conditional on the innovation being bad, it does increase the probability
of a breakdown occurring prior to any given time—this is clearly welfare-improving, as more con-
sumers are able to avoid the bad product. On the other hand, whenever Λ0 > Λ0, then t∗1 < t∗2,
so that consumers must initially be indifferent between adopting and delaying. Then irrespec-
tive of the value of Λ0 ≥ Λ0, equilibrium incentives immediately imply that W0(Λ0) = 2p0 − 1.
In the next section, we provide some more intuition for the source of the saturation effect by
studying the impact of increases in Λ0 on equilibrium learning and adoption dynamics.

5.4 The Effect of Increased Opportunities for Social Learning

To further elucidate the saturation effect, this section examines the impact of an increase in
Λ0 on equilibrium learning dynamics and adoption levels. We find that the saturation effect

36Parameters used to generate the figure are: ε = 0, r = 1, p0 = 0.6, and ρ = 1.
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corresponds to the following two surprising implications of partial adoption: Increased opportu-
nities for social learning lead to strictly less learning over some periods of time and to a strict
reduction in adoption of both good and bad innovations at all times.

Throughout this section we fix r, ρ > 0, ε ≥ 0 and p0 satisfying Conditions 5.2 and 5.3.
To isolate the role of partial adoption, which is the inefficiency driving the saturation effect,
we assume that p] > p0 > p, so that t∗1 = 0 and Λ∗(p0) < +∞. With these parameters fixed,
Lemma 5.5 implies that Λ0 is a sufficient statistic for all quantities we consider in this section.
The following preliminary observation is central to the main results of this section:

Lemma 5.10. Suppose that Λ̂0 = λ̂ ˆ̄N0 > Λ0 = λN̄0 > Λ∗(p0), with corresponding equilibrium
flows of adoption N̂ and N . Then

(i). 0 < t∗2(Λ0) < t∗2(Λ̂0).

(ii). For all t < t∗2(Λ0), λNt = λ̂N̂t.

Proof. See Appendix Section F.2.1. �

Point (ii) states that at all times during which there is partial adoption under both Λ̂0

and Λ0, the rate of social learning is the same. Intuitively, this is because in order to maintain
indifference between immediate adoption and an instantaneous delay, Equation (7) uniquely pins
down the instantaneous arrival rate of breakdowns in the partial adoption region. The first bullet
point states that increased opportunities for social learning prolong the initial period of partial
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adoption. To see the intuition, consider Figure 3: For any posterior p, Λ∗(p), which represents
the amount of future social information required to make consumers indifferent between adopting
immediately at p and delaying, is the same under both Λ̂0 and Λ0. However, since Λ̂0 > Λ0 and
since by (ii) the evolution of beliefs in region (4) is the same under Λ̂0 and Λ0, it takes longer
to reach the Λ∗-curve from the initial point (p0, Λ̂0).

5.4.1 Non-Monotonicity of Learning

In this section, we consider the effect of increased opportunities for social learning on the evolu-
tion of equilibrium beliefs. The following proposition states a non-monotonicity result: Increases
in Λ0 do not necessarily translate into increases in pt at all times t. Specifically, if Λ0 ≥ Λ∗(p0),
corresponding to the cutoff for the saturation effect, then upon an increase in Λ0 there is a
period of times at which pt is strictly lower:

Proposition 5.11. Fix r, ρ, ε, and p0 satisfying Conditions 5.2 and 5.3 and such that p0 ∈
(p, p]). Consider Λ̂0 = λ̂ ˆ̄N0 and Λ0 = λN̄0 such that Λ̂0 > Λ0 ≥ Λ∗(p0). Then there exists some
t ∈ (t∗2(Λ0),+∞) such that

• pΛ0
t = pΛ̂0

t for all t ≤ t∗2(Λ0),

• pΛ0
t > pΛ̂0

t for all t ∈ (t∗2(Λ0), t),

• pΛ0
t < pΛ̂0

t for all t > t.

However, when Λ0 < Λ∗(p0), then pΛ0
t is strictly increasing in Λ0 for all t.

Proof. See Appendix Section F.2.2. �

Note that by Equation (1), the probability of a breakdown occurring prior to time t condi-
tional on the innovation being bad is given by

1− e−
´ t
0 (ε+λNs)ds = 1− p0 (1− pt)

pt (1− p0)
, (8)

which is increasing in pt. Thus, Proposition 5.11 has the surprising implication that whenever
Λ0 is large enough, any additional increase in opportunities for social learning will result in
consumers being strictly less likely to find out about a bad product over a period of times.

The intuition for Proposition 5.11 is closely related to whether or not there is free-riding in the
form of partial adoption (and hence relies on consumers being forward-looking social learners).
Whenever Λ0 < Λ∗(p0), then 0 = t∗1 = t∗2, so that absent breakdowns all consumers adopt
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immediately upon their first opportunity. In this case, it is easy to see from Theorem 5.1 that
the rate λNt at which social learning occurs is strictly increasing in Λ0: We have λNt = ρe−ρtΛ0

for all t. Thus, by Equation (8) increasing Λ0 necessarily speeds up learning at all times.
On the other hand, if Λ0 > Λ∗(p0), then 0 = t∗1 < t∗2(Λ0) and the equilibrium features an

initial region of partial adoption. In this case, an increase to Λ̂0 > Λ0 has the following effect.
By Lemma 5.10, free-riding occurs over a longer period of time: t∗2(Λ̂0) > t∗2(Λ0); moreover, at all
times t ≤ t∗2(Λ0) where there is free-riding under both Λ0 and Λ̂0, the rate of social learning is the
same: λNt = λ̂N̂t. This explains the first bullet point in Proposition 5.11. The strict slowdown
in learning at times just after t∗2(Λ0) is due to the following: The proof of Theorem 5.1 shows
that whenever t∗1 < t∗2, then the flow of adopters Nt is continuous at all times except at exactly
t∗2, where there is a discontinuous increase. This is evident from the adoption curve in Figure 5
where a visible non-differentiability exists at the point of transition from partial adoption to
immediate adoption. Since t∗2(Λ0) < t∗2(Λ̂0), this means that at t∗2(Λ0) the difference between
λ̂N̂t and λNt jumps from 0 to a strictly negative value, resulting in the temporary slowdown in
learning stated in the second bullet point.

Finally, learning under Λ̂0 must eventually overtake learning under Λ0, because at time 0 the
payoff to immediate adoption is the same under both Λ0 and Λ̂0 and in both cases consumers
are indifferent between adopting immediately and delaying. This relates back to the saturation
effect for welfare observed in Proposition 5.9 as follows. By Lemma 2.4, ex-ante welfare W0

under Λ0 > Λ∗(p0) can be written as

W0(Λ0) =

∞̂

0

ρe−(r+ρ)τ p0

pΛ0
τ

(
2pΛ0
τ − 1

)
dτ = p0

∞̂

0

ρe−(r+ρ)τ
(

2−
(
pΛ0
τ

)−1
)
dτ,

and similarly for Λ̂0 > Λ0. The non-monotonicity result for beliefs then has the following
implication. If a consumer obtains his first adoption opportunity prior to t∗2(Λ0), his expected
payoff is the same under Λ0 and Λ̂0; if his first adoption opportunity is during (t∗2(Λ0), t), he is
strictly worse off under Λ̂0, because in case the innovation is bad he is less likely to have found
out by then; finally, if his first opportunity is after t, he is strictly better off under Λ̂0. Depending
on Λ̂0, t adjusts endogenously to balance out the benefits, which arrive at times after t, with
the costs incurred at times (t∗2(Λ0), t). This produces the saturation effect in Proposition 5.9.

Even more strongly, in Section 7, we exploit the non-monotonicity result for beliefs to con-
struct an example involving consumers with heterogeneous discount rates in which an increase
in Λ0 is not only not beneficial, but in fact strictly hurts aggregate welfare.
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5.4.2 Slowdown in Adoption

We now consider the effect of increased opportunities for social learning on observed adoption
levels, analyzing separately the case of a good innovation and of a bad innovation.

Adoption Conditional on a Good Product: Recall that At denotes the percentage of
consumers in the population who adopt the innovation by time t conditional on no breakdowns
before t, which is the same as the percentage of adopters at t conditional on the innovation
being good:

At(G) = At :=

tˆ

0

Ns

N̄0
ds.

Note also that by Lemma 5.5, Λ0 is a sufficient statistic for the equilibrium levels of At holding
fixed r, ρ, p0 and ε, because Ns

N̄0
= λNs

Λ0
and Λ0 is a sufficient statistic for λNs.

For a good innovation, we show that when the potential for social learning Λ0 is small,
additional small increases in opportunities for social learning have no effect on adoption levels,
but when Λ0 is sufficiently large, increases strictly drive down adoption levels at all times. Once
again, the cutoff is given by the level Λ∗(p0) above which partial adoption occurs.

Proposition 5.12. Fix r, ρ, ε, and p0 satisfying Conditions 5.2 and 5.3 and such that p0 ≥ p.
Then for all t, At(Λ0, G) is constant in Λ0 for all Λ0 ≤ Λ∗(p0) and strictly decreasing in Λ0 for
all Λ0 > Λ∗(p0).

Proof. See Appendix Section F.3. �

The reason why At(Λ0, G) is constant for all Λ0 ≤ Λ∗(p0) is familiar: For all such Λ0,
consumers adopt upon their first opportunity and At = 1 − e−ρt. If Λ0 > Λ∗(p0), then the
strict slowdown in adoption is due to increased free-riding in the form of partial adoption. More
precisely, an increase from Λ0 > Λ∗(p0) to Λ̂0 has two effects, as summarized in Lemma 5.10:
First, on the extensive margin, increased opportunities for social learning push out t∗2 and lead
to a longer period of free-riding under Λ̂0. Second, on the intensive margin, the increase strictly
drives down the growth rate of At at all times prior to t∗2(Λ0):

Ȧt =
Nt

N̄0
=
λNt

Λ0
=
λ̂N̂t

Λ0
>
λ̂N̂t

Λ̂0

=
N̂t

ˆ̄N0

=
˙̂
At.

Figure 7 illustrates these two effects and their implications for a strict slowdown in adoption.
Finally, from t∗2(Λ0) adoption occurs at a maximal rate under Λ0, so that from then on Ât must
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remain below At by feasibility.
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Figure 7: Changes in adoption levels of a good product under perfect bad news (λ̂ > λ)

Two remarks are in order. First, our prediction of a strict slowdown of adoption of the
good product in response to increased opportunities for social learning once again relies cru-
cially on consumers being forward-looking. If consumers are myopic, then by the first part of
Proposition 5.12 adoption levels at all times remain unchanged following the increase. More
interestingly, if consumers are myopic, it is not possible to generate this prediction under per-
fect bad news even if we allow for an arbitrary distribution of heterogeneity in tastes. Thus,
while models of innovation adoption by myopic social learners, such as Young (2009), can gener-
ate S-shaped adoption curves by imposing suitable distributions of consumer heterogeneity, the
prediction in our model of a strict reduction in initial adoption of a good innovation is novel.

Second, Proposition 5.12 implies that conditional on a good product, increased opportunities
for social learning are welfare-neutral at best (if Λ0 < Λ∗(p0)) and potentially strictly harmful
(if Λ0 ≥ Λ∗(p0)), since adoption levels are unchanged in the former case and in the latter case
adoption is strictly delayed. Therefore any potential welfare gains due to increased opportunities
for social learning must result from more consumers being able to avoid the bad product. We
now study this point by analyzing the effect of increases in Λ0 on adoption levels of a bad
product.

Adoption Conditional on a Bad Product: Conditional on a bad innovation, adoption is
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stochastic, following At until the first breakdown, which occurs at a random time, and remaining
constant from then on. We therefore study the effect of increased opportunities for social learning
on the expected percentage of adopters at time t conditional on a bad product, which is given
by:

At(B) :=

tˆ

0

(ε+ λNτ ) e−
´ τ
0 (ε+λNs)ds

 τˆ

0

Ns

N̄0
ds

 dτ + e−
´ t
0 (ε+λNs)ds

tˆ

0

Ns

N̄0
ds

=

tˆ

0

Nτ

N̄0
e−
´ τ
0 (ε+λNs)dsdτ,

where the second line is obtained by integrating the first expression by parts. Again, Λ0 is
a sufficient statistic for At(B) when r, ρ, p0, and ε are fixed. For bad innovations, increased
opportunities for social learning always produce strict decreases in the expected level of adoption
at all times, irrespective of the original level of Λ0:

Proposition 5.13. Fix r, ρ, ε, and p0 satisfying Conditions 5.2 and 5.3 and such that p0 ≥ p.
Then At(Λ0, B) is strictly decreasing in Λ0 for all t > 0.

Proof. See Appendix Section F.3. �

If Λ0 < Λ∗(p0), this is immediate since by Proposition 5.11 and Proposition 5.12 adoption
levels conditional on no breakdowns are the same, but breakdowns prior to any time are more
likely for higher values of Λ0 < Λ∗(p0). If Λ0 ≥ Λ∗(p0), then there is a tension: On the one hand,
Proposition 5.12 implies that an increase in Λ0 leads at all times to strictly lower adoption levels
conditional on no breakdowns, but on the other hand, the non-monotonicity result for learning
implies that there are times before which a breakdown is strictly more likely under lower Λ0.
We show that the former effect always strictly dominates.

Proposition 5.12 and Proposition 5.13 relate to the saturation effect observed in Proposi-
tion 5.9 as follows: If Λ0 < Λ∗(p0), then small increases in opportunities for social learning
do not affect adoption conditional on the good product, but strictly decrease the number of
consumers adopting the bad product by any time, leading to an overall welfare gain. On the
other hand, if Λ0 ≥ Λ∗(p0), then increased opportunities for social learning strictly decrease
adoption both for good products (which is harmful) and for bad products (which is beneficial),
making welfare predictions a priori ambiguous. However, the saturation effect illustrates that
in welfare terms these two implications balance out exactly.
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6 Perfect Good News

6.1 Equilibrium Characterization

We now turn to study equilibrium behavior when learning is via perfect good news. As under per-
fect bad news, the unique equilibrium is Markovian in the state variables (pt,Λt). Surprisingly,
however, regardless of the potential for social learning in the economy, the unique equilibrium
under perfect good news does not exhibit any region of partial adoption and adoption at each
time is all-or-nothing :

Theorem 6.1. Let r, ρ, N̄0 > 0, p0 ∈ (0, 1), and λ, ε ≥ 0. There exists a unique equilibrium.
In the unique equilibrium, Nt is Markovian in (pt,Λt) (or equivalently (pt, N̄t)) for all t and
satisfies:

Nt =

ρN̄t if pt > p∗

0 if pt ≤ p∗.
(9)

where
p∗ =

(ε+ r)(ρ+ r)

2(ε+ ρ)(ε+ r)− ερ
.

To prove Theorem 6.1 we again invoke the quasi-single crossing property for equilibrium
incentives established in Theorem 4.1. Suppose Nt≥0 is an equilibrium flow of adopters. Let pt≥0

and Wt≥0 be the corresponding no-news posterior and value to waiting, and let Λt≥0 := λN̄t≥0

describe the evolution of the economy’s potential for social learning. By Theorem 4.1, there are
times37

t∗1 := inf{t : 2pt − 1 ≤Wt},

t∗2 := inf{t : 2pt − 1 < Wt},

such that (appealing also to right-continuity) N must satisfy
Nt = ρN̄t if t < t∗1,

2pt − 1 = Wt if t ∈ [t∗1, t
∗
2)

Nt = 0 if t ≥ t∗2.

In the following, we build on this fact to establish the existence of a unique equilibrium as a
function of the parameter values. The following lemma establishes the all-or-nothing nature of
the perfect good news equilibrium:

37With the usual convention that inf ∅ = +∞.
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Lemma 6.2. Suppose either ε > 0 or p0 6= 1
2 .

38 Let Nt≥0 be an equilibrium with associated
threshold times t∗1 and t∗2. Then t

∗
1 = t∗2 =: t∗.

Proof. See Appendix Section C.2. �

Thus, absent breakthroughs, all consumers adopt immediately if given the chance prior to
t∗, and after t∗, consumers stop adopting altogether and rely solely on information generated
by exogenous sources (if ε = 0, both adoption and learning come to a permanent standstill at
this point). If a breakthrough occurs at any time (prior to or after t∗), then from then on all
consumers adopt the innovation whenever given a chance.

To see the intuition for the all-or-nothing nature of the equilibrium, suppose we had t∗1 < t∗2.
Then consumers would be indifferent between adopting and delaying at each time t ∈ (t∗1, t

∗
2).

As with perfect bad news, we can compare a consumer’s payoff to adopting at t with the payoff
to delaying his decision by an instant and decompose the difference into two terms:

r(2pt − 1)dt+ pt(λNt + ε)dt

(
1− ρ

r + ρ

)
.

The first term represents the gain to immediate adoption if no breakthrough occurs between
t and t + dt, which happens with instantaneous probability 1 − pt(λNt + ε)dt. Just as with
perfect bad news, the gain to adopting immediately in this case is r(2pt+dt − 1)dt, representing
time discounting at rate r and the fact that at t+ dt the consumer remains indifferent between
adopting if given the chance and delaying. The second term represents the gain to immediate
adoption if there is a breakthrough between t and t + dt, which happens with instantaneous
probability pt(λNt+ ε)dt. Now the situation is very different from the perfect bad news setting:
A breakthrough conclusively signals good quality, so a consumer who delays his decision by an
instant will adopt immediately at his next opportunity. This results in a discounted payoff of
ρ
r+ρ , reflecting the stochasticity of adoption opportunities. On the other hand, by adopting at t,
the consumer receives a payoff of 1 > ρ

r+ρ immediately. Thus, regardless of whether or not there
is a breakthrough between t and t+ dt, there is a strictly positive gain to adopting immediately
at t, which contradicts indifference at t.

The above argument illustrates a fundamental difference between the bad news and good
news setting. In order to maintain indifference over a period of time between immediate adoption
and waiting, it must be possible to acquire decision-relevant information by waiting: Consumers
who are prepared to adopt at t will be willing to delay their decision by an instant only if there

38If ε = 0 and p0 = 1
2
, then it is easy to see that the unique equilibrium must be N ≡ 0, so that t∗1 = 0 < t∗2 =

+∞.
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is a possibility that at the next instant they will no longer be willing to adopt. In the bad
news setting, this is indeed possible: If there is a breakdown between t and t + dt, then the
innovation is revealed to be bad and no one is willing to adopt from t + dt on. On the other
hand, if learning is via good news, this cannot happen: A breakthrough between t and t + dt

reveals the innovation to be good, so consumers strictly prefer to adopt from t+dt on; if there is
no breakthrough, then consumers remain indifferent at t+ dt, so in either case the information
obtained is not decision-relevant.39

With Lemma 6.2, the derivation of Theorem 6.1 is straightforward. To this end, we show
that any equilibrium can be characterized in terms of a cutoff posterior that only depends on ε,
ρ, and r. Given any equilibrium Nt≥0 with associated no-news posteriors pt≥0, value to waiting
Wt≥0, and cutoff time t∗, define

Ht := pt

ˆ ∞
0

(ε+ λNt+τ ) e−(ετ+
´ t+τ
t λNsds) ρ

r + ρ
e−(r+ρ)τ dτ.

Thus, Ht represents a consumer’s expected value to waiting at time t given that from t on he
adopts only if there has been a breakthrough and given that the population’s flow of adoption
follows N . By optimality of Wt, we must have Ht ≤ Wt for all t. We can define a lower bound
for Ht: For any posterior p ∈ (0, 1), let

H(p, 0) := p

ˆ ∞
0

εe−ετ
ρ

r + ρ
e−(r+ρ)τ dτ = p

ρε

(r + ρ)(ε+ r + ρ)
.

H(p, 0) represents a consumer’s expected value to waiting at posterior p, given that he adopts
only once there has been a breakthrough and given that breakthroughs are only generated
exogenously. Note that for all t, we have H(pt, 0) ≤ Ht: When breakthroughs are generated
both exogenously and at rate λNt, then the probability that a breakthrough is generated by any
given time is (weakly) greater than if learning is purely exogenous; this benefits a consumer who
only adopts once there has been a breakthrough. Moreover, for all t ≥ t∗, we haveWt = H(pt, 0).

Recall the definition of p∗ in Theorem 6.1, p∗ := (ε+r)(ρ+r)
2(ε+ρ)(ε+r)−ερ , and note that p∗ is the

unique solution to 2p∗ − 1 = H(p∗, 0). By definition of p∗, if pt ≤ p∗ at any time t, then

2pt − 1 ≤ H(pt, 0) ≤ Ht ≤Wt,

39Note that breakthroughs do of course convey decision-relevant information at beliefs where consumers strictly
prefer to delay. But during a region of indifference, this cannot be the case.
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so for all t < t∗, we must have pt > p∗. Conversely, if t∗ < +∞ and t ≥ t∗, then

2pt − 1 ≤Wt = H(pt, 0),

so pt ≤ p∗ for all t ≥ t∗. We summarize this in the following lemma:

Lemma 6.3. Let Nt≥0 be an equilibrium with corresponding cutoff time t∗ and no-news posterior
pt≥0. Then

pt > p∗ ⇔ t < t∗.

Given Lemma 6.2 and Lemma 6.3, the equilibrium characterization under perfect good news
follows readily. Equation (9) is immediate from Lemma 6.3. For fixed parameters, we then
obtain the unique equilibrium as follows: If p0 ≤ p∗, then t∗ = 0 and Nt = 0 for all t. If
p0 > p∗, then we must have t∗ > 0 and Nt = ρe−ρtN̄0 for all t < t∗; if in addition ε > 0 or
p0

(
1 + e−λN̄0

)
< 1, then t∗ < +∞ is uniquely determined as the solution to

pt =
p0

p0 + (1− p0) eεt+(1−e−ρt)N̄0
= p∗. (10)

If instead p0 > p∗ and ε = 0 and p0

(
1 + e−λN̄0

)
≥ 1, then Equation (10) does not admit

a solution, and we must have t∗ = +∞: In this case, the potential for social learning in the
economy is so small that even a bad innovation is eventually adopted by all consumers, despite
the fact that no breakthroughs are ever generated.

As highlighted at the beginning of the section, the equilibrium under perfect good news is
Markovian in (pt,Λt). However, in marked contrast to the bad news case, if ε = 0, then adoption
behavior is independent of the discount rate r: Even very patient consumers will behave entirely
myopically, adopting the innovation at all posteriors above 1

2 and not adopting otherwise. If
ε > 0, then consumers’ forward-looking nature is reflected by the fact that the cutoff posterior
p∗ below which consumers are unwilling to adopt is (r+ρ)(r+ε)

2(r+ρ)(r+ε)−ρε >
1
2 . In both cases, the cutoff

posterior does not depend on λ or N̄0: Social learning only affects the time t∗ at which adoption
ceases conditional on no breakthroughs. Moreover, as under perfect bad news, it is easy to see
that holding fixed other parameters, Λ0 = λN̄0 is a sufficient statistic for equilibrium behavior:

Lemma 6.4. Fix r, ρ > 0, p0 ∈ (0, 1), and ε ≥ 0. Suppose that λ̂ ˆ̄N0 = λ0N̄0. Let N̂t and Nt

denote the unique equilibrium adoption flows under (λ̂, ˆ̄N0) and (λ, N̄0), respectively, and let p̂t,
t̂∗ and pt, t∗ denote the corresponding equilibrium beliefs and cutoff times. Then

(i). t̂∗ = t∗ ;
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(ii). p̂t = pt for all t

(iii). and λ̂N̂t = λNt for all t.

Proof. Immediate from the proof of Theorem 6.1. �

6.2 Shape of Adoption Curve

Theorem 6.1 has the following implication for the shape of adoption curves in good news markets:

Corollary 6.5. In the unique equilibrium of Theorem 6.1, the proportion of adopters in the
population is strictly increasing and concave for all t < t∗ and given by

At :=

tˆ

0

Ns

N̄0
ds = 1− e−ρt.

If there is a breakthrough prior to t∗, then the proportion of adopters is given by 1 − e−ρt for
all t; if the first breakthrough occurs at s > t∗,40 then adoption comes to a temporary standstill
between t∗ and s, and for all t ≥ s, the proportion of adopters is strictly increasing and concave
and given by 1− e−ρ(t∗+t−s).

Thus, as illustrated in Figure 8,41 adoption proceeds in concave “bursts”: Up to time t∗,
all consumers adopt the innovation upon their first opportunity, with the flow of new adopters
declining at the rate ρ at which adoption opportunities arrive. Conditional on no breakthroughs,
adoption comes to a standstill at time t∗, because by that point consumers are pessimistic enough
about the product to prefer to delay adoption. If ε > 0, then exogenous news sources might
generate a breakthrough after t∗, in which case a second concave burst in adoption occurs.

While less common than the S-shaped curves we predicted under bad news,42 this type of
adoption pattern also corresponds to recurrent empirical findings. For instance, the marketing
literature43 has coined the term “fast-break" product life cycle (PLC) to describe goods with
large initial sales volumes accompanied by a gradual decline in new purchases (implying a
concave adoption pattern), in contrast to S-shaped PLCs that initially feature low sales volumes
accompanied by a gradual increase in the number of new purchases. The textbook example for

40This occurs only if ε > 0.
41The parameters used to generate the figure are: ε = 1/2, r = 1, ρ = 1, λ = 0.5, and p0 = 0.7.
42Note that in our model purely concave adoption curves can also arise under bad news if the economy’s

potential for social learning is relatively limited or consumers are very optimistic (so that t∗1 = t∗2). The key
difference is that under perfect good news adoption curves are necessarily concave, even in economies with a
large potential for social learning or with fairly pessimistic and forward-looking consumers.

43Cf. Keillor (2007) pp. 51-61.
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fast-break PLCs is the movie industry,44 as illustrated in Figure 9. Given that the movie industry
is also sometimes cited as a typical example of a good news market45 with learning occurring
predominantly via positive events such as awards and recommendations in social media, this
finding appears to be in line with our model.
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Figure 8: Adoption Curves under Perfect Good News (blue = breakthrough before t∗; yellow =
breakthrough after t∗; pink = bad quality)

6.3 The Effect of Increased Opportunities for Social Learning

To further illustrate the distinction between good news and bad news markets, we now study
the effect of increased opportunities for social learning under good news. In contrast to our
results under perfect bad news, we find that increased opportunities for social learning (es-
sentially) always speed up learning, leave initial adoption levels unaffected, and are strictly
welfare-improving—all three results are due to the absence of partial adoption regions under
good news. Throughout this section, we fix r, ρ > 0, p0 ∈ (0, 1), and ε ≥ 0, and let p∗ denote
the equilibrium cutoff posterior:

p∗ =
(r + ρ)(r + ε)

2(r + ρ)(r + ε)− ρε
,

44Additional evidence can be found in Davies (1979)’s study of the diffusion of 22 post-war process innovations
among industries in the UK. In the context of his probit model of innovation diffusion, he finds that while
S-shaped (logistic) diffusion paths are characteristic of complex and expensive innovations, they are less suited
to fitting the diffusion paths of simpler and less expensive innovations, which typically feature rapid, essentially
concave growth from the beginning and are better approximated by a lognormal model.

45Cf. Board and Meyer–ter–Vehn (2013)
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Figure 9: “Adoption” patterns for various blockbuster movies (Source: McLaren and DePaolo
(2009))

which is independent of the potential for social learning. Given that all other parameters are
fixed, Lemma 6.4 implies that Λ0 = λN̄0 is a sufficient statistic for all the quantities we consider
in this section.

6.3.1 Learning Speeds Up

We first turn to the effect of increased opportunities for social learning on equilibrium beliefs.
As a result of the all-or-nothing nature of the perfect good news equilibrium, we can see that
learning necessarily speeds up—this is in contrast to the possibility of nonmonotonicities due to
partial adoption under perfect bad news. More precisely:

Proposition 6.6. Fix Λ̂0 > Λ0
46 and let t∗(Λ̂0), pΛ̂0

t and t∗(Λ0), pΛ0
t denote the corresponding

equilibrium cutoff times and posteriors conditional on no breakthrough.

(i). If p0 > p∗, then

• 0 < t∗(Λ̂0) < t∗(Λ0)

• pΛ̂0
t < pΛ0

t for all t > 0

• pΛ̂0

t∗(Λ̂0)+k
= pΛ0

t∗(Λ0)+k for all k ≥ 0.

46If ε = 0 we assume that p0

(
1 + e−Λ0

)
< 1 so that t∗(Λ0) <∞.
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(ii). If p0 ≤ p∗, then

• t∗(Λ̂0) = t∗(Λ0) = 0

• pΛ̂0
t = pΛ0

t for all t.

If p0 > p∗, then conditional on no breakthroughs, all consumers adopt immediately upon an
opportunity until the time t∗ at which the cutoff posterior p∗ is reached. By Theorem 6.1, there is
never any partial adoption, so that an increase from Λ0 to Λ̂0 directly translates into a faster rate
of social learning at all times t prior to min{t∗(Λ̂0), t∗(Λ0)}: λNt = ρe−ρtΛ0 < ρe−ρtΛ̂0 = λ̂N̂t.
Since the cutoff posterior p∗ is independent of social learning, this implies that t∗(Λ̂0) < t∗(Λ0)

and that learning is strictly faster under Λ̂0 at all times. However, once the cutoff posterior is
reached, information is generated at the constant exogenous rate ε, which means that conditional
on t > t∗, beliefs depend only on t− t∗, as summarized in the third bullet point under (i).

On the other hand, if p0 ≤ p∗, then all consumers rely entirely on the exogenous news source
from the beginning, so the potential for social learning is irrelevant.

6.3.2 No Initial Slowdown of Adoption

The all-or-nothing nature of the perfect good news equilibrium also implies that increased op-
portunities for social learning do not affect initial adoption levels—this is again in contrast to the
possibility of initial slowdowns due to partial adoption under perfect bad news. More precisely:

Proposition 6.7. Suppose Λ̂0 > Λ0.

(i). If p0 > p∗, then:

• For all t ≤ t∗(Λ̂0), At(Λ̂0; θ) = At(Λ0; θ) = 1− e−ρt for θ = B,G.

• For all t > t∗(Λ̂0), At(Λ̂0; θ) < At(Λ0; θ) for θ = B,G.

(ii). If p0 ≤ p∗, then for all t:

• At(Λ0;B) = At(Λ̂0;B) = 0;

• At(Λ0;G) = At(Λ̂0;G) =
(

1− ρ
ρ−εe

−εt
)

+ ε
ρ−εe

−ρt.

Until t∗(Λ̂0) all consumers adopt immediately upon an opportunity under both Λ0 and Λ̂0

regardless of the quality of the innovation. However, from t∗(Λ̂0) on, expected adoption levels are
strictly lower under Λ̂0 than under Λ0: If the innovation is bad, this is because adoption comes
to a permanent standstill under Λ̂0 (until a further breakthrough generated by the exogenous
information ε), but continues until t∗(Λ0) under Λ0. If the the innovation is good, the result
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is again immediate for all t ≤ t∗(Λ0) since adoption occurs at the maximal rate under Λ0. For
t > t∗(Λ0), there are two opposing effects: On the one hand, the guaranteed lower bound on
adoption is higher under Λ0, but on the other hand the probability of a breakthrough occurring
prior to time t is always higher under Λ̂0. We show in the Appendix Section G.1 that the former
effect dominates.

On the other hand, if p0 ≤ p∗, then increased opportunities for social learning once again
have no effect at all on adoption levels, because no consumers adopt until the exogenous news
source generates a breakthrough.

6.3.3 No Saturation Effect

Proposition 6.7 showed that from time t∗(Λ̂0) on, adoption levels for both good and bad quality
products are strictly lower under Λ̂0 > Λ0 than under Λ0. In welfare terms, the former effect
is harmful while the latter is beneficial. This raises the question whether welfare under perfect
good news might be subject to a similar saturation effect as under bad news. Provided p0 > p∗

and ε > 0, the answer is negative:

Proposition 6.8. Suppose Λ̂0 > Λ0.

• If p0 > p∗ and ε > 0, then W0(Λ̂0) > W0(Λ0).

• If p0 ≤ p∗ or ε = 0, then W0(Λ̂0) = W0(Λ0) .

Thus, in contrast to the perfect bad news case, increased opportunities for social learning
are always strictly beneficial, except in two cases: If consumers rely entirely on exogenous
information (p0 ≤ p∗), or if there is no exogenous information (ε = 0). Welfare-neutrality in
these two exceptional cases is clear: Increased opportunities for social learning can have an effect
on welfare only if there are histories at which a consumer’s decision whether to adopt or delay
is affected by information generated as a result of social learning. If p0 ≤ p∗, then consumers’
behavior depends only on information obtained exogenously (and no adoption ever takes place
if ε = 0). If ε = 0 and p0 > p∗ = 1

2 , then consumers are willing to adopt at all histories, since
no matter how large Λ0, the equilibrium posterior always remains weakly above 1

2 .
On the other hand, if p0 > p∗ and ε > 0, then under both Λ0 and Λ̂0 consumers adopt

immediately upon first opportunity until p∗ is reached and from then on delay adoption until
there has been a breakthrough. Moreover, the probability π∗ of a breakthrough occurring prior
to p∗ being reached is the same under both Λ0 and Λ̂0: π∗ = 1−p0

1−p∗ . And because learning
occurs at the same rate once p∗ is reached, the continuation value W ∗ conditional on p∗ being
reached is also the same: W ∗ = p∗

´∞
0 εe−(ε+r)t ρ

r+ρdt = 2p∗ − 1. So the only difference is that
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conditional on no breakthroughs, the time t∗ at which p∗ is reached occurs earlier under Λ̂0. To
see that this is strictly beneficial, note that W0 is composed of the following two terms:

W0(Λ0) =
(

1− e−(r+ρ)t∗(Λ0)
) ρ

r + ρ
(2p0 − 1) + e−(r+ρ)t∗(Λ0)

(
π∗

ρ

r + ρ
+ (1− π∗)W ∗

)
,

and similarly for Λ̂0. The first term represents the case when a consumer receives an adoption
opportunity prior to time t∗, and the second represents the case when a consumer’s first adoption
opportunity occurs after t∗. Conditional on either of these cases occurring, the expected payoff
is the same under both Λ0 and Λ̂0, but the time-discounted probability e−(r+ρ)t∗ with which the
second case occurs is strictly greater under Λ̂0. This is strictly beneficial, because the expected
payoff in the second case is strictly greater:(

π∗
ρ

r + ρ
+ (1− π∗) (2p∗ − 1)

)
− ρ

r + ρ
(2p0 − 1) =

r

r + ρ
(1− π∗) (2p∗ − 1) > 0.

Intuitively, in the second case the consumer adopts the innovation only once it has been revealed
to be good while in the first case he adopts it regardless of its quality, and the resulting benefit
from avoiding a bad innovation outweighs the cost of possibly having to delay adoption of a
good innovation.

Nature of Inefficiency: Even though there is no saturation effect and consumers are able to
always benefit from increased opportunities for social learning, equilibrium adoption behavior is
not in general socially optimal. Let ps denote the cutoff posterior for the cooperative benchmark
derived in Proposition 3.2.

Proposition 6.9. If ε = 0, equilibrium adoption behavior is socially optimal if and only if either
p0(1 + e−Λ0) ≥ 1 or Inequality 5 holds. If ε > 0, then equilibrium adoption behavior is socially
optimal if and only if ps ≥ p0.

Consider first the case where ε = 0. Then if p0(1 + e−Λ0) ≥ 1, we have that t∗ = ts = +∞;
and if Inequality 5 holds, then t∗ = ts = 0. For the converse and to deal with the case when
ε > 0, it then suffices to show that ps < p∗: This implies that whenever p0 > ps, then conditional
on no breakthroughs adoption ends too soon in equilibrium (or doesn’t take place at all if p0 ≤ p∗

even though the cooperative benchmark prescribes some initial adoption). On the other hand, if
p0 ≤ ps, then both the cooperative benchmark and the equilibrium prescribe no adoption until
there has been an exogenously generated breakdown. Note that adoption ending too soon under
the perfect good news equilibrium is the analog of adoption beginning inefficiently late under
perfect bad news. However, since the perfect good news equilibrium does not feature regions of
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partial adoption, there is no analog of the second type of inefficiency that arose under perfect
bad news: Whenever adoption does occur under perfect good news, it takes place at an optimal
rate.

To see that ps < p∗, note that(
2− ε

ε+ r

ρ

ρ+ r

)
p∗ − 1 = 0.

Using the above equality and evaluating the derivative of the objective function of the cooper-
ative problem in Equation 3 at p∗, we obtain:

(1− π∗)p∗Λ0ρe
−ρt∗ r

ε+ r

(
e−(r+ρ)t∗ ρ

ρ+ r
N̄0

)
> 0.

This shows that ts > t∗ and so ps < p∗ as the objective function of the cooperative problem is
single-peaked.

7 More Social Learning Can Hurt: An Example

In Proposition 5.9 we established the saturation effect, whereby increased opportunities for social
learning under perfect bad news are welfare-neutral when Λ0 is sufficiently large relative to the
other fundamentals. Nevertheless, under the assumption of completely homogeneous consumers
in the previous sections, increases in Λ0 never produced ex ante welfare losses. In this section, we
establish the surprising result that when consumers are heterogeneous, increased opportunities
for social learning can strictly hurt some consumers and bring about Pareto-decreases in ex ante
welfare. To illustrate this, we introduce some heterogeneity in consumers’ patience levels.

Consider a population consisting of two types of consumers: There is a mass Mp
0 of patient

types with discount rate rp > 0 and a massM i
0 of impatient types with discount rate ri > rp. To

simplify the analysis we assume that ε = 0 and p0 > 1/2, although our arguments easily extend
to the case where ε > 0. Because our purpose is simply to construct an example illustrating the
possibility of welfare loss, we restrict attention to a perfect bad news setting.

To construct our example, we begin by examining equilibria in which only types with discount
rate rp exist in the economy. Recall from Section 5.1 that for any discount rate r > 0, we can
define the function Λ∗r implicitly for every p ∈ (1

2 ,
ρ+r
ρ+2r ) by

2p− 1 = Gr(p,Λ
∗
r(p)) :=

∞̂

0

ρe−(r+ρ)τ
(
p− (1− p)e−Λ∗r(p)(1−e−ρt)

)
dτ.
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Then by Theorem 5.1, whenever p0 <
ρ+rp
ρ+2rp

and λ̂Mp
0 > λMp

0 > Λ∗rp(p0), then in the game con-
sisting solely of consumers of type rp, the two equilibria corresponding to information structures
λ and λ̂ both feature initial regions of partial adoption.

The main argument in the construction of our example is to consider heterogeneous
economies where the massM i

0 of impatient types is very small, holding fixed the mass of patient
types at Mp

0 . More specifically, we show that when the mass of impatient types is sufficiently
small, the equilibrium behavior of the patient types in both equilibria (under information process
λ̂ and λ) approximates the behavior in the corresponding equilibria when only patient types are
present. Then using arguments about the properties of equilibria in the game with only patient
types, in particular the non-monotonicity result for learning established in Proposition 5.11, we
can obtain the following result:

Theorem 7.1. Suppose 0 < rp < ri < +∞. Fix Mp
0 > 0 and λ̂ > λ > 0 such that λ̂Mp

0 >

λMp
0 > Λ∗rp(p0). Then there exists η > 0 such that whenever M i

0 < η, W i
0(λ̂) < W i

0(λ) and
W p

0 (λ̂) = W p
0 (λ). Thus, whenever M i

0 < η, the ex ante payoff profile in the λ-equilibrium
Pareto-dominates the ex ante payoff profile in the λ̂-equilibrium and

M i
0W

i
0(λ̂) +Mp

0W
p
0 (λ̂) < M i

0W
i
0(λ) +Mp

0W
p
0 (λ).

Here we sketch the main arguments of the theorem. Consider first an economy consisting
only of types with discount rate rp: M i

0 = 0 and Mp
0 > 0. If λ̂Mp

0 > λMp
0 > Λ∗rp(p0), then the

two equilibria corresponding to information structures λ and λ̂ both feature initial regions of
partial adoption. Thus W p

0 (λ̂) = W p
0 (λ) = 2p0 − 1.

Now consider the payoffs that a hypothetical type ri (even though such a type does not
exist in this economy) would obtain if he were to behave optimally when faced with the flow
of information generated in each of these equilibria. Because an optimal strategy (there will be
a continuum of optimal strategies) of a consumer of type rp is to adopt upon first opportunity
absent breakdowns, it is straightforward to show that an optimal strategy of such a hypothetical
type ri would also be to adopt upon first opportunity.

Given this, the payoffs of the hypothetical type ri in the two equilibria are given by the
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following two expressions:

W i
0(λ̂) =

∞̂

0

ρe−(ri+ρ)τ p0

pλ̂τ

(
2pλ̂τ − 1

)
dτ

W i
0(λ) =

∞̂

0

ρe−(ri+ρ)τ p0

pλτ

(
2pλτ − 1

)
dτ.

Furthermore, patient types begin in a partial adoption phase in both equilibria:

2p0 − 1 = W p
0 (λ̂) =

∞̂

0

ρe−(rp+ρ)τ p0

pλ̂τ

(
2pλ̂τ − 1

)
dτ

2p0 − 1 = W p
0 (λ) =

∞̂

0

ρe−(rp+ρ)τ p0

pλτ

(
2pλτ − 1

)
dτ.

Recall from Proposition 5.11 that there exists t > t∗ := t∗2(λ) such that pλ̂τ = pλτ for all
τ ≤ t∗, pλ̂τ < pλτ for all τ ∈ (t∗, t) and pλ̂τ > pλτ for all τ > t. We now exploit the expressions
for the value to waiting of the two types together with the deceleration of learning at times just
after t∗ to obtain the result. Intuitively, because W p

0 (λ̂) = W p
0 (λ) = 2p0 − 1, the deceleration

in learning followed by a later acceleration must balance out exactly so that the patient type rp
obtains the same ex ante payoff under λ and λ̂. But then these adjustments must strictly hurt
the less patient hypothetical type ri, because relative to type rp, type ri weights the losses due
to the slow down of learning more heavily than the benefits that arrive at later times.47

To complete the proof, we can show that even when M i
0 > 0, as long as M i

0 is sufficiently
small, we must still have W i

0(λ̂) < W i
0(λ) and W p

0 (λ̂) = W p
0 (λ). The first inequality is the

result of a simple continuity argument. The second equality comes from the fact that even
upon perturbing M i

0 slightly, the patient type must continue to partially adopt initially in both
equilibria.

Note that a crucial assumption underlying the above argument is that adoption opportunities
are stochastic and limited. When ρ is finite, because of a natural delay in adoption, the impatient
types may not receive any adoption opportunities for a long time. As a result, if an impatient
type obtains his first adoption opportunity late in the game, then the information available at
that point in time would be strictly lower under the equilibrium with information process λ̂
than λ. This decrease in information (due to increased free-riding of the patient types) when

47A formal argument is provided in Appendix Section H.
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impatient types receive adoption opportunities late in the game is precisely the cause of the
impatient type’s welfare loss. If on the other hand consumers were able to adopt freely at any
time, then the impatient types would incur no losses as they would adopt at exactly time 0

in both the λ and λ̂-equilibria. Thus the example here illustrates an interesting interaction
between heterogeneity and delays due to limited opportunities for adoption.

8 Conclusion

This paper develops a model of innovation adoption when consumers are forward-looking and
learning is social. Our analysis isolates the effect of purely informational incentives on aggregate
adoption dynamics, learning, and welfare, and highlights the way in which these incentives vary
across different informational environments. The possibility of free-riding in the form of partial
adoption is found to be particularly important, because it casts doubt on the the received
wisdom that the recent internet-driven surge in opportunities for social learning should speed
up learning and benefit consumers. Owing to the advantages of continuous time and Poisson
learning, the model is very tractable, yielding closed-form expressions for key quantities and
allowing us to compute numerous comparative statics.

We briefly discuss some questions for ongoing and future research that could build on the
modeling framework and techniques developed in this paper. Current work in progress relaxes
the assumption of perfect Poisson learning to allow for signals that while indicative of bad
(respectively good) quality are not conclusive. Serving as a robustness check for our results
obtained under perfect Poisson learning, preliminary results suggest that many key qualitative
features are preserved, for example the possibility of partial adoption regions in bad news markets
(which once again coincide with convex growth in adoption levels) as well as the absence of such
regions under good news learning. In addition, the extension to imperfect Poisson learning
introduces interesting new questions that cannot be studied when signals are conclusive. For
example, when ε = 0, then under imperfect (but not under perfect) bad news it is possible for
good innovations to fail, because even good products can generate strings of breakdowns that
might permanently halt adoption. This suggests investigating the “fragility” of the adoption
process as a function of parameters such as the initial market belief and the relative rates at
which bad and good products generate breakdowns.

Further work in progress relaxes the assumption that signals are public. To see the idea,
suppose that learning is social, but that signals derived from past adopters’ experiences are
observed privately and independently (at rate λNt) by each remaining consumer, instead of
publicly and simultaneously as in the model in this paper. This captures the intuition of decen-
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tralized social learning, for example when consumers frequent different blogs and social media
platforms. Assuming that at any time consumers make inferences based only on their own
private signals and on the expected number of adopters in the population, another interesting
difference between bad news and good news markets emerges: Under bad news, a consumer
who privately observes a breakdown will never adopt the innovation in the future and hence will
never generate any signals himself; this has a dampening effect on the production of informa-
tion in the economy and reduces free-riding incentives. By contrast, consumers who privately
observe breakthroughs under good news will adopt the innovation at their next opportunity,
thus amplifying information production in the future and increasing free-riding incentives. This
difference has important implications for aggregate adoption dynamics and for the impact of
increased opportunities for social learning.

Finally, moving beyond our focus in this paper on the purely informational aspects of the
problem, one could explore the implications of incorporating consumer heterogeneity and pricing
motives into the model. As we saw in Section 7, heterogeneity can interact in interesting
ways with informational free-riding incentives, sometimes rendering increases in the potential
for social learning strictly harmful. A more general characterization of this interaction under
more complex distributions of consumer heterogeneity appears challenging but desirable. As
for pricing, assume that the innovation is sold by a forward-looking monopolist who does not
have any influence on the quality of the innovation and has access to exactly the same public
information as consumers, but can influence the endogenous production of information via the
price. As a simple first step, we could restrict the monopolist to setting a single fixed price
and compute comparative statics on this price and on welfare under increased opportunities for
social learning. More challengingly, we could allow the monopolist to commit to a time path
of prices, examining for instance how the fact that information is generated endogenously by
consumer purchases affects the monopolist’s incentives for intertemporal price-discrimination
relative to the well-known complete information results of Stokey (1979). We leave these two
topics as interesting avenues for future research.
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A Preliminary Mathematical Tools for Equilibrium Analysis

A.1 General Properties of the Value to Waiting

Throughout this section N denotes an equilibrium adoption flow, with associated value to
waiting WN

t and no-news posterior pN . We we establish some basic mathematical properties of
the value to waiting WN corresponding to any equilibrium adoption flow N .

Lemma A.1. Let N be an equilibrium flow of adopters. Then WN
t is continuous in t.

Proof. This is immediate from Lemma 2.4. Note that WN
t can be written as:

WN
t =

∞̂

t

h(τ)dτ

for some h ∈ L1[0,∞) ∩ L∞[0,∞). Then it is immediate that WN
t is continuous in t. �

Lemma A.2. Suppose that N is an equilibrium and that WN
t < 2pNt − 1 for some t > 0.

Then there exists some ν > 0 such that WN
t is continuously differentiable in t on the interval

(t− ν, t+ ν) and

ẆN
t =(r + ρ+ (εG + λGNt)p

N
t + (εB + λBNt)(1− pNt ))WN

t

− ρ(2pNt − 1)− pNτ (εG + λGNt)
ρ

ρ+ r
.

Proof. By Lemma A.1, WN
t must be continuous in t. Because 2pNt − 1 is continuous in t, there

exists some ν > 0 such that WN
τ < 2pNτ − 1 for all τ ∈ (t− ν, t+ ν). This means that Nτ = ρN̄τ

for all τ ∈ (t− ν, t+ ν) and so Nτ must be continuous at all τ ∈ (t− ν, t+ ν). From Lemma 2.4,
WN
τ can be rewritten for all τ ∈ (t− ν, t+ ν) as

WN
τ =

t+νˆ

τ

ρe−(ρ+r)(s−τ)
(
pNτ e

−
´ s
τ (εG+λGNx)dx − (1− pNτ )e−

´ s
τ (εB+λBNx)dx

)
ds

+ e−(r+ρ)(t+ν−τ)
(
pNτ e

−
´ t+ν
τ (εG+λGNx)dx + (1− pNτ )e−

´ t+ν
τ (εB+λBNx)dx

)
WN
t+ν

+

t+νˆ

τ

ρe−(ρ+r)(s−τ)pNτ

(
1− e−

´ s
τ (εG+λGNx)dx

)
ds

+ e−(r+ρ)(t+ν−τ)pNτ

(
1− e−

´ t+ν
τ (εG+λGNx)dx

) ρ

ρ+ r
.

From this it is easy to see that WN
τ is continuously differentiable with respect to τ for all

τ ∈ (t− ν, t+ ν).
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The derivative can be computed using Ito’s Lemma for processes with jumps. Given the
perfect Poisson learning structure, the derivation is simple and we provide it here for complete-
ness.

As above, for any ∆ < t+ ν − τ we can rewrite WN
τ as

WN
τ =

τ+∆ˆ

τ

ρe−(ρ+r)(s−τ)
(
pNτ e

−
´ s
τ (εG+λGNx)dx − (1− pNτ )e−

´ s
τ (εB+λBNx)dx

)
ds

+ e−(r+ρ)∆
(
pNτ e

−
´ τ+∆
τ (εG+λGNx)dx + (1− pNτ )e−

´ τ+∆
τ (εB+λBNx)dx

)
WN
τ+∆

+

τ+∆ˆ

τ

ρe−(r+ρ)(s−τ)pNτ

(
1− e−

´ s
τ (εG+λGNx)dx

)
ds

+ e−(r+ρ)∆pNτ

(
1− e−

´ τ+∆
τ (εG+λGNx)dx

) ρ

ρ+ r
.

Since this is true for all ∆ ∈ (0, t+ ν − τ), the right hand side of this identity, which we denote
R∆, is continuously differentiable with respect to ∆ and satisfies d

d∆R∆ ≡ 0. Taking the limit
as ∆→ 0 and since ẆN

τ = lim∆→0
d
d∆W

N
τ+∆ by continuous differentiability, we then obtain that

ẆN
τ = (r+ ρ+ (εG +λGNτ )pτ + (εB +λBNτ )(1− pτ ))WN

τ − ρ(2pτ − 1)− pτ (εG +λGNτ )
ρ

ρ+ r
,

as claimed. �

We can prove a similar lemma for the case in which the equilibrium value to waiting is
strictly above the payoff to adopting today.

Lemma A.3. Suppose that N is an equilibrium and that WN
t > 2pNt − 1 for some t > 0.

Then there exists some ν > 0 such that WN
t is continuously differentiable in t on the interval

(t− ν, t+ ν) and
ẆN
t = (r + pNt εG + (1− pNt )εB)WN

t − pNt εG
ρ

ρ+ r
.

Proof. The proof of continuous differentiability of WN
t follows along the same lines as in the

proof of Lemma A.2. Lemma A.1 again implies that if WN
t > 2pNt − 1, then there exists ν > 0

such that WN
τ > 2pNτ − 1 for all τ ∈ (t− ν, t+ ν). By the definition of equilibrium, Nτ = 0 for

all τ ∈ (t− ν, t+ ν).
Hence, WN

τ satisfies

WN
τ = e−r(t+ν−τ)

(
pNτ e

−εG(t+ν−τ) + (1− pNτ )e−εB(t+ν−τ)
)
WN
t+ν

+ pNτ

t+νˆ

τ

εGe
−(εG+r)s ρ

ρ+ r
ds.
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From this it is again immediate that WN
τ is continuously differentiable in τ .

To compute the derivative, we can proceed as above, rewriting WN
τ as

WN
τ = e−r∆

(
pNτ e

−εG∆ + (1− pNτ )e−εB∆
)
WN
t+∆ + pτ

τ+∆ˆ

τ

εGe
−(εG+r)s ρ

ρ+ r
ds

for any ∆ < t+ ν − τ .
Differentiating both sides of the above equality with respect to ∆ and taking the limit as

∆→ 0, we obtain:

ẆN
τ = (r + pNτ εG + (1− pNτ )εB)WN

τ − pNτ εG
ρ

ρ+ r
,

as claimed. �

A.2 Special Properties of the Value to Waiting under PBN

Here we focus on learning via perfect bad news. By Equation 1, an upper bound on the no-news
posterior is given by:

µ(ε,Λ0, p0) :=

{
1 if ε > 0,

p0

p0+(1−p0)e−Λ0
if ε = 0.

We now show that absent breakdowns, this posterior is attained in the limit.

Lemma A.4. Let N be an equilibrium under PBN. Suppose that ε > 0 or p0 > 1/2. Then
pNt → µ(ε,Λ0, p0) and WN

t →
ρ
ρ+r (2µ(ε,Λ0, p0)− 1) as t→∞.

Proof. Consider first the case in which ε > 0. Then trivially pNt → 1 as t → ∞. So for any
ν > 0, there exists some t∗ such that whenever t > t∗, then 1− pNt < ν.

Then we can produce upper and lower bounds on WN
t :

ρ

ρ+ r
(1− ν)− ρ

ρ+ r
ν <

ρ

ρ+ r

(
2pNt − 1

)
≤WN

t ≤
ρ

ρ+ r
.

Since this is true for any ν > 0, it follows that limt→∞W
N
t = ρ

ρ+r as claimed.
Now suppose that ε = 0 and p0 > 1/2. Then note that WN

t ≤ 2pNt − 1 for all t: Indeed,
suppose that WN

t > 2pNt − 1 for some t. We can’t have that WN
s > 2pNs − 1 for all s ≥ t,

since otherwise WN
t = 0, contradicting WN

t > 2pNt − 1 > 0. But then we can find s > t such
that WN

s = 2pNs − 1 and WN
s′ > 2pNs′ − 1 for all s′ ∈ (t, s). This implies N ′s = 0 for all s′,

and hence WN
t = e−r(s−t)WN

s = e−r(s−t)(2pNs − 1) = e−r(s−t)(2pNt − 1), again contradicting
WN
t > 2pNt − 1 > 0.
Let N∗ := limt→∞

´ t
0 Nsds = supt

´ t
0 Nsds ≤ N̄0. Let p∗ := limt→∞ p

N
t = supt p

N
t . For any

ν > 0 we can find t∗ such that whenever t > t∗, then e−λ
´ t
t∗ Ns ds > 1−ν. Because 2pNt −1 ≥WN

t
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for all t, we can then rewrite the value to waiting at time t as:

WN
t =

∞̂

t

ρe−(r+ρ)τ
(
pNt − (1− pNt )e−λ

´ τ
t Nsds

)
dτ

≤ ρ

r + ρ

(
pNt − (1− pNt )(1− ν)

)
for all t > t∗. Moreover, by optimality WN

t ≥
ρ
ρ+r (2pNt − 1) for all t, so combining we have

ρ

ρ+ r
(2p∗ − 1) ≤ lim

t→∞
inf WN

t ≤ lim
t→∞

supWN
t ≤

ρ

r + ρ
(p∗ − (1− p∗)(1− ν)) .

Since this is true for all ν > 0, it follows that

lim
t→∞

WN
t =

ρ

r + ρ
(2p∗ − 1).

But the above is strictly less than 2p∗− 1, so for all t sufficiently large we must have 2pNt − 1 >
WN
t . Then for all t sufficiently large, we have Nt = ρN̄t. Thus, N∗ = N̄0 and therefore

p∗ = µ(ε,Λ0, p0). �

B Quasi-Single Crossing Property for Equilibrium Incentives

B.1 Proof of Theorem 4.1 under Perfect Good News

From now on we drop the superscript N from W and p.

Proof. The proof consists of two steps. In the first step, we show that whenever Wt = 2pt − 1,
then Wτ ≥ 2pτ − 1 for all τ ≥ t. In the second step, we show that whenever Wt > 2pt − 1, then
Wτ > 2pτ − 1 for all τ > t.

Step 1: Suppose Wt = 2pt− 1 at some time t and suppose for a contradiction that at some
time s′ > t, we have Ws′ < 2ps′ − 1. Let

s∗ = sup{s < s′ : Ws = 2ps − 1}.

By continuity, s∗ < s′,Ws∗ = 2ps∗−1, andWs < 2ps−1 for all s ∈ (s∗, s′). Then by Lemma A.2,
the right hand derivative of Ws − (2ps − 1) at s∗ exists and satisfies:

lim
s↓s∗

Ẇs − 2ṗs = r(2ps∗ − 1) + ps∗ (εG + λGNs∗)
r

ρ+ r
> 0.

This implies that for some s ∈ (s∗, s′) sufficiently close to s∗ we have Ws > 2ps − 1, which is a
contradiction.

Step 2: Assume Wt > 2pt − 1 at some t and suppose for a contradiction that there exists
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s′ > t such that Ws′ = 2ps′ − 1. Let

s∗ = inf{s > t : Ws = 2ps − 1}.

By continuity, s∗ > t, Ws∗ = 2ps∗ − 1, and Ws > 2ps− 1 for all s ∈ (t, s∗). Then by Lemma A.3
the left-hand derivative of Ws − (2ps − 1) at s∗ exists and is given by:

lim
s↑s∗

Ẇs − 2ṗs = r(2ps∗ − 1) + ps∗
r

ρ+ r
εG > 0.

This implies that for some s ∈ (t, s∗) sufficiently close to s∗, we must have Ws < 2ps− 1, which
is a contradiction. �

B.2 Proof of Theorem 4.1 under Perfect Bad News

Proof. The proof consists of two steps. In the first step, we show that whenever Wt = 2pt − 1,
then Wτ ≤ 2pτ − 1 for all τ ≥ t. In the second step, we show that whenever Wt < 2pt − 1, then
Wτ < 2pτ − 1 for all τ > t.

Step 1: Suppose Wt = 2pt− 1 at some time t and suppose for a contradiction that at some
time s′ > t we have Ws′ > 2ps′−1. Then because Wt → ρ

ρ+r (2µ(ε,Λ, p0)− 1) < 2µ(ε,Λ, p0)−1
by Lemma A.4, there exists s < s such that Ws = 2ps − 1, Ws = 2ps − 1, and Ws > 2ps − 1 for
all s ∈ (s, s). By Lemma A.3, we have the following two limits:

lim
s↓s

Ẇs = (r + (1− ps)ε)(2ps − 1).

lim
s↑s

Ẇs = (r + (1− ps)ε)(2ps − 1).

Also, as usual

lim
s↓s

d

ds
(2ps − 1) = 2ps(1− ps)ε

lim
s↑s

d

ds
(2ps − 1) = 2ps(1− ps)ε.

In order that Ws > 2ps − 1 for all s ∈ (s, s), we need:

(r + (1− ps)ε)(2ps − 1) ≥ 2ps(1− ps)ε
(r + (1− ps)ε)(2ps − 1) ≤ 2ps(1− ps)ε.

Rearranging we get:

r(2ps − 1) ≥ (1− ps)ε
r(2ps − 1) ≤ (1− ps)ε.

But this is impossible given that ps > ps. This completes the proof of Step 1.
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Step 2: Suppose that Wt < 2pt − 1 and suppose for a contradiction that there exists some
s′ > t such that Ws′ ≥ 2ps′ − 1. Define

s = inf{s′ > t : Ws′ ≥ 2ps′ − 1}.

By continuity, Wτ < 2pτ − 1 for all τ ∈ [t, s) and Ws = 2ps − 1.
Furthermore, by Lemma A.4, there exists some s ≥ s such that 2ps−1 = Ws and 2ps−1 > Ws

for all s > s. By Lemma A.2, we have the following two limits:

Hs ≡ lim
s↑s

(
Ẇs −

d

ds
(2ps − 1)

)
= r(2ps − 1)−

(
ε+ λρN̄s

)
(1− ps)

Hs ≡ lim
s↓s

(
Ẇs −

d

ds
(2ps − 1)

)
= r(2ps − 1)−

(
ε+ λρN̄s

)
(1− ps).

As usual, because Ws < 2ps − 1 for all s ∈ (t, s) and for all s > s, we must have Hs ≥ 0 and
Hs ≤ 0. But since ps ≥ ps, this is only possible if s = s =: s∗ and Hs∗ = Hs = Hs = 0.

Thus,
r(2ps∗ − 1) =

(
ε+ λρN̄s∗

)
(1− ps∗).

Now consider any s ∈ [t, s∗). Because ps ≤ ps∗ we must have

r(2ps − 1) ≤
(
ε+ λρN̄s

)
(1− ps).

Combining this with the fact that Ws < 2ps − 1 and Ns = ρN̄s yields

rWs <
(
ε+ λρN̄s

)
(1− ps) < (2p−Ws)

(
ε+ λρN̄s

)
(1− ps) + ρ(2ps − 1−Ws).

Rearranging we obtain:

0 < −rWs + ρ(2ps − 1−Ws) + (2p−Ws)
(
ε+ λρN̄s

)
(1− ps).

But by Lemma A.2, the right-hand side is precisely the derivative d
ds(2ps−1)−Ẇs. This implies

that for all s ∈ [t, s∗), 2ps − 1−Ws is strictly increasing, contradicting continuity and the fact
that 2ps∗ − 1 = Ws∗ . This concludes the proof of Step 2. �

C Equilibrium Uniqueness and Characterization

C.1 Equilibrium Characterization under Perfect Bad News

In this section, we do not impose Conditions 5.2 or 5.3. Recall that p∗ := min{p, p]}, where

p :=
ε+ r

ε+ 2r
,

p] :=
ρ+ r

ρ+ 2r
.
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Recall the definition of G : [0, 1]× R+ → R:

G(p,Λ) :=

∞̂

0

ρe−(r+ρ)τ
(
p− (1− p)e−(ετ+Λ(1−e−ρτ))

)
dτ.

We extend the function to the domain [0, 1]× (R+ ∪ {+∞}) by defining:

G(p,+∞) :=
ρ

ρ+ r
p.

Finally, recall the definition of Λ∗ : (0, 1)→ R+ ∪ {+∞}:
Λ∗(p) = 0 if p ≤ p,
2p− 1 = G(p,Λ∗(p)) if p ∈ (p, p])

Λ∗(p) = +∞ p ≥ p].

The proof of Theorem 5.1 proceeds in three steps. Assuming that N is an equilibrium, we
show in Lemma C.1 that if t∗1 < t∗2, then the evolution of adoption behavior on (t∗1, t

∗
2) is uniquely

pinned down by an ODE. We next prove Lemma 5.4, which provides a characterization of t∗1 and
t∗2 in terms of (pt,Λt). Given these two steps uniqueness is clear. Finally, we check feasibility in
Lemma C.4, proving equilibrium existence.

C.1.1 Characterization of Adoption between t∗1 and t∗2

Lemma C.1. Suppose N is an equilibrium with no-news posterior pt. Suppose that t∗1 < t∗2.
Then at (almost) all times t ∈ (t∗1, t

∗
2),

Nt =
r(2pt − 1)

λ(1− pt)
− ε

λ
.

Proof. Note that because 2pt − 1 = WN
t at all t ∈ (t∗1, t

∗
2) and pt is weakly increasing, WN

t and
pt are differentiable almost everywhere (with respect to Lebesgue measure).

Using again the fact that 2pt − 1 = WN
t at all t ∈ (t∗1, t

∗
2) we obtain for all t ∈ (t∗1, t

∗
2):

WN
t = e−r(t

∗
2−t)

(
pt + (1− pt)e−

´ t∗2
t (ε+λNs)ds

)
(2pt∗2 − 1)

= e−r(t
∗
2−t)

(
pt − (1− pt)e−

´ t∗2
t (ε+λNs)ds

)
.

Then for all t at which WN
t and pt are differentiable, we obtain:

ẆN
t = (r + (ε+ λNt)(1− pt))WN

t

2ṗt = 2pt(1− pt)(ε+ λNt).
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Furthermore, because WN
t = 2pt − 1 for all t ∈ (t∗1, t

∗
2), we must have for almost all t ∈ (t∗1, t

∗
2):

ẆN
t = 2ṗt.

This means that for almost all t ∈ (t∗1, t
∗
2):

Nt =
r(2pt − 1)

λ(1− pt)
− ε

λ
.

�

A direct corollary of the above lemma is the following:

Corollary C.2. The posterior at all t ∈ (t∗1, t
∗
2) evolves according to the following ordinary

differential equation:
ṗt = rpt(2pt − 1).

Given some initial condition p = pt∗1 , this ordinary differential equation admits a unique solution,
given by:

pt =
pt∗1

2pt∗1 − e
r(t−t∗1)(2pt∗1 − 1)

.

C.1.2 Proof of Lemma 5.4

We now prove a more general version of Lemma 5.4 in which we replace p in Lemma 5.4 with
p∗.

Lemma C.3. Let N be an equilibrium with corresponding no-news posterior pt≥0 and threshold
times t∗1 and t∗2, and let Λt≥0 := λN̄t≥0 describe the evolution of the economy’s potential for
social learning. Then

(i). t∗2 = inf{t : Λt < Λ∗(pt)}; and

(ii). t∗1 = min{t∗2, sup{t : pt < p∗}}.48

Proof. We first prove both bullet points under the assumption that either ε > 0 or p0 >
1
2 . Note

that in this case Lemma A.4 implies that t∗2 < +∞ and we must also have that pt is strictly
increasing for all t > 0.

For the first bullet point, note that by definition of t∗2 and by Theorem 4.1, we have 2pt−1 >
Wt = G(pt,Λt) for all t > t∗2. This implies that Λt < Λ∗(pt) for all t > t∗2. Moreover, if 0 < t∗2,
then by continuity we must have 2pt∗2 − 1 = Wt∗2

= G(pt∗2 ,Λt∗2) and so Λt∗2 = Λ∗(pt∗2). In this
case, because Λs is decreasing in s and ps is strictly increasing in s and Λ∗(p) is increasing in p,
we must have Λs ≥ Λ∗(ps) for all s < t∗2. This establishes the first bullet point.

For the second bullet point, it suffices to prove the following three claims:

(a) If t∗2 > 0, then pt∗2 < p].

48We impose the convention that if {t ≥ 0 : pt < p∗ = 1
2
} = ∅, then sup{t ≥ 0 : pt < p∗ = 1

2
} := 0.
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(b) If t∗1 > 0, then pt∗1 ≤ p.

(c) If t∗1 < t∗2, then pt∗1 ≥ p.

Indeed, given (a) and (b), we have that if 0 < t∗1 = t∗2, then pt∗1 ≤ p∗. Given (a)-(c), we have
that if 0 < t∗1 < t∗2, then pt∗1 = p = p∗. If 0 = t∗1 < t∗2, then (c) implies that p0 ≥ p = p∗. In all
three cases (ii) readily follows. Finally, if 0 = t∗1 = t∗2, then there is nothing to prove.

For claim (a), recall from the above that if t∗2 > 0, then Λt∗2 = Λ∗(pt∗2), whence pt∗2 < p]

because Λ∗(p]) = +∞.
For claim (b), note that if t∗1 > 0, then for all t < t∗1, we have Wt > 2pt − 1. Then by

Lemma A.3 and because Wt∗1
= 2pt∗1 − 1, we must have

0 ≥ lim
τ↑t∗1

Ẇτ − 2ṗτ = (r + (1− pt∗1)ε)(2pt∗1 − 1)− 2pt∗1(1− pt∗1)ε

= r(2pt∗1 − 1)− ε(1− pt∗1),

which implies that
pt∗1 ≤

ε+ r

ε+ 2r
=: p.

Finally, for claim (c), note that if t∗1 < t∗2, then Lemma C.1 implies that for all τ ∈ (t∗1, t
∗
2),

0 ≤ Nτ =
r(2pτ − 1)

λ(1− pτ )
− ε

λ
.

This implies that for all τ ∈ (t∗1, t
∗
2),

pτ ≥
ε+ r

ε+ 2r
=: p,

and hence by continuity pt∗1 ≥ p as claimed. This proves the lemma when either ε > 0 or
p0 > 1

2 . Finally, if ε = 0 and p0 ≤ 1
2 , then it is easy to see that pt ≡ p0 for all t. Thus,

t∗2 = +∞ = inf{t : Λt < Λ∗(p0) = 0}. Also, if p0 <
1
2 , then t

∗
1 = +∞ = sup{t : pt < p∗ = 1

2};
and if p0 = 1

2 , then t
∗
1 = 0 =: sup{t ≥ 0 : pt < p∗ = 1

2}. �

With these lemmas, it is immediate that if an equilibrium exists, then it must take the
form of the adoption flow given by Equation 6 inTheorem 5.1. Moreover, it is easy to see that
given initial parameters, Equation 6 uniquely pins down the times t∗1 and t∗2 as well as the joint
evolution of pt and Nt at all times (we elaborated on this in the main text), and that whenever
t∗1 < t∗2 < +∞, then 2pt − 1 = Wt for all t ∈ [t∗1, t

∗
2]. Provided feasibility is satisfied, it is then

easy to check that this adoption flow constitutes an equilibrium.

C.1.3 Feasibility

It remains to check feasibility of the adoption flow implied by Equation 6 inTheorem 5.1. Note
that feasibility is non-trivial only at times t ∈ (t∗1, t

∗
2).
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Lemma C.4. Suppose Nt≥0 is an adoption flow satisfying Equation 6 in Theorem 5.1 such
that t∗1 < t∗2. Then for all t ∈ (t∗1, t

∗
2),

Nt ≤ ρΛt.

Proof. It suffices to show that
lim
t↑t∗2

Nt ≤ ρN̄t∗2
.

The lemma then follows immediately since ρN̄t − Nt is strictly decreasing in t at all times in
(t∗1, t

∗
2).49

To see this, suppose by way of contradiction that ρN̄t∗2
< limt↑t∗2 Nt. By continuity this

means that there exists some ν > 0 such that ρN̄t < Nt for all t ∈ (t∗2 − ν, t∗2). Then note that
from the indifference condition at t∗2, we have that 2pt∗2−1 = G(pt∗2 , λN̄t∗2

). Furthermore because
Λ∗(pt) is increasing in t, 2pt − 1 < G(pt, λN̄t) for all t < t∗2.

Since at all times t ∈ (t∗2 − ν, t∗2) we have Nt > ρN̄t, this implies that

WN
t > G(pt, λN̄t) > 2pt − 1.

But this is a contradiction since we already checked that the described adoption flow satisfies
the condition that WN

t = 2pt − 1 for all t ∈ (t∗1, t
∗
2). �

C.2 Equilibrium Characterization under Perfect Good News

Theorem 6.1 follows readily from Lemma 6.2 and Lemma 6.3. Lemma 6.3 was proved in the
text. It remains to prove Lemma 6.2.

Proof of Lemma 6.2: Suppose for a contradiction that t∗1 < t∗2. From the definition of these
cutoffs, we must have 2pt−1 = Wt for all t ∈ [t∗1, t

∗
2]. Then for all t ∈ (t∗1, t

∗
2) and ∆ ∈ (0, t∗2− t)

we have:

Wt =pt

t+∆ˆ

t

(ε+ λNτ ) e−
´ τ
t (ε+λNs)dse−r(τ−t)

ρ

ρ+ r
dτ+

(
(1− pt) + pte

−
´ t+∆
t (ε+λNs)ds

)
e−r∆ (2pt+∆ − 1) ,

where the first term represents a breakthrough arriving at some τ ∈ (t, t + ∆) in which case
consumers adopt from then on, yielding a payoff of e−r(τ−t) ρ

ρ+r ; and the second term represents
no breakthrough arriving prior to t + ∆ in which case, due to indifference, consumers’ payoff
can be written as e−r∆ (2pt+∆ − 1).

Note that we must have pt ≥ 1
2 on (t∗1, t

∗
2), since Wt is bounded below by 0. Given that we

assume that either ε = 0 or p0 6= 1
2 , this means that either ε > 0 or pt > 1

2 for t sufficiently close

49This is only true if either ε > 0 or p0 >
1
2
. If ε = 0 and p0 = 1

2
, then Nt = 0 for all t and t∗1 = 0 < t∗2 = +∞.

But in this case feasibility is immediate.
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to t∗1. Then it follows that for sufficiently small ∆

Wt < pt

(
1− e−

´ t+∆
t (ε+λNs)ds

) ρ

ρ+ r
+
(

(1− pt) + pte
−
´ t+∆
t (ε+λNs)ds

)
(2pt+∆ − 1)

≤ pt
(

1− e−
´ t+∆
t (ε+λNs)ds

)
· 1 +

(
(1− pt) + pte

−
´ t+∆
t (ε+λNs)ds

)
(2pt+∆ − 1)

= 2pt − 1,

where the final equality comes from Bayesian updating of beliefs. This contradictsWt = 2pt−1.
Thus, t∗1 = t∗2. �

D Violation of Condition 5.2 under Perfect Bad News

pt

Λt

1

Λ∗(p)

(2) (1)

p p]

Figure 10: Partition of (pt,Λt) when ε ≥ ρ

In this section, we discuss the case in which ρ ≥ ε. We saw in Theorem 5.1 that the
characterization theorem holds even when Condition 5.2 is violated.

In this case because Λ∗(p) = +∞ for all p > p∗, we have:

Nt =

{
0 if Λt > Λ∗(pt),

ρN̄t if Λt ≤ Λ∗(pt).

Note that now partial adoption never occurs and the unique equilibrium reduces to all-or-nothing
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adoption.
As a result the saturation effect discussed in Section 5 is no longer present and welfare always

strictly increases in response to an increase in opportunities for social learning:

Proposition D.1. Fix r > 0 and p0 ∈ (0, 1) and suppose that ε ≥ ρ > 0. Then W0 is strictly
increasing in Λ0.

E Inefficiency of Equilibria

E.1 Inefficiency under PBN

Proof of Proposition 5.8: From Proposition 3.3, recall that

ps =
K(Λ0)

K(Λ0) + ρ
r+ρ

r
r+ε

,

where

K(Λ0) =

∞̂

0

ρe−(r+ρ)τe−ετ−Λ0(1−e−ρτ )dτ.

Note also that
K(Λ0) <

ρ

r + ε+ ρ

which then implies that

ps <
(r + ρ)(r + ε)

2(ε+ r)(r + ρ)− ερ
= p.

Finally observe from the proof of Lemma 5.4 that pt∗1 ≥ p.
If Λ0 > Λ∗(p), either t∗1 > 0 or t∗2 > 0. In the first case, adoption begins too late since

pt∗1 ≥ p > ps and therefore equilibrium is inefficient. If on the other hand, t∗1 = 0 < t∗2, then
again because ps < pt∗1 , adoption is too slow initially since consumers only partially adopt
between t∗1 and t∗2. Thus again equilibrium is inefficient.

On the other hand, if Λ0 ≤ Λ∗(p0), then equilibrium is efficient since both the cooperative
benchmark and equilibrium prescribe that absent breakdowns all consumers adopt whenever
given an opportunity. �

F Comparative Statics under PBN

F.1 Saturation Effect: Proof of Proposition 5.9

Throughout Section F we impose Conditions 5.2 (so that p∗ = p) and 5.3 as in the text. We
first prove Lemma 5.6.

Proof of Lemma 5.6: Let Λ0 := max{Λ∗(p0),Λ∗(p)}. We show that t∗1(Λ0) < t∗2(Λ0) if and only
if Λ0 > Λ0.
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Suppose first that Λ0 > Λ0. Then by the proof of the first part of Lemma 5.4, we must have
t∗2 > 0 and Λt∗2 = Λ∗(pt∗2). If t∗1 = t∗2 =: t∗, then by claims (a) and (b) in the proof of Lemma 5.4,
we must have pt∗ ≤ p. But combining these statements, we get

Λt∗ = Λ0 > Λ∗(p) ≥ Λ∗(pt∗) = Λt∗ ,

which is a contradiction.
Suppose conversely that t∗1 < t∗2. Then by the proof of Lemma 5.4, we have that Λ∗(pt∗1) <

Λt∗1 = Λ0. That proof also implies that if 0 < t∗1 < t∗2, then pt∗1 = p ≥ p0; and if 0 = t∗1 < t∗2,
then pt∗1 = p0 ≥ p. Thus, either way Λ0 > Λ0, as claimed. �

Proof of Proposition 5.9: For the first bullet point, consider any Λ1
0 < Λ2

0 ≤ Λ0 with correspond-
ing threshold times ti1 and ti2, value to waiting W i

t , and no-news posteriors pit for i = 1, 2. By
Lemma 5.6, we must have ti1 = ti2 =: ti. Let t̂ := min{t1, t2}. Then note that for all t ≤ t̂,
p1
t̂

= p2
t̂
and Λi

t̂
= Λi0. By Lemma 5.4 this implies that either 0 = t1 = t2 or t1 < t2. If

0 = t1 = t2, then for all t > 0, we have 2pit − 1 > W i
t and

pit =
p0

p0 + (1− p0)e−(εt+(1−e−ρt)Λi0)
.

Thus, p1
t < p2

t for all t > 0. Then by Lemma 2.4, W 1
0 < W 2

0 .
If t1 < t2, then by definition of the cutoff times

W 2
t1 > 2p2

t1 − 1 = 2p1
t1 − 1 ≥W 1

t1 .

Since there is no adoption until t1, we have

W i
0 = e−rt

1 pt1

p0
W i
t1 ,

which again implies that W 1
0 < W 2

0 . This proves the first bullet point.
To prove the second bullet point, suppose that Λ2

0 > Λ1
0 > Λ0. By Lemma 5.6, we then have

ti1 < ti2 for i = 1, 2. Moreover, by the proof of Lemma 5.4, we have max{p0, p} = p1
t11

= p2
t21
.

Because N i
t = N i

t = 0 for all t < ti1 for both i = 1, 2, this implies that t11 = t21 = t1. Then

W 2
t1 = 2p2

t1 − 1 = 2p1
t1 − 1 = W 1

t1 .

But once again,
W i

0 = e−rt
1 pt1

p0
W i
t1 ,

for i = 1, 2, whence W 1
0 = W 2

0 . �
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F.2 Learning Dynamics

F.2.1 Proof of Lemma 5.10

Proof of Lemma 5.10. Suppose that Λ̂0 > Λ0 > Λ∗(p0). Recall that we are assuming p] > p0 >
p so that t∗1(Λ0) = t∗1(Λ̂) = 0 and Λ0 = Λ∗(p0). Then by Lemma 5.6, we have t∗2(Λ̂0), t∗2(Λ0) > 0.
Let t∗2 = min{t∗2(Λ̂0), t∗2(Λ0)}. Then because p0 = pΛ0

0 = pΛ̂0
0 , the ODE in Corollary C.2 implies

that at all times t < t∗2, we have p
Λ0
t = pΛ̂0

t = pt. By Lemma C.1, this implies that for all t < t∗2,

λNt = λ̂N̂t. (11)

To prove the first bullet point, note that Equation 11 implies that

Λt∗2 = Λ0 −
ˆ t∗2

0
λNt dt < Λ̂0 −

ˆ t∗2

0
λ̂N̂t dt = Λ̂t∗2 .

By Lemma 5.4 and because pΛ0
t∗2

= pΛ̂0
t∗2
, this implies that t∗2 = t∗2(Λ0) < t∗2(Λ̂0).

From this and Equation 11, it is then immediate that λNt = λ̂N̂t for all t < t∗2 = t∗2(Λ0),
proving the second bullet point. �

F.2.2 Proof of Proposition 5.11

Proof. Clearly pΛ0
t is strictly increasing for all Λ0 ∈ (0,Λ∗(p0)) since in this case t∗2(Λ0) = 0 so

that
pΛ0
t =

p0

p0 + (1− p0)e−(εt+(1−e−ρt)Λ0)
.

Suppose next that Λ̂0 > Λ0 ≥ Λ∗(p0). By Lemma 5.10, t∗ := t∗2(Λ0) < t∗2(Λ̂0), λNt = λ̂N̂t,
and pΛ0

t = pΛ̂0
t for all t ≤ t∗, which proves the first bullet point.

To prove the second bullet point, we claim that there exists some ν > 0 such that at all
times t ∈ (t∗, t∗ + ν), we have pΛ0

t > pΛ̂0
t . To see this, we prove the following inequality for the

equilibrium corresponding to Λ0:
lim
t↑t∗

λNt < lim
t↓t∗

λNt. (12)

In other words, there is necessarily a discontinuity in the equilibrium flow of adoption at exactly
t∗. Indeed, because Nt = ρN̄t for all t ≥ t∗ and by continuity of N̄t, feasibility implies that
limt↑t∗ λNt ≤ limt↓t∗ λNt. Suppose for a contradiction that limt↑t∗ λNt = limt↓t∗ λNt := λNt∗ .
Then λNt∗ = λ̂N̂t∗ . Moreover, for all t > t∗, we have λNt = ρΛt∗e

−ρ(t−t∗), which is strictly
decreasing in t. On the other hand, λ̂N̂t satisfies

λ̂N̂t =

{
r(2pt−1)
(1−pt) − ε if t < t∗2(Λ̂0)

ρΛt∗2(Λ̂0)e
−ρ(t−t∗2(Λ̂0)) if t ≥ t∗2(Λ̂0).

Thus, for t ∈ [t∗, t∗2(Λ̂0)), λ̂N̂t is strictly increasing in t. This implies that λ̂N̂t > λNt for all
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t ∈ [t∗, t∗2(Λ̂0)). But then by Equation 1,

pΛ̂0

t∗2(Λ̂0)
> pΛ0

t∗2(Λ̂0)
,

which by Lemma 5.4 implies

Λ̂t∗2(Λ̂0) = Λ∗(pΛ̂0

t∗2(Λ̂0)
) > Λ∗(pΛ0

t∗2(Λ̂0)
) > Λt∗2(Λ̂0).

This yields that for all t ≥ t∗2(Λ̂0))

λ̂N̂t = ρe−ρ(t−t∗2(Λ̂0)Λ̂t∗2(Λ̂0) > ρe−ρ(t−t∗2(Λ̂0)Λt∗2(Λ̂0) = λNt.

Thus, λ̂N̂t > λNt for all t > t∗ and hence pΛ̂0
t > pΛ0

t for all t > t∗. By Lemma 2.4, this implies

W Λ̂0
t∗ > WΛ0

t∗ .

But this is a contradiction, because we have that

W Λ̂0
t∗ = 2pΛ̂0

t∗ − 1 = 2pΛ0 − 1 = WΛ0
t∗ .

This proves that limt↑t∗ λNt < limt↓t∗ λNt. But then,

lim
t↓t∗

λ̂N̂t = lim
t↑t∗

λ̂N̂t = lim
t↑t∗

λNt < lim
t↓t∗

λNt.

Therefore there must exist some ν > 0 such that λ̂N̂t < λNt for all t ∈ [t∗, t∗ + ν). Together
with the fact that pΛ0

t∗ = pΛ̂0
t∗ , this implies that pΛ0

t > pΛ̂0
t for all t ∈ (t∗, t∗ + ν), proving the

second bullet point of the proposition.
Finally, for the third bullet point, observe first that there must exist some t > t∗ such that

pΛ0
t = pΛ̂0

t . If not, then by continuity of beliefs pΛ0
t > pΛ̂0

t for all t > t∗, and we once again get
that W Λ̂0

t∗ > WΛ0
t∗ , which is false. Then t := sup{s ∈ (t∗, t) : pΛ0

s > pΛ̂0
s } exists, with t > t∗ by

the second bullet point. Further, by continuity, pΛ0

t
= pΛ̂0

t
, which implies

´ t
0 λNsds =

´ t
0 λ̂N̂sds.

This yields Λt < Λ̂t. But note that this implies that λ̂N̂t > λNt for all t > t: Indeed, if
t ≥ t∗2(Λ̂0), this is obvious. On the other hand, if t ∈ (t∗, t∗2(Λ̂0)), then we must have λNs < λ̂N̂s

for some s < t, which implies that λNs′ < λ̂N̂s′ for all s′ ∈ (s, t∗2(Λ̂0)), because N is strictly
decreasing and N̂ is strictly increasing on this domain. This implies that

pΛ̂0

t∗2(Λ̂0)
> pΛ0

t∗2(Λ̂0)
,

which as above implies that

Λ̂t∗2(Λ̂0) = Λ∗(pΛ̂0

t∗2(Λ̂0)
) > Λ∗(pΛ0

t∗2(Λ̂0)
) > Λt∗2(Λ̂0).
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Then it is again obvious thatλ̂N̂t > λNt for all t > t. Thus, in either case we get that pΛ̂0
t > pΛ0

t

for all t > t, as claimed by the third bullet point. �

F.3 Adoption Behavior

Proof of Proposition 5.12: First note that because p0 ≥ p, t∗1(Λ0) = t∗1(Λ̂0) = 0.
Then at all Λ0 < Λ∗(p0), the adoption flow absent breakdowns satisfies Nt = ρN̄t for all t.

Thus, conditional on a good product we get At(Λ0, G) = At(Λ̂0, G) = 1− e−ρt for all t and all
pairs Λ0, Λ̂0 ≤ Λ∗(p0).

Now suppose that Λ̂0 > Λ0 > Λ∗(p0). Note that Nt, N̂t > 0 for all t > 0 (recall Condi-
tion 5.3). Let t∗ = t∗2(Λ0). By Lemma 5.10, λNt = λ̂N̂t for all t < t∗. Then for all t < t∗

Nt

N̄0
=
λNt

Λ0
=
λ̂N̂t

Λ0
>
λ̂N̂t

Λ̂0

=
N̂t

ˆ̄N0

. Therefore for all t < t∗, we have At(Λ0, G) > At(Λ̂0, G).
Finally note that for all t ≥ t∗, Nt = ρN̄t and so:

At(Λ0, G) = At∗(Λ0, G) +
(
1− e−ρ(t−t∗)) (1−At∗(Λ0, G))

At(Λ̂0, G) ≤ At∗(Λ̂0, G) +
(
1− e−ρ(t−t∗)) (1−At∗(Λ̂0, G)

)
where the second inequality follows from feasibility. But because At∗(Λ0, G) > At∗(Λ̂0, G),
At(Λ0, G) > At(Λ̂0, G) for all t > 0. �

Proof of Proposition 5.13. We first prove the proposition when we increase the information
structure from λ to λ̂ > λ holding fixed N̄0. Given this, proving the theorem for arbitrary
changes from Λ0 to Λ̂0 is straightforward.

Let N and N̂ be the equilibrium under λ and λ̂, respectively. Note that when p ≤ p0,
Nt > 0 for all t > 0. Given an arbitrary strictly positive adoption flow M and t > 0, consider
the following map:

λ 7→
tˆ

0

Mτe
−
´ τ
0 (ε+λMs)dsdτ.

Note that for any t > 0, the above is strictly decreasing in λ. This implies that for all t > 0,

tˆ

0

Nτe
−
´ τ
0 (ε+λNs)dsdτ >

tˆ

0

Nτe
−
´ τ
0 (ε+λ̂Ns)dsdτ. (13)

We now show that
tˆ

0

Nτe
−
´ τ
0 (ε+λ̂Ns)dsdτ ≥

tˆ

0

N̂τe
−
´ τ
0 (ε+λ̂N̂s)dsdτ
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which together with Inequality (13) implies the desired conclusion that At(λ̂, N̄0, B) <
At(λ, N̄0, B) for all t > 0.

To prove this, suppose that there exists some t > 0 such that

tˆ

0

Nτe
−
´ τ
0 (ε+λ̂Ns)dsdτ <

tˆ

0

N̂τe
−
´ τ
0 (ε+λ̂N̂s)dsdτ. (14)

Note that by Proposition 5.12,
´ τ

0 Nsds ≥
´ τ

0 N̂sds for all τ ≥ 0 and so

tˆ

0

εe−
´ τ
0 (ε+λ̂Ns)dsdτ ≤

tˆ

0

εe−
´ τ
0 (ε+λ̂N̂s)dsdτ (15)

for all t ≥ 0. Inequalities (14) and (15) together imply:

tˆ

0

(
ε+ λ̂Nτ

)
e−
´ τ
0 (ε+λ̂Ns)dsdτ <

tˆ

0

(
ε+ λ̂N̂τ

)
e−
´ τ
0 (ε+λ̂N̂s)dsdτ.

But this is equivalent to (
1− e−

´ t
0(ε+λ̂Ns)ds

)
<
(

1− e−
´ t
0(ε+λ̂N̂s)ds

)
.

This contradicts
´ t

0 Nsds ≥
´ t

0 N̂sds as found in Proposition 5.12.
Having shown the above, consider any change from Λ0 = λN̄0 to Λ̂0 = λ̂ ˆ̄N0 > Λ0. Then

there exists λ∗ > λ such that Λ̂ = λ∗N̄0. Let N∗ be the equilibrium associated with the pair
(λ∗, N̄0). By Lemma 5.5, unique equilibrium for the pair (λ̂, ˆ̄N0) satisfies N̂t = (λ∗/λ̂)N∗t . But
then the above argument implies:

At(Λ, B) = E

 tˆ

0

Ns

N̄0
ds

 > E

 tˆ

0

N∗s
N̄0

ds

 = E

 tˆ

0

λ∗

λ̂ ˆ̄N0

λ̂ ˆ̄N0

λ∗N̄0
N∗s ds


= E

 tˆ

0

N̂s

ˆ̄N0

ds

 = At(Λ̂, B).

�
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G Comparative Statics under PGN

G.1 Adoption Behavior

The only statement that was not proved in the text is: At(Λ̂0, G) < At(Λ0, G) for all t > t∗(Λ̂0),
as claimed in the first bullet of Proposition 6.7.

Proof. When ε = 0, the statement is trivial, so assume that ε > 0. The claim is also obvious for
all t ≤ t∗(Λ0) since adoption occurs at the maximal rate under Λ0 whereas under Λ̂0, adoption
ceases at times t ∈ (t∗(Λ̂0), t∗(Λ0)) absent breakthroughs.

So assume that t > t∗(Λ0). Recall that the cutoff posterior p∗ at which adoption ceases
is unchanged upon a change from Λ0 to Λ̂0. Then expected adoption up to time t for any
Γ ∈ [Λ0, Λ̂0] can be expressed in the following manner:

At(Γ, G) = π∗
(
1− e−ρt

)
+ (1− π∗)

(1− e−ρt∗(Γ)) + e−ρt
∗(Γ)

tˆ

t∗(Γ)

εe−ε(τ−t
∗(Γ))

(
1− e−ρ(t−τ)

)
where

(1− π∗) =
1− p0

1− p∗
.

Now for a fixed t, consider the function:

t∗ 7→ π∗
(
1− e−ρt

)
+ (1− π∗)

(1− e−ρt∗) + e−ρt
∗

tˆ

t∗

εe−ε(τ−t
∗)
(

1− e−ρ(t−τ)
) .

Then a straightforward computation yields that the derivative of the above map with respect to
any t∗ < t is ρe−(ε−ρ)t∗e−εt > 0. Thus, the map is strictly increasing in t∗ for all t∗ < t. Because
t∗(Γ) is strictly decreasing in Γ, it follows that for all t > t∗(Γ), At(Γ, G) is strictly decreasing
for all Γ ∈ [Λ0, Λ̂0]. This proves the claim. �

H Heterogeneous Discount Rate Example

First we show the following basic mathematical fact.

Lemma H.1. Let t > t∗ and suppose that f and g are real-valued functions such that f(τ) = g(τ)
for all τ ≤ t∗, f(τ) < g(τ) for τ ∈ (t∗, t), and f(τ) > g(τ) for all τ > t. Suppose that

∞̂

0

e−rτf(τ)dτ =

∞̂

0

e−rτg(τ)dτ.
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Then for all r̂ > r,
∞̂

0

e−r̂τf(τ)dτ <

∞̂

0

e−r̂τg(τ)dτ.

Proof. We have

0 =

∞̂

0

e−rτ (g(τ)− f(τ))dτ =

tˆ

0

e−r̂τe(r̂−r)τ (g(τ)− f(τ)) dτ +

∞̂

t

e−r̂τe(r̂−r)τ (g(τ)− f(τ)) dτ

< e(r̂−r)t

 tˆ

0

e−r̂τ (g(τ)− f(τ))dτ +

∞̂

t

e−r̂τ (g(τ)− f(τ)) dτ


< e(r̂−r)t

∞̂

0

e−r̂τ (g(τ)− f(τ)) dτ.

This implies that
´∞

0 e−r̂τf(τ)dτ <
´∞

0 e−r̂τg(τ)dτ , as claimed. �

As in the main text, assume that λ̂Mp
0 > λMp

0 > Λ∗rp(p0) and that p0 > 1/2 and ε = 0.
Then modifying the arguments from the proof of Theorem 5.1, it is easy to show that when M i

0

is sufficiently small, the unique equilibrium under both information processes λ, λ̂ will be such
that the impatient type adopts immediately upon opportunity at all times absent breakdowns
and the patient type only partially adopts until some time t∗ > 0 after which he switches to
immediate adoption:50

γN i
t = ρM i

t ,

γNp
t =

{
rp(2pt−1)

1−pt − γρM i
t if t < t∗(γ)

γρMp
t if t ≥ t∗(γ)

for γ ∈ {λ, λ̂}.
Then using arguments analogous to those in Lemma 5.10, we can show that t∗(λ) < t∗(λ̂).

Furthermore an analogue of Proposition 5.11 shows that there must exist some t > t∗(λ) such
that

pλt


= pλ̂t if t ≤ t∗(λ)

> pλ̂t if t ∈ (t∗(λ), t)

< pλ̂t if t > t.

50The full proof of the modification is available upon request. Here we use a standard argument that shows
that whenever the impatient type weakly prefers to wait, then the patient type must strictly prefer to wait.
Similarly, if the patient type weakly prefers to adopt then the impatient type must strictly prefer to adopt.
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Then using Lemma H.1, the proof follows along the lines illustrated in the main text. This
proves Theorem 7.1.

I Cooperative Benchmark

I.1 Perfect Bad News

To prove the all-or-nothing property of the optimal policy, we write the Hamilton-Jacobi-
Bellman (HJB) equation. Note that there are two state variables, p and N̄ .

rV (p, N̄) = max
0≤N≤ρN̄

(2p− 1)N+DpV (p, N̄)p(1−p)(ε+λN)−DN̄V (p, N̄)N−(1−p)(ε+λN)V (p, N̄).

Since the right hand side is linear in N , it is optimal to always choose either N = 0 or N = ρN̄ .
To see that the optimal policy must be a cutoff strategy, define

Π(p, N̄) := (2p− 1) +DpV (p, N̄)p(1− p)λ−DN̄V (p, N̄)− λ(1− p)V (p, N̄)

and note that whenever Π(p, N̄) < 0, then

rV (p, N̄) = DpV (p, N̄)εp(1− p)− (1− p)εV (p, N̄) (16)

so that this corresponds to the case where setting N = 0 is optimal. It then suffices to prove
that

Π(p, N̄) < 0⇒ Π(p′, N̄) < 0 ∀p′ < p.

To prove this, note first that for every p such that Π(p, N̄) < 0, there must exist some p′ > p
such that Π(p′, N̄) = 0. (Otherwise V (p′, N̄) = 0 for all p′ > p, which is clearly false.) So it
suffices to prove that there cannot exist p < p such that Π(p, N̄) = Π(p) = 0 and Π(p, N̄) < 0
for all p ∈ (p, p). Suppose for a contradiction that such an interval (p, p) exists. Then ordinary
differential equation (16) implies:

V (p, N̄) =

(
p

p̄

) r+ε
ε
(

1− p
1− p̄

)− r
ε

V (p̄, N̄)

for all p ∈ (p, p). Then we can rewrite the expression for Π(p, N̄) for p ∈ (p, p):

Π(p, N̄) = (2p− 1) +
rλ

ε
V (p, N̄)−DN̄V (p, N̄)

= (2p− 1) +
rλ

ε
V (p, N̄)−

(
p

p̄

) r+ε
ε
(

1− p
1− p̄

)− r
ε

DN̄V (p̄, N̄)

= (2p− 1) +

(
p

p̄

) r+ε
ε
(

1− p
1− p̄

)− r
ε
(
λr

ε
V (p̄, N̄)−DN̄V (p̄, N̄)

)
,
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Note that if λrε V (p̄, N̄)−DN̄V (p̄, N̄) ≥ 0, the last expression is increasing in p and so Π(p, N̄) < 0
which is a contradiction.

If instead λr
ε V (p̄, N̄)−DN̄V (p̄, N̄) < 0, then the second term in the last expression is concave.

Furthermore, the derivative of the last expression with respect to p at p must be weakly positive:
If it were strictly negative, then because Π(p, N̄) = 0, there would exist some p ∈ (p, p) close
to p such that Π(p, N̄) > 0. But if the derivative of Π(p, N̄) is weakly positive at p̄, then by
concavity it must be positive throughout (p, p). But this again yields the contradiction that
Π(p, N̄) < 0. This completes the proof.

I.2 Perfect Good News

As in the perfect bad news case, we again write the Hamilton-Jacobi-Bellman equation:

rV (p, N̄) = max
0≤N≤ρN̄

(2p− 1)N + p(ε+ λN)

(
ρ

r + ρ
N̄ − V (p, N̄)

)
−DpV (p, N̄)p(1− p) (ε+ λN)−DN̄V (p, N̄)N.

Again the right hand side is linear in N and thus the optimal policy always chooses either N = 0
or N = ρN̄ .

The easiest way to check that an optimal policy exists in cutoff strategies is to simply guess
and check that the HJB equation is satisfied by such a strategy. This is straightforward from
the social planner policy constructed in Section 3.1.
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