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Abstract

I analyze the effects of competition on process and product innovation and obtain

robust results that hold for a variety of market structures, including markets with re-

stricted or free entry and markets characterized by either price or quantity competition.

It is found that increasing the number of firms tends to reduce R&D effort, whereas

increasing the degree of product substitutability, with or without free entry, increases

R&D effort–provided that the total market for varieties does not shrink. Increasing

the total market size increases R&D effort and has ambiguous effects on the number

of varieties while decreasing the cost of entry increases the number of entrants and

varieties but reduces R&D effort per variety.
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1 Introduction

This paper provides general and robust results on the e¤ect of indicators of competitive

pressure on innovation, reconciles theory with available empirical results, and provides a

framework to help guiding the empirical analysis with results that do not depend on the

�ne details of market structure. The central question to examine is whether competitive

pressure fosters innovation.

Innovation is claimed to be the engine of growth (see e.g. Romer (1990), Aghion and

Howitt (1992, 1998), Grossman and Helpman (1989, 1991,1994)) and therefore it is crucial to

understand its determinants. Furthermore, questions arise about the impact of globalization

and deregulation on the incentives to innovate. The impact of globalization comes typically

with market enlargement; regulatory reform has introduced price caps, i.e., direct price

pressure, and has lowered barriers to entry in di¤erent industries. What will be the impact

of these developments on process and product innovation?

There is by now a large body of work, going back at least to Schumpeter and continuing

with Arrow (1962) and many other scholars, with regard to the e¤ect of competitive pressure

on innovation e¤ort. Schumpeter himself oscillated between thinking that monopoly pro�t

or competitive pressure were the drivers of innovation although usually only the monopoly

driver is emphasized in the interpretation of his work. One stumbling block in the analysis

of competition and innovation is the use of particular functional forms. Another, the lack

of agreement between theory and empirics.

Theoretical work, be it in industrial organization, agency theory or endogenous growth

theory, has relied on particular functional speci�cations. Leading models of process inno-

vations like Dasgupta and Stiglitz (1980) and Spence (1984) use constant elasticity func-

tional forms; Bester and Petrakis (1993) and Qiu (1997) compare innovation incentives in

Cournot and Bertrand markets with a linear-quadratic speci�cation. Similarly, models of

X-ine¢ ciency in which there is an agency problem between owners and managers rely on

very simple and parameterized speci�cations of market competition. This is the case, for

instance, in the linear model of Martin (1993), the examples in Schmidt (1997), and the

linear-quadratic model of Raith (2003). The constant elasticity speci�cation, derived from

Dixit and Stiglitz (1977), has become also a workhorse in endogenous growth models with
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product innovation providing an ever expanding variety of horizontally di¤erentiated prod-

ucts in a growing market (Romer (1990) and Grossman and Helpman (1989)). Rivera-Batiz

and Romer (1991) show that international economic integration by expanding the market

size incentivates innovation. One may wonder whether the results obtained are robust to

more general speci�cations.

Some theoretical results do not seem to agree with the empirical evidence. Indeed, quite

a few theoretical models tend to conclude that competition reduces innovation e¤ort despite

the fact that available empirical evidence (Porter (1990), Geroski (1990, 1994), Baily and

Gersbach (1995), Nickell (1996), Blundell, Gri¢ th, and Van Reenen (1999), Symeonidis

(2002a, b), and Galdón-Sánchez and Schmitz (2002)) is favorable to the positive e¤ect of

competition on innovation. For example, Dasgupta and Stiglitz (1980) and Spence (1984)

�nd that increasing the number of �rms, a typical measure of increased competitive pressure,

reduces innovation e¤ort.

The benchmark model for the analysis is a symmetric reduced�form non�tournament

model, where the investment by a �rm always yields some innovation results for the �rm

� in contrast to a patent race with its winner�take�all feature, where there are no spillovers

and R&D investment has no strategic commitment value.

I will consider price and quantity competition as well as restricted and free entry. The

models considered are the central workhorses in oligopoly theory: Bertrand (price) compe-

tition with product di¤erentiation and Cournot (quantity) competition with homogenous

products. All cases are empirically relevant although perhaps Bertrand competition with

di¤erentiated products and free entry is more salient. In this situation a �rm decides

whether to enter the market producing a new variety (product innovation), and paying a

�xed cost of entry, and how much to invest in reducing variable costs of production (process

innovation). The model displays thus the typical trade-o¤ between �xed and variable costs

of previous work in the literature. I perform also a robustness check when investments

have strategic commitment value, when spillovers are present, and comment on how far the

results extend to investment in quality.

It is worth noting that the trade-o¤ between �xed and variable costs not only includes

R&D and cost�reduction models but also agency models where owners incentivate managers
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to reduce costs in an asymmetric information context (X-ine¢ ciency). That is, the �rm (or

the principal) incurs in a �xed cost in order to lower variable costs. In agency models the

innovation incentive of owners typically translates monotonically, via the incentive scheme

of the manager, into the managers�incentives. The owner must pay the manager his reser-

vation utility, the cost of e¤ort, and an information rent (owing to asymmetric information)

in order to reduce costs. In this way, for example, more competition may induce a higher

cost�reduction e¤ort through an incentive scheme that is more sensitive to performance.1

The central scenario considered is plausible on empirical grounds. With regard to the

non�tournament aspect, patents (inducing a patent race or tournament) do not seem to be

the major source of returns to innovative activity (Schankerman (1991) and Cohen et al.

(2000))2 and, according to Cohen,�The empirical �ndings to date do not establish whether

the net e¤ect of appropriability on R&D incentives is positive or negative�(1995, p. 230).

Furthermore, it is worth remarking that even though R&D investment typically precedes

market interaction, this does not mean that it can be used strategically. That is, it does not

follow that R&D investment, or contracts with managers that reward e¤ort, are observable

and that �rms can commit to it. The evidence on the strategic commitment value of R&D

is scant.3 No claim is made about the realism of the symmetry assumption.4

I consider three (classical) di¤erent possible measures of enhanced competitive pressure

1Hubbard and Palia (1995) and Cuñat and Guadalupe (2002) provide evidence of how competition in-

creases the performance-pay sensitivity, respectively, of CEOs in the U.S. banking industry after deregulation

and of CEO, executives, and workers in a panel of U.K. �rms after the pound�s appreciation in 1996. Com-

petition may also provide information (e.g., on the cost structure of �rms) and enlarged opportunities for

comparison, and therefore stronger incentives. The informational role of competition in enhancing e¢ ciency

has been highlighted in a series of models. I will not pursue this line of inquiry in this paper but see Hart

(1983), Scharfstein (1988), Hermalin (1992, 1994), and Meyer and Vickers (1997).
2Recent empirical analysis does not seem to favor the patent race model (with its �rst-mover advantage).

See Tellis and Golder (1996) and Lieberman and Montgomery (1998).
3At the same time, it is possible that strategic e¤ects have been overplayed in the literature. For example:

�Despite the considerable theoretical attention devoted to strategic interaction, we know surprisingly little

about its empirical relevance� (Cohen (1995, p. 234; see also Griliches (1995)). Geroski (1991) also hints

that strategic e¤ects may be of second�order importance in determining innovation incentives.
4See Boone (2000) and Klette and Kortum (2004) for an analysis of innovation incentives with �rm

heterogeneity.
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with free entry (endogenous market structure), as an increase

� in the degree of product substitutability; or

� in the total size of the market; or

� in the ease of entry (decrease in the entry cost).

With restricted entry (exogenous market structure), competitive pressure is measured

as a variation5

� in the degree of product substitutability; or

� in the number of competitors.

In the scenario considered, individual �rms� cost�reduction incentives depend on the

output per �rm because the value of a reduction in unit costs will increase with the output

produced by the �rm. Output per �rm depends in turn on demand and price�pressure

e¤ects. For a given total market size, competition a¤ects the e¤ective market of a �rm, its

residual demand (a level or size e¤ect), and the elasticity of the residual demand faced by the

�rm (an elasticity e¤ect). For example, typically an increase in the number of competitors

for a given total market size will decrease the residual demand for the �rm and will increase

the demand elasticity. The �rst e¤ect will tend to decrease R&D e¤ort because a unit cost

reduction will bene�t a diminished output, whereas the second will tend to increase R&D

e¤ort, because a unit reduction in costs will allow the �rm to decrease price with a higher

output impact.6

I obtain the following results in a market with restricted entry:

� Increasing the number of �rms tends to reduce R&D e¤ort. In Bertrand the result

holds for all leading examples (including linear, constant elasticity, constant expen-

diture, and logit demand systems). In Cournot the result holds in the usual case of

5Sometimes a change from Cournot to Bertrand behavior is interpreted as an increase in competitive

pressure. This may be so, since Bertrand equilibria tend to be more competitive than Cournot, but this

interpretation need not make sense within a given industry. Indeed, the mode of competition is typically

dictated by the structural conditions in the industry (see Vives (1999, Chap.7)).
6See Kamien and Schwartz (1970) and Willig (1987) for related analyses.
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outputs being strategic substitutes. The residual demand (size) e¤ect tends to dom-

inate the price�pressure (elasticity) e¤ect. The reason is that the demand e¤ect is a

direct one while the price�pressure e¤ect is an induced one through the impact on the

equilibrium price. However, it is still possible, and indeed likely, that increasing the

number of �rms increases R&D intensity (i.e. R&D expenditure over sales).

� Increasing the degree of product substitutability increases R&D e¤ort provided the

total market for varieties does not shrink. The reason is that the demand e¤ect and the

price�pressure e¤ect both work, although perhaps weakly, in the same direction. This

holds for leading examples such as linear (Shapley�Shubik speci�cation), constant

elasticity, and constant expenditure demand systems. With logit there is neither

demand e¤ect nor price�pressure e¤ect.

The results in a market with restricted entry generalize those obtained by (among others)

Dasgupta and Stiglitz (1980), Spence (1984), Tandon (1984), and Martin (1993) in the

context of a Cournot model with constant elasticity or linear speci�cations, and by Raith

(2003) with price competition and product di¤erentiation à la Salop (1979).

The empirical literature is consistent with the �ndings. Cohen and Klepper (1996a, b)

provide compelling evidence of the positive relationship between R&D expenditure and �rm

size (at the business unit level). Pagano and Schivardi (2003) �nd a positive relationship

between average �rm size and productivity growth. Bertrand and Kramarz (2002) and

Ebell and Haefke (2003) provide evidence on the output expansion e¤ect of competition.

In a market with free entry I �nd the following:

� Increasing the total market size increases per��rm output and R&D e¤ort. However,

the number of �rms and varieties may increase or diminish. The results hold for either

Bertrand or Cournot competition. Increasing the market size has a direct positive

impact on R&D e¤ort and output per �rm, but at the same time it may increase the

free�entry number of �rms. However, the latter increases less than proportionately,

owing to the reduction in margins, and the direct e¤ect prevails. In fact, the free�

entry number of �rms may even decrease with market size. The reason is that the

increase in market size may induce such an increase in expenditure on cost reduction
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that it may leave less room for entry. In a constant elasticity example with no entry

cost, the free�entry number of �rms is independent of market size. Nonetheless the

case of a positive e¤ect of market size on product innovation is more likely because of

its direct pro�tability�enhancing impact.

� Decreasing the entry cost increases the number of �rms (varieties) introduced but

decreases output and R&D e¤ort per �rm. The �rst result is very intuitive and implies

the second: once more �rms have entered we know that there are less incentives to

invest in cost reduction.

� Increasing the degree of product substitutability increases R&D e¤ort (and per��rm

output) provided the total market does not shrink. The number of varieties introduced

may diminish (and it will do so if the market does not expand). The reason of the

latter is that the increase in competitive pressure leaves less room for entrants. If this

happens it should be clear that per��rm output and innovation e¤ort should increase

because of increased price pressure with less entry. If the market where to expand

with the degree of product substitutability then the direct e¤ect on per��rm output

and innovation e¤ort would overcome any possible adverse e¤ect of a possible increase

in the number of entrants.

Schmookler (1959, 1962) emphasized the role of demand and market size in the innova-

tion incentive and stated that innovative activity is governed by the extent of the market.

Process innovation is enhanced in larger markets but not necessarily product innovation.

The result that larger markets may accommodate fewer �rms (and varieties) is consistent

with the parameterized examples in Sutton (1991). The intuition is that a larger market

may make the R&D competition so �erce that fewer �rms may be able to survive (and cover

their �xed cost). Decreasing barriers to entry (by lowering the entry cost) will indeed induce

more �rms (and varieties) to enter but will diminish the incentive of each �rm to produce

and invest in cost reduction. The result that increasing product substitutability increases

innovation e¤ort but may decrease the number of varieties introduced is consistent with the

�ndings in Boone (2000) for symmetric market structures. The results also generalize those

obtained by Raith (2003).
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The empirical literature tends to con�rm the role of market size in explaining the in-

centives to innovate (see Scherer and Ross (1990) and Cohen (1995) for surveys as well as

Symeonides (2002a, chap. 6)).7 Acemoglu and Linn (2004) �nd a large e¤ect of an increase

in market size on the entry (quality improvement) of nongeneric drugs and new molecu-

lar entities in the pharmaceutical industry. The authors present also a theoretical model

with a constant elasticity speci�cation. Kremer (2002) also builds on the idea that market

size drives pharmaceutical research. Syverson (2004a) �nds in the ready-mixed concrete

industry that higher (spatial) substitutability, created by transport costs, increases average

productivity. The same author provides evidence that industries�median productivity levels

are increasing in the degree of product substitutability of the industry products (Syverson

(2004b)).

The results with free entry suggest also that market integration and opening of markets

may yield unambiguous bene�ts in terms of innovation e¤ort. Indeed, an increase in market

size can result from international market integration or the dismantling of barriers to trade.

We would thus have a connection between globalization, understood as the general lowering

of transport costs and barriers to trade, and innovation e¤ort.8 Our results in particular

are consistent with the �ndings in Baily and Gersbach (1995) that competition in the global

marketplace is what gives companies a productivity advantage.

The plan of the paper is as follows. Section 2 considers the case of Bertrand markets

with product di¤erentiation. Section 3 deals with Cournot markets with homogeneous

products. In both sections the cases of restricted and free entry are analyzed. Section 4

explores extensions of the results (an alternative measure of competitive pressure, quality

innovation, and the e¤ect of spillovers). Concluding remarks close the paper, and the

Appendix collects several proofs and the details of the examples.

7Blundell, Gri¢ th, and Van Reenen (1999) provide evidence on the positive impact of market share on

innovation output for a panel of British manufacturing �rms.
8See e.g. Krugman (1995).
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2 Bertrand competition with product di¤erentiation

In this section I consider Bertrand markets with di¤erentiated products. I start with the

case with restricted entry and perform a comparative statics exercise with the number of

�rms and with the degree of product substitutability (Section 2.1). A robustness exercise

with respect to the strategic commitment e¤ect of R&D is performed and I comment also

on using a switch from Cournot to Bertrand competition to indicate a higher competitive

pressure. Section 2.2 establishes connections with the empirical literature about the inverted

U-shaped relationship found in some studies. I consider then the case of free entry and study

the comparative statics properties with respect to the degree of product substitutability,

size of the market and entry cost.

Consider a di¤erentiated product market with n �rms, where each �rm produces a

di¤erent variety and F � 0 is the sunk cost of entry. The demand system for the varieties

is symmetric and is given by the smooth (whenever demand is positive) and exchangeable

functions xi = SDi(p), p = (p1; :::; pn); i = 1; :::; n, where S denotes the size of the market

(number of consumers, say).9 Demand is downward sloping @Di
@pi

< 0, products are gross

substitutes @Di@pj
> 0; j 6= i, and the Jacobian of the demand system is negative de�nite.

Firm i can invest zi to reduce its constant marginal cost of production ci according to a

smooth function ci = c (zi) with c (z) > 0, c0 (z) < 0, and c00 (z) > 0 for all z > 0. The cost

for �rm i of producing output xi is c (zi)xi.

The pro�ts for �rm i are therefore

�i = (pi � c (zi))SDi (p)� zi � F:

2.1 Restricted entry: Price�pressure and demand e¤ects

Let the number of �rms n be �xed and S = 1. Consider the simultaneous�move game

in which each �rm chooses an investment�price pair. This can be interpreted also as an

9That is, interchanging the prices of rival goods does not a¤ect the demand for any good (as a function of

its own price) and any two goods that sell at the same price have the same demand. Formally, the demand

system can be described by a unique demand function for any good depending on its own price and the

prices of rivals, Di(pi; p�i) = D(pi; p�i) for all i.
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open�loop strategy in a two�stage investment�price game (or just a two�stage game where

actions in the �rst stage are not observable).

Let H (p;�) � Di (p; :::; p;�) be the demand for a variety when all �rms set the same

price (the Chamberlininan DD function) where � is a parameter that a¤ects demand. I

will consider � = n, the number of �rms, and � = �, a measure of product substitutability

(typically, the elasticity of substitution between any two products, either the Allen-Hicks

or the direct elasticity of substitution). For convenience we will think of n as a continuous

variable but all results hold with n discrete. It follows from our assumptions that @H@p (p;�) �
@Di
@pi

(p; :::; p;�) +
P
j 6=i

@Di
@pj

(p; :::; p;�) < 0.10 Let h (p;�) � @Di
@pi

(p; :::; p;�) and note that

h (p;�) < 0. The parameter � will be suppressed to ease notation in functions when no

confusion is possible. A very wide range of demand systems ful�ll the assumptions.

Fix a symmetric pro�le of investment zi = z and consider an associated (interior)

symmetric Bertrand equilibrium p(z; �). In equilibrium we have that

L � p� c
p

=
1

�
,

where L is the Lerner index and

� � � p

H (p)
h (p)

is the (absolute value of the) elasticity of demand for an individual �rm.

If � = n then typically @�
@n > 0, and increasing the number of �rms increases the

elasticity of demand and decreases prices. If � = � then typically @�
@� > 0, and increasing

product substitutability decreases prices.11 Table 1 provides properties of examples of

several commonly used demand systems: linear (Shapley�Shubik (1969) and Bowley (1924)

10See Vives (1999, Sec. 6.3).
11Suppose that demands come from a representative consumer with (strictly quasiconcave) utility function

U(x0; x), where x is the vector of di¤erentiated commodities and x0 is the numéraire (this a generalization of

the quasilinear case, for which W (x0; x) = x0 +U(x)). For a symmetric allocation, denote by � the (Allen�

Hicks) elasticity of substitution between any pair of di¤erentiated goods, by �0 the elasticity of substitution

between the numéraire and a di¤erentiated good, and by �I the income elasticity of the demand for a

di¤erentiated good. Assuming that the latter is bounded, at a symmetric Bertrand equilibrium we have

� = ��0+(1� �)� (n� 1)n�1+(1� �) �In�1, where � is the expenditure share of the numéraire good. It

is clear that � increases with �. Increasing n has a more complex e¤ect in the formula, but typically it will

(among other e¤ects) increase � by weakly increasing �. See Benassy (1989) and Vives (1999, Sec. 6.4).
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speci�cations), location (Salop (1979)), constant elasticity, constant expenditure demand

systems (with exponential and constant elasticity speci�cations) and logit.

From the structure of the pro�t function �i it should be clear that the incentive to

reduce cost is larger when the �rm produces a larger output. The question therefore is

how parameter changes a¤ect output in equilibrium. Let x (z;�) � H (p(z; �);�) be the

equilibrium output per �rm in the Bertrand equilibrium for a given z. The decomposition

@x

@�
=
@H

@p

@p

@�
+
@H

@�

is instructive. The term
@H

@p

@p

@�

is the price�pressure e¤ect: increasing � decreases p (in the leading examples considered

with either � = n or � = �), which in turn increases demand. The term

@H

@�

is the demand e¤ect: the direct impact of � on demand. We will see how, when � = n, the

price�pressure and the demand e¤ects have di¤erent signs, provided that there is a limited

market for the di¤erentiated varieties (@H=@n < 0), and the latter typically dominates

as we will see. The basic reason for the dominance is that the price�pressure e¤ect is an

indirect one while the demand e¤ect is a direct one. On the other hand, if � = � then

typically both the price�pressure e¤ect and the demand e¤ect (weakly) work in favor of

more output and R&D e¤ort. Indeed, there is no presumption that increasing the elasticity

of substitution will decrease the symmetric demand for varieties.

A symmetric and interior equilibrium will be regular if (at the equilibrium) B ��
(p� c) @h@p + h+

@H
@p

�
c00H + (c0)2 h@H@p < 0. Proposition 1 provides the comparative stat-

ics analysis of innovation e¤ort with respect to the number of �rms (� = n) and product

substitutability (� = �).

Proposition 1 Let the demand system ful�ll @Di@pi
< 0 and @Di

@pj
> 0 for j 6= i with nega-

tive de�nite Jacobian, and let c0 < 0 and c00 > 0: Consider a symmetric regular interior

equilibrium (p�; z�). Then the following statements hold.
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(i)

sign

�
dz�

d�

�
= sign

�
@x (z;�)

@�

�
= sign

�
@H

@p

@p(z; �)

@�
+
@H

@�

�
,

where (p(z; �); x (z;�)) is the symmetric Bertrand equilibrium for given � and z.

(ii) When changing the number of �rms n for linear, constant elasticity, logit, and

constant expenditure demand systems, we have @H
@n < 0 and @�

@n > 0; the demand e¤ect

dominates the price�pressure e¤ect, and @x(z;n)
@n < 0.12

(iii) When varying product substitutability � in all cases considered, @�@� > 0. For linear

(Shapley�Shubik speci�cation), logit, and constant expenditure demand systems, @H
@� = 0;

for constant elasticity, @H@� > 0. For these cases, price�pressure and demand e¤ects work

(perhaps weakly) in the same direction and so @x(z;�)
@� > 0. The logit system (like classical

location models) is a boundary case with neither price�pressure nor demand e¤ects and so
@x(z;�)
@� = 0. For the linear demand speci�cation of Bowley, @H@� < 0 and

@x(z;�)
@� < 0:

Proof : Fix a symmetric pro�le of investment zi = z and consider an associated (interior)

symmetric Bertrand equilibrium p(z; �). The �rst-order condition for a symmetric interior

equilibrium is (p� c) @Di@pi
+Di = 0; or

� (p;�) � (p� c)h (p;�) +H (p;�) = 0:

If @�@p = (p� c)
@h
@p + h+

@H
@p < 0 it is immediate that

sign

�
@p(z; �)

@�

�
= sign

�
(p� c) @h

@�
+
@H

@�

�
= sign

�
� @�
@�

�
:

A symmetric (interior) equilibrium of the full investment�price game13 will satisfy the

�rst�order condition for investment: �xc0 (z)� 1 = 0 or

	(z; �) � �H (p(z; �);�) c0 (z)� 1 = 0:

A su¢ cient condition for @	=@z < 0 is

B �
�
(p� c) @h

@p
+ h+

@H

@p

�
c00H +

�
c0
�2
h
@H

@p
< 0:

12When B < 0 we have that sign dz�

dn
= sign

n
@H
@p
(p� c) @h

@n
� @H

@n

�
(p� c) @h

@p
+ h

�o
and sign dp�

dn
=

sign
n�
(p� c) @h

@n
+ @H

@n

�
c00H + (c0)

2
h @H
@n

o
. A su¢ cient condition for dz�

dn
< 0 is that @h

@n
> 0 and @h

@p
< 0.

13 If �i = (pi � c (zi))Di (p)� zi is strictly concave in (pi; zi), then some mild boundary conditions ensure

the existence of an interior equilibrium.
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Note that B < 0 implies that @�@p < 0.

We are now ready to assess the impact of the parameter � on the equilibrium z. From

dz
d� = �

@	=@�
@	=@z we have that

sign
dz

d�
= sign

@	

@�
= sign

�
�c0@x (z;�)

@�

�
;

where x (z;�) � H (p(z; �);�) is the equilibrium output per �rm in the Bertrand equilibrium

for a given z and the result in (i) follows. Note that, indeed, we have that innovation e¤ort

and individual output move in the same direction: sign
�
dx
d�

	
= sign

n
@x(z;�)
@�

o
because

dx
d� =

@x(z;�)
@z

dz
d� +

@x(z;�)
@� and sign @x(z;�)

@z = sign f�c0hg > 0.

The results in (ii) and (iii) follow from Table 1 and the characterization of the examples

in the Appendix. �

Remarks

� The parameter � could also be interpreted as �regulatory pressure�. It is then akin

to our product substitutability measure with @�
@� > 0 and

@H
@� = 0. Increasing � would

exert price pressure, increasing output and R&D e¤ort. The same e¤ect would be

obtained with a binding price cap (or with an increase in a sales tax paid by the �rms

when the price is regulated).14

� We can extend the characterization in Proposition 1(i) removing regularity conditions

using lattice-theoretic methods as long as we restrict attention to extremal equilibria

(I do so explicitly for the Cournot case in Proposition 7 in the Appendix).

Table 1 provides the properties of the examples claimed in Proposition 1, as well as

computed equilibrium solutions for c (z) = �z� with � > 0 and  > 0 and for the demand

systems of constant elasticity, constant expenditure (constant elasticity speci�cation), and

logit. (The Appendix provides details for each example.) For those computed examples

we �nd also that R&D intensity (R&D expenditures over sales) z�

p�x� is increasing in n and

14With unregulated prices it is easy to see that an increase in a proportional sales tax paid by the �rms

would increase prices and reduce output and innovation e¤ort.
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�. It is worth noting therefore that despite the fact that z�is decreasing with n a usual

measure of the �rm�s R&D intensity is in fact increasing in n in the examples.

2.1.1 Strategic commitment e¤ects

It may be asked if the results are robust with respect to strategic e¤ects. Toward this

end I analyze the subgame-perfect equilibria (SPE) of the two-stage game in which �rms

�rst invest in cost�reducing R&D � the investments are observable� and then compete in

prices. Denote by p� (zi; z�i) ; i = 1; :::; n, a second�stage Bertrand equilibrium for a given

investment pro�le z; and let

(p�i (zi; z�i)� c (zi))Di (p� (zi; z�i))� zi

be the corresponding pro�t of �rm i in the reduced�form game at the �rst stage.

It is not di¢ cult to see that, at a symmetric interior SPE of the two-stage game

(z; p� (z)); we haveH(p)+(p� c (z))h(p) = 0 and�c0 (z)H�1+(p� c (z)) (n� 1) @Di@pj

@p�j
@zi

=

0. The term

(p� c (z)) (n� 1) @Di
@pj

@p�j
@zi

is the strategic commitment e¤ect and it does not appear in the characterization of the equi-

librium in the simultaneous move game. With strategic complementarity in prices and the

condition @H
@p +h+(p� c)

@h
@p < 0, it follows that

@p�j
@zi

� 0 and therefore (p� c) (n� 1) @Di@pj

@p�j
@zi

�

0 because goods are gross substitutes @Di
@pj

� 0. Increasing the innovation e¤ort of �rm i

reduces the equilibrium prices of rivals, because �rm i is more aggressive and best responses

are upward sloping. In order to perform comparative statics with respect to n note that

the SPE z will be characterized by

F (z;n) � �c0 (z)x(z;n)� 1 + (p�(z; n)� c(z)) (n� 1) @Di
@pj

@p�j
@zi

= 0

with x(z;n) � H (p�(z; n);n) and, provided @F
@z < 0, we have that the strategic e¤ect makes

�rms invest less �because this softens price competition�and sign dz
dn = sign

@F
@n .

We know that sign @
@n (�c

0 (z)H � 1) = sign
�
�c0 @x(z;n)@n

�
= sign @x(z;n)

@n . This con�rms

the result in the simultaneous�move game, with dz=dn < 0 when @x(z;n)=@n < 0.
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The derivative of the strategic e¤ect has an ambiguous sign. The reason is that increas-

ing the number of �rms may induce the �rms in the �rst stage to distort their investment

more (because there will be more competition at the second stage) or to distort it less (be-

cause, with more �rms, the possibilities of manipulating the second�stage price equilibrium

diminish).

However, tedious algebra shows that, in the case of constant expenditure demand system

(with constant elasticity speci�cation for demand and constant elasticity innovation costs)

as well as in the Shapley�Shubik linear demand system and the logit case (both for a general

innovation cost function) the result of the simultaneous game holds and dz=dn < 0. In all

these examples investments at the �rst stage are strategic substitutes. Furthermore, in

these examples the same comparative statics with respect to � hold: dz=d� > 0 for the �rst

and second cases and dz=d� = 0 for the logit.15 Using the Bowley linear demand system,

Qiu (1997) �nds that sign dz
d� = sign @x

@� < 0 in the strategic two-stage game. This is the

same result as in the simultaneous game according to Proposition 1.

2.1.2 Bertrand and Cournot

We can think of still another way to change competitive pressure in the market: by switching

from Bertrand to Cournot. It is well known that Bertrand equilibria tend to be more

competitive than Cournot equilibria (see Vives (1985), Singh and Vives (1984), and Vives

(1999, Chap. 6) for a precise statement of the needed conditions). Typically we would then

have, at symmetric equilibria and for the same level of costs, that the Bertrand output will

be larger than the Cournot output and hence the incentive for cost reduction is greater in

the former. However, this conclusion need not be robust to strategic commitment e¤ects.

Indeed, in Cournot (with strategic substitutes competition) it pays a �rm to overinvest

in order to gain an advantage, whereas in Bertrand (with strategic complements) it pays

to underinvest in order to gain an advantage (Fudenberg and Tirole (1984)). This means

that Cournot competition may induce more cost�reduction e¤ort owing to this strategic

e¤ect even though the output in Bertrand may be higher (see the linear-quadratic models of

Bester and Petrakis (1993), Qiu (1997), and Symeonidis (2003); in the latter, R&D increases

15The (lengthy) computations of the examples are available upon request.
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product quality in a quality-augmented version of the Bowley demand system). However, it

should be noted that, in general, if we want to know how an increase of competitive pressure

in a particular industry a¤ects innovation e¤ort, then a comparison between Bertrand and

Cournot equilibria will not be appropriate. Indeed, institutional features of the market

typically determine the mode of competition.16

2.2 About the inverted U-shaped relationship

The result obtained � that in markets with restricted entry, the innovation e¤ort per �rm

decreases in the number of �rms� should be contrasted with some results in the empirical

literature where an inverted U-shaped relationship is found between market concentration

and R&D e¤ort or output (see e.g. Scherer and Ross (1990), Caves and Barton (1990), and

Aghion et al. (2002)).17 For highly concentrated markets, a decrease in concentration seems

to bene�t innovation, although the e¤ect is reversed for lower concentration levels. Aghion et

al. (2002) relate a measure of innovative output (the count of successful patent applications)

to a measure of competition (the Lerner index18) as a proxy for competitive pressure given

by � in a market with a �xed number of �rms. In their step-by-step innovation model there

are two forces: competition may increase the incremental pro�t from innovating (i.e., escape

the competition e¤ect for �rms that are neck-to-neck, that is, that they have similar cost

levels) but also may reduce innovation incentives for laggards when it is intense enough (by

reducing rents to innovation). When competition is low the �rst force dominates, yet when

competition is intense the second does owing to a composition e¤ect in the steady-state

distribution of technology gaps.

These empirical results can be reconciled with the analysis in this paper provided that

competition involves also a liquidation e¤ect that induces cost�reduction e¤ort.19 Galdón-

16See Vives (1999, Chap.7).
17See also Ceccagnoli (2003) for a nonmonotonic e¤ect in an increase in the number of non-innovating

�rms.
18 In fact, they use average cost instead of marginal cost and hence their measure of competition (in terms

of our model) is instead bL � p�c�(z=x)
p

= L� z
px
. Furthermore, in the following section we will see that in

fact the Lerner index is a problematic measure of competition under free entry.
19We might also try to explain the inverted U-shaped relationship between an average Lerner index and

average innovation output (or e¤ort) in an industry with asymmetric �rms and composition e¤ects.
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Sánchez and Schmitz (2002) provide evidence of the impact of an increased probability of

closure of iron�ore mines on productivity gains. The escape�the�competition e¤ect is akin

to our elasticity e¤ect when we measure the intensity of competition by the number of

�rms. In our general speci�cation the elasticty e¤ect is dominated by the direct demand

e¤ect, which is akin to the reducing rents e¤ect. However, the �rst e¤ect is made more

dramatic whenever low pro�ts may imply exit and bankruptcy costs (termination costs for

the manager or owner of the �rm). By reducing pro�ts, competition may put in danger the

survival or the company and/or its management and so induce more e¤ort whenever there

are liquidation costs (see e.g. Schmidt (1997)). This means, for example, that increasing

the number of �rms increases the probability of liquidation and thus tends to increase

innovation e¤ort. This e¤ect is then dominated by the reduction in pro�t (or demand)

e¤ect when the number of �rms grows large.

2.3 Free entry

In this section I analyze markets with free entry and perform a comparative statics analysis

with the size of the market, the size of the entry cost F � 0, and the degree of product

substitutability. Firms choose whether to enter or not at a �rst stage and then choose

simultaneously investment and price.20

For any given n consider a regular (i.e. with B < 0) symmetric equilibrium at the second

stage with associated pro�ts per �rm of �n. At a free-entry equilibrium with ne �rms in

the market, each �rm makes nonnegative pro�ts, �ne � F , and further entry would result

in negative pro�ts, �ne+1 < F (I assume that �rms when indi¤erent enter). If �n is strictly

decreasing in n then there can be at most one free-entry equilibrium, and there will be one

if �n tends to zero as n grows.

20Alternative game forms involve �rms choosing simultaneously whether to enter, their investment in

cost reduction, and level of output (Dasgupta and Stiglitz (1980)); or entry and investment at a �rst

stage followed by market competition (Boone (2000)); or a sequential three-stage entry�investment�market

competition (Sutton (1991), Suzumura (1995)). See Mas-Colell, Whinston, and Green (1995, Sec.12E) for

a careful discussion of the di¤erences in the game forms when there is no investment in cost reduction.

Novshek (1980) and Kihlstrom (1999) consider simultaneous entry and output or price decisions.
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Strengthening the condition B �
�
(p� c) @h@p + h+

@H
@p

�
c00H + (c0)2 h@H@p < 0 to

bB � �(p� c) @h
@p
+ h+

@H

@p

�
c00H +

�
c0
�2
h2 � 0

(note that j@H=@pj < jhj), and assuming @H
@n < 0 and @�

@n > 0, yields that pro�ts at the

symmetric equilibrium, �n, are strictly decreasing in n.21

I will �nesse the game form positing a free-entry zero-pro�t condition. We will say

that the free-entry equilibrium is regular if d�n=dn < 0 for n = ne. If ne is such that

�n = F , then the free-entry number of �rms is [ne].22 Obviously, if we have a result, say,

that dn
e

dS > 0, this means that
d[ne]
dS � 0.

2.3.1 Comparative statics with market size and entry cost

Let the demand function be parameterized by the number of varieties n, yielding H (p) �

Di (p; :::; p;n).

Proposition 2 Consider a symmetric regular interior free�entry equilibrium (pe; ze; ne).

Under the assumptions of Proposition 1, suppose that @H@n < 0 and
@�
@n > 0; then

sign

�
dze

dS

�
= sign

�
dxe

dS

�
= sign

�
�dp

e

dS

�
> 0

and

sign
dne

dS
= sign

n
� bBo :

Furthermore,
dne

dF
< 0, sign

�
dze

dF

�
= sign

�
�dzn
dn

�
;

and

sign

�
dpe

dF

�
= sign

�
�dpn
dn

�
;

where (pn; zn) is the equilibrium with exogenous n evaluated at n = ne.
21This follows because

d�n
dn

= (p� c)
�
@H

@n
+
dp

dn

�
@H

@p
� h

��
and d�n

dn
< 0 if and only if � @H

@n
bB+� @H

@p
� h

� �
(p� � c) @h

@n
+ @H

@n

�
c00H < 0 (since @H

@p
� h > 0, c00H > 0, and

sign
�
(p� c) @h

@n
+ @H

@n

	
= sign

�
� @�
@n

	
). Alternatively, with B < 0; a su¢ cient condition for d�n=dn < 0 is

that dp=dn < 0.

22The brackets [x] denote the largest integer less than x.
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The symmetric regular interior free�entry equilibrium (pe; ze; ne) will ful�ll the FOCs

for price and innovation e¤ort as well as the zero pro�t condition (p� c(z))SH(p;n)� z �

F = 0. The results follow by di¤erentiating totally the equilibrium conditions under the

assumptions (see the Appendix).

Increasing the size of the market reduces cost (process innovation) and may increase or

decrease the number of varieties (product innovation). The �rst results follows from an out-

put expansion e¤ect in a larger market. Increasing market size increases the number of �rms

less than proportionately, if at all, and thus increases individual �rm output and innovation

e¤ort. The potential downward pressure exerted on innovation e¤ort by an increase in the

number of �rms is overwhelmed by the expanded market. However, increasing market size

may decrease the number of �rms and varieties. The reason is that increasing the market

size may increase R&D rivalry so much, increasing R&D expenditure, as to leave less room

for entrants. That is, pro�ts are pushed down for a given number of �rms because the

direct pro�tability�enhancing e¤ect of market expansion is overwhelmed the indirect e¤ect

of increased rivalry in R&D and prices. Obviously, when ne increases with S, total R&D

e¤ort neze increases with S.

Increasing the entry cost reduces the number of �rms and products introduced (indeed,

under our assumptions pro�ts are decreasing in n), and it a¤ects price and R&D e¤ort

depending on the impact of a decreased number of �rms. Typically (see examples in Table

1) we have that decreasing n increases z and p, and increasing F will therefore decrease n

and increase p and z. Increasing the entry cost then has the (perhaps paradoxical) e¤ect

of increasing innovation e¤ort. The reason is that it decreases the number of entrants,

and each entrant produces more and has more incentive to reduce costs. Decreasing entry

barriers (F ) will always increase the number of �rms and varieties but it will also decrease

individual cost reduction e¤orts. It still can be true that the total cost reduction e¤ort neze

increases as F decreases. This is the case in the constant elasticity (provided � � (1+)�1),

constant expenditure�constant elasticity or logit examples.

All the demand systems considered (linear, constant elasticity, constant expenditure,

and logit demand systems) ful�ll @H@n < 0 and @�
@n > 0 (see Table 1). Table 2 provides

the endogenous market structure counterpart of Table 1 with computed examples. The
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Appendix provides computational details of the results reported in Table 2. In all the cases

considered in Table 2 when c (z) = �z� with � > and  > 0 we have that sign dne

dS =

sign
n
� bBo � 0 (with strict inequality for constant expenditure-CES, logit and CES with

F > 0, and equality for CES and F = 0). In all those cases a larger market implies more

variety.

The result that sign dne

dS = sign
n
� bBoand the su¢ cient condition to obtain a unique

free�entry equilibrium (pro�ts decreasing in n), bB � 0, suggest that we will �nd more often
that increasing market size increases product variety than the opposite result. Indeed, when

the direct pro�tability�enhancing e¤ect of market expansion prevails we have that bB � 0.

This is so in the collected examples above but by no means a universal result. An example

is provided by the constant expenditure-CES demand system with the innovation function

c(z) = 1=(A+ z) and F < A. We have that sign dne

dS = sign fF �Ag and for F < A there

is less variety in a larger market.23 It can be checked also that dn
eze

dS > 0 despite the fact

that dn
e

dS < 0.

2.3.2 Comparative statics with product substitutability

Let the demand function be parameterized by �, yielding H (p) � Di (p; :::; p;�) with � = n

or � = �.

Proposition 3 Consider a symmetric regular interior free�entry equilibrium (pe; ze; ne).

Under the assumptions of Proposition 1, suppose that @H
@n < 0; @�

@n > 0; @H
@� � 0, and

@�
@� > 0, then at the equilibrium

sign

�
dze

d�

�
= sign

�
dxe

d�

�
= sign

�
�dp

e

d�

�
> 0

and sign
�
dne

d�

	
is ambiguous but

dne

d�
< 0 if

@H

@�
= 0 or if bB > 0.

The proof of the proposition follows along similar lines than that of Proposition 2 and

can be found in the Appendix. The assumptions on demands are ful�lled for all the examples

23We have sign dne

dS
= sign

n
� bBo = sign fF �Ag < 0. For a free-entry equilibrium to exist when F < A

we need that 2ne�1
(ne�1) < � and this implies necessarily that

bB > 0.
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(except the Bowley variation of linear demands). In the linear (Shapley�Shubik), constant

expenditure, and logit demand systems, @H@� = 0 and therefore
dne

d� < 0. It should be clear

why this is so. When changes in � are demand�neutral, increasing � decreases pro�ts and so

the zero�pro�t entry condition is restored, decreasing the number of entrants.24 Increasing

the degree of product substitutability increases output per �rm and R&D e¤ort, provided

the total market does not shrink. The reason is that if @H@� = 0 increasing � has no e¤ect on

demand but increases price pressure and decreases the number of entrants enticing a higher

output and innovation e¤ort per �rm; if @H@� > 0 then increasing � has the direct e¤ect of

expanding the market overcoming any possible adverse indirect e¤ect on individual output

and innovation e¤ort if the number of entrants where to increase.

The parameter � could also be interpreted as �regulatory pressure�, with @�
@� > 0 and

@H
@� = 0. An increase in regulatory pressure would then decrease price while increasing

R&D e¤ort and concentration. Again, this would be the e¤ect of a binding price cap or the

increase in a sales tax with regulated prices.

2.3.3 Market power, concentration, product substitutability, and innovation

In a free�entry equilibrium

L � p� c
p

=
1 + F

z

1 + 1
(z) +

F
z

=
1

� (p; n; �)
;

where  (z) � �zc0 (z) =c (z) and � may represent S or �. From these expressions and

our examples we can derive a series of observations, some of which run counter common

intuition and even practice in empirical model�building.

� The relationship between market power (Lerner index) and innovation e¤ort is am-

biguous:

sign
@L

@z
= sign

�
�F
z2
�1 +

�
1 +

F

z

�
0

2

�
:

If 0 � 0 and F > 0; then L is strictly decreasing in z. If F = 0 then sign @L
@z =

sign f0g and thus, if 0 > 0, L is strictly increasing in z. It follows that, if � or S

24 In the constant elasticity (CES) case we have that ne is strictly decreasing in � when F = 0 even tough

@H=@� > 0.
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increase (and hence z also increases) then L decreases when 0 � 0 and F > 0 or if 0

< 0 and F = 0. This is the case in particular if  is constant with F > 0.

� However, R&D intensity including expenditure F on product introduction and market

power move together : L = (z + F )=px. If  is increasing in z and F = 0, then

increasing S increases z, L; and R&D intensity. If F = 0 and  is constant, the degree

of monopoly power L is determined by technological considerations (the elasticity of

the innovation function) and R&D intensity is independent of market size S or product

substitutability �. This latter case would be consistent with the empirical evidence

that indicates that R&D intensity is independent of �rm size.25

� The relationship between market power (Lerner index) and product substitutability is

ambiguous. Increases in product substitutability � need not go together with decreases

in the Lerner index L. This is so because increasing � may bring an increase in

concentration which more than compensates for the direct e¤ect of the augmented

substitutability. In particular, it could be that an increase in � increases market

power (L) and innovation e¤ort z. This will happen, for example, with 0 > 0 26 and

F = 0, or F small as in the constant expenditure�constant elasticity case with the

innovation function c(z) = 1=(A+z) when A > F (then sign dL
d� = sign fA� Fg > 0).

In this latter case increasing � (� 1+r) decreases ne so much that L diminishes despite

the direct impact of the increase in �. This situation would be at odds with work (e.g.

Aghion et al. (2002)) in which the Lerner index, or an approximation to it, is taken as

a proxy for competitive pressure measured by �. However, we see from Table 2 that

the Lerner index is decreasing in � in the constant expenditure (constant elasticity)27

and logit cases (� � 1=�)) with innovation function c(z) = �z� . Then the direct

e¤ect of the increase in � overwhelms the indirect e¤ect via the decrease in ne.

� The Lerner index and the level of concentration may move in opposite directions. If

F > 0 and  is constant, then the Lerner index is strictly decreasing with �. It follows

25The number of varieties introduced ne increases with S if � is increasing in p. This is so because � is

independent of S and strictly increasing in n, and also increasing S decreases p.
26Note that sign 0 = sign

n
1 +  + c00z

c0

o
. Then � c0z

c
+ c00z

c0 < 0 if and only if c is log-convex.
27The fact that L is decreasing in � validates the conjecture of Aghion et al. (2002, p. 13, fn.9).
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that increasing � increases z, decreases L (and R&D intensity) and also decreases ne

if @H@� = 0. This does not happen in the constant expenditure�constant elasticity case

or in the logit where sign
�
dne

d�

	
= sign

�
dLe

d�

	
< 0 (see Table 2). The result that we

may have a high level of (market power and) R&D intensity and a high number of

varieties (low concentration) when substitutability (�) is low is parallel to the result

obtained by Sutton (1996) in a linear demand example with Cournot competition and

quality-enhancing investments.

� Market power (Lerner index) increases with higher entry barriers. We see from Ta-

ble 2 that the Lerner index is increasing in F in the constant elasticity, constant

expenditure�constant elasticity and logit cases with constant elasticity innovation

function as well as in the constant expenditure�constant elasticity case with the in-

novation function c(z) = 1=(A+ z).

Incentives in the Salop (1979) model (Raith (2003)) The incentive model by Raith

(2003) provides a nice illustration of our results. The author considers the model of Salop

(1979) with a mass of consumer S uniformly distributed on a circle of circumference 1 and

with quadratic transportation costs having parameter t. Each of the n �rms has a cost

ci = c� ei � ui;

where ei is the unobservable e¤ort exerted by the manager of the �rm and ui is normally

distributed idiosyncratic noise with mean 0 and variance v. Owner i makes decisions and

o¤ers a linear contract to his manager, with compensation wi = si + bi (c� ci), to reduce

costs. After all managers have chosen their e¤ort levels, costs are realized (and are private

information to the �rms), �rms compete in prices, and a (Bayesian) Bertrand equilibrium

obtains. Managers have constant absolute risk aversion �, quadratic cost of e¤ort k2 (ei)
2 ;

and a reservation utility of 0. Given that the manager of i will choose ei = bi=k, �rm i will

set si = � 1
2k (1 � k�v)(bi)

2 so that the manager will obtain a zero expected utility. The

expected compensation of the manager will be wi = si + biei =
1+k�v
2k (bi)

2; the expected

cost, ci = c� bi=k = c�
q

2wi
k(1+k�v) . In terms of our model, then,

c(z) = c�
s

2z

k(1 + k�v)
:
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Under some parameter restrictions, and for a �xed number of �rms n, Raith shows that

there is a symmetric equilibrium for the overall game and that cost reduction e¤ort is

independent of � � 1=t. Furthermore, with free entry and with �rms paying an entry

cost F , cost�reduction e¤ort is increasing in �, S; and F . All these results follow from

Propositions 1, 2, and 3 � noting that in the Salop model @H@p =
@H
@� = 0.

In this section we have obtained robust results of the impact on process and product

innovation of several standard indicators of increased competitive pressure in a world of

price competition with product di¤erentiation. In short, we have found that with restricted

entry increasing the number of �rms lowers incentives for process innovation while increasing

product substitutability raises them; with free entry, increasing market size and/or product

substitutability increases process innovation incentives and has an ambiguous impact on

product introduction. Raising entry barriers decreases new product introduction but raises

cost reduction e¤orts.

3 Cournot competition with homogenous product

In this section I check the robustness of the results obtained to the case of Cournot markets

with homogenous products. I start with the case with restricted entry and perform a com-

parative statics exercise on the number of �rms. I check also for the strategic commitment

e¤ect of R&D. I consider then the case of free entry and study the comparative statics

properties with respect to the size of the market and entry cost.

Consider an n-�rm Cournot market for a homogenous product with smooth inverse

demand P (�), P 0 < 0. Parameterize the demand by the size of the market S > 0. Inverse

demand is then given by p = P (X=S). As before �rm i can invest zi to reduce its constant

marginal cost of production ci according to a smooth function ci = c (zi) with c (z) > 0,

c0 (z) < 0, and c00 (z) > 0 for all z > 0. A �rm to enter the market has to incur a �xed cost

F � 0. The pro�t to �rm i is given by

�i = P (X)xi � c (zi)xi � zi � F;

where xi is the output of the �rm and X is total output.
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3.1 Restricted entry

Let S = 1 and consider a simultaneous�move game where �rm i, for each i of a given

number of �rms n, chooses (zi; xi). Consider an (interior) symmetric equilibrium (z; x) of

the game. We say that the equilibrium is regular if

D �
�
(n+ 1)P 0 + nP 00x

�
c00x+

�
c0
�2
< 0:

With Cournot competition the price�pressure and the demand e¤ects collapse into the

output e¤ect. It is to be expected again that the direct demand e¤ect dominates and

that output and innovation e¤ort decrease with the number of �rms. This is con�rmed in

the following proposition for the usual Cournot case of strategic substitutes competition

(downward sloping best replies or P 0 + P 00x < 0).

Proposition 4 Let P 0 < 0 and let c0 < 0, and c00 > 0. Consider a symmetric regular

interior equilibrium (z�; x�). Then

sign

�
dz�

dn

�
= sign

�
dx�

dn

�
= sign

�
P 0 (nx� ) + P 00 (nx�)x�

	
:

The proof is immediate by di¤erentiating the �rst order conditions for equilibrium.28

As before from the pro�t function we see that output and innovation e¤ort have to move

together since a larger output provides a larger bene�t to reduce costs. How individual

output in a Cournot equilibrium changes with the number of �rms is dictated by the slope

of best replies, which is determined by sign fP 0 (nx� ) + P 00 (nx�)x�g. The reason is that

increasing n increases (n � 1)x�n and in a Cournot equilibrium of a symmetric market

individual output equals the best response to the aggregate output of rivals. Therefore,

individual output x�n increases or decreases according to the slope of the best reply to the

aggregate output of rivals (n � 1)x�n.29 The normal case is that this slope is negative and

best responses are decreasing (strategic substitutes case). Indeed, the conditions for upward

sloping best replies (strategic complements) in Cournot oligopoly are quite stringent.

28Di¤erentiating the FOCs yields dx
dn
= �x2(P 0+xP 00)c00

D
< 0 so dz

dn
=

xc0(P 0+xP 00)
D

< 0, and sign
n
dz�

dn

o
=

signf dx�
dn
g = sign fP 0 (nx�) + P 00 (nx�)x�g.)

29See p.106-107 in Vives (1999).
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Letting the elasticity of the slope of inverse demand be

E � �XP 00(X)=P 0

we have upward sloping best responses (with constant marginal costs) if n + 1 > E > n.

The �rst inequality yields uniqueness (and stability) of the symmetric Cournot equilibrium

((n+ 1)P 0 + nP 00x < 0 is equivalent to n+ 1 > E); the second yields upward sloping best

responses (see Seade (1980) and Vives (1999, Sec. 4.3.1)). If E is constant (encompassing

the linear and constant elasticity cases)30 upward sloping best responses will hold, if at all,

for a single change in the number of �rms n. If E is constant and we require n+ 1 > E for

all n � 1, then 2 > E and only 2 > E > 1 is possible.31

Existence, uniqueness, and regularity conditions

� Su¢ cient conditions for D < 0 when c00 > 0 are that P 0 + xiP 00 < 0 and (2P 0 +

xP 00)c00xi + (c0)2 < 0. These conditions imply that �i = P (X)xi � cixi � zi is

strictly concave in (xi; zi). Strict concavity plus a mild boundary condition implies

the existence of an interior equilibrium.32

� If D < 0 at any candidate equilibrium then equilibrium is unique.

� Using lattice-theoretic methods is possible to extend Proposition 4 removing the reg-

ularity conditions, as long as we restrict attention to extremal equilibria. With down-

ward sloping demand and a decreasing innovation function plus some mild boundary

conditions interior extremal equilibria (x�; z�) exist and x� and z� are strictly decreas-

ing (increasing) in n if Cournot best replies are strictly decreasing (increasing). The

statement of the result and proof are in the Appendix (Proposition 7).

30Then demands are of the form P (X) = a� bX1�E if E 6= 1 or P (X) = a� b log X if E = 1, with a � 0

and b > 0 if E � 1 and b < 0 if E > 1, and they include linear (E = 0) and constant elasticity.
31See Amir (1996) and Vives (1999, Sec. 4.1)) for a discussion of why downward best replies are the

normal case in Cournot.
32Pro�ts �i are strictly concave in (xi; zi) if c00 > 0, 2P 0 + xiP

00
< 0, and (2P 0 + xP

00
)c00xi + (c

0)2 < 0. If

P 0 + xiP
00 < 0 then a su¢ cient condition to have that (2P 0 + xP 00)c00xi + (c0)2 < 0 is that c(�) is su¢ ciently

convex, that is, �c00x=c0 > c0=P 0 > 0.
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Examples The models of Dasgupta and Stiglitz (1980) and Tandon (1984) are particular

cases of Proposition 4.

Constant elasticity (Dasgupta and Stiglitz (1980)). Let P (X) = bX�" (a = 0; E � 1 =

" > 0) and let c(z) = �z� . The parameter � can be interpreted as the underlying scienti�c

base in the industry, while the elasticity  of c(�) would indicate innovation opportunities

in the industry (with a higher  increasing opportunities). The condition n + 1 > E > n

becomes in this case n > " > n � 1. Assume that "(1 + )= � n > " (this implies that

D < 0); then there is a unique symmetric equilibrium with

z� =
�
b (=n)" �"�1 (1� "=n)

�1=("�(1�"))
and

x� = (1=�)
�
b (=n)" �"�1 (1� "=n)

�(1+)=("�(1�"))
:

If we require that n > " for all n � 1; then z� and x� increase with n only when going

from monopoly to duopoly. Total output nx� and industry R&D expenditure nz� both

increase with n. R&D intensity
z�

p�x�
= 

�
1� "

n

���
�

�"�1
increases with n and with . It

is immediate also that z� and pro�t �� increase (decrease) with � if " > 1 (" < 1) :

Linear demand (Tandon (1984)). Consider a market with linear demand p = a � bX

and c (z) = a � �z�. We need � < 1
2 to guarantee strict concavity of pro�ts of �rm i with

respect to xi and zi (if � < 1 then c (�) is strictly convex). Then z� =
�

��2

b(n+1)

�1=(1�2�)
and

x� =
�

�
(n+1)b

��
��2

b(n+1)

��=(1�2�)
are both decreasing in n for � < 1

2 , while R&D intensity

z�=p�x� may decrease or increase with n (it decreases for � 2
�
1
5 ;
1
2

�
).

3.1.1 Strategic commitment e¤ects

I analyze the subgame-perfect equilibria (SPE) of the two-stage game where �rms �rst

invest in cost reduction and then compete in quantities. Denote by x� (zi; z�i), i = 1; :::; n,

a second�stage Cournot equilibrium for a given investment pro�le and let

V (zi; z�i) � P (X� (z))x�i (z)� c (zi)x�i (z)� zi

be the associated pro�t for �rm i. The following proposition strengthens the requirements

on demand to ensure that investments in the �rst stage are strategic substitutes ( @2V
@zi@zj

< 0,
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j 6= i) and that increasing n reduces both output and innovation e¤ort. When investments

are strategic substitutes, increasing the number of �rms will tend, but need not �see the

example after the proposition, to decrease innovation e¤ort of any �rm because the aggregate

investment of rivals increases. The following proposition states the result formally (with

proof in the Appendix).

Proposition 5 Consider a symmetric interior SPE of the two-stage game: (z�; fx� (zi; z�i)gni=1).

Suppose that P 00 � 0 and that �P 0 is log�concave (i.e., P 0P 000 � (P 00)2 � 0). Then invest-

ments are strategic substitutes at the �rst stage, and we have dz�

dn < 0 and
dx�

dn < 0.

For the case of E constant we can provide an explicit expression for sign fdz�=dng. Let

E < 1 + n, n > 1, and let c (�) be su¢ ciently convex (�c00x=c0 > c0=((1 +min(n�E; 0))P 0)

> 0), then33

sign

�
dz�

dn

�
= signfE � 2(n� E)2g:

Therefore, dz
�

dn < 0 for E � 0 (or P 00 � 0)34 and dz�

dn > 0 for 1 + n > E > n (strategic

complementarity at the output stage). Note however that we could have dz
�

dn > 0 for E close

to n and 0 < E < n, i.e., with strategic substitutes at the output stage (as well as at the

investment stage??? ). This is the case in the constant elasticity demand model considered

by Spence (1984). Then E = 1� " and, with an exponential innovation function (as in the

following example), z� increases from n = 1 to n = 2 for " = 1=2; otherwise, z� is decreasing

with n. Note that for " < 1=2 and n = 1, E � 2 (n� E)2 > 0 (whereas for n � 2 it is

negative).

An agency model with linear demand (Martin (1993)) Here every �rm has an

owner and a manager and the manager�s unobservable e¤ort reduces cost. The constant

marginal cost of �rm i is given by

c (�i) = m+ �ie
�li

33 It can be checked after some tedious computations (see Suzumura (1995)) that with these assumptions
dz�

dn
= � @'=@n

@'=@z
with @'=@z = �(1 + G(x; n))(c00x + (c0)2=(1 + n � E)P 0)) < 0 and @'=@n = xc0(z)(n �

1)(2(n� E)2 � E)=(1 + n� E)2n2.
34This actually follows from Proposition 2 because �P 0 is log-concave if E is constant and E � 0 (i.e.,

P 00 � 0).
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for m > 0, �i a random variable (IID across �rms) with compact positive support
�
�; �
�
;

and li the labor input (e¤ort) of the �rm�s manager. The manager observes �i and knows

li but the owner does not. The latter sets up an incentive scheme with a cost target c (�i)

and a payment schedule ' (�i). The interpretation is that, given a reported e¢ ciency �i,

the manager must achieve the cost target c (�i) in order to obtain the compensation ' (�i).

The utility of the manager equals the compensation minus the disutility of e¤ort �li, where

� > 0. It is easy to check that an incentive-feasible compensation schedule must satisfy

' (�i) = � log
�

c(�i)�m . Market competition is à la Cournot with linear demand, and in the

�rst stage owners compete by setting cost targets. It is then immediate that the optimal

cost target and the compensation are constant. We are thus in the frame of our model with

an innovation function (or reduced�form cost function)

c (z) = m+ � exp f�z=�g , � > 0:

Note that c0 < 0 and c00 > 0. Given that demand is linear (E = 0) we have that dz
dn < 0

or that increasing the number of �rms reduces cost-reduction e¤ort and increases costs.

Indeed, this is the result obtained by Martin (1993).

3.2 Free entry

We look for a free-entry equilibrium in which entering �rms incur a �xed cost F � 0. Firms

choose whether to enter or not at a �rst stage and then choose simultaneously investment

and output.

For any given n consider a regular (i.e. with D < 0) symmetric equilibrium at the

second stage with associated pro�ts per �rm of �n. As before, we will say that the free�

entry equilibrium is regular if d�n=dn < 0 for n = ne.35

Proposition 6 Suppose that the assumptions of Proposition 4 hold and let (xe; ze; ne) be

35With D < 0 we have that

sign fd�n=dng = signf(2P 0 + xP 00)c00xi + (c0)2g;

and the second�order necessary condition yields (2P 0+xP 00)c00xi+(c0)2 � 0. Pro�ts are strictly decreasing

in n if �i = P (X)xi � cixi � zi is strictly concave in (xi; zi).
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a symmetric regular interior free-entry equilibrium. Then

sign

�
dze

dS

�
= sign

�
dxe

dS

�
> 0:

Furthermore,

sign

�
dze

dF

�
= sign

�
dxe

dF

�
= sign

�
�
�
P 0 + (x=S)P 00

�	
and

dne

dF
< 0:

At the equilibrium we will have a triple (x; z; n) ful�lling the FOCs for output and

innovation e¤ort as well as the zero pro�t condition (P (xn=S) � c(z))x � z � F = 0. The

results follow by di¤erentiating totally the equilibrium conditions under the assumptions

(see the Appendix).

Some intuition for the market size S comparative statics result in the proposition can be

gained as follows. Increasing S will have a positive direct impact on x and z and an indirect

e¤ect because of the changes in n. However, the indirect e¤ect is always dominated because

n increases (if at all) less than proportionately than S. The reason is that, with constant

marginal costs, increasing the market size increases also the toughness of competition and

puts pressure on margins, moderating the rate of entry.36 In fact, n may even decline as

a result of the intensity of the R&D competition. A condition for this not to be the case

is strategic substitutability in outputs (i.e., P 0 + (x=S)P 00 < 0) and c(�) su¢ ciently convex

(i.e., �c00x=Sc0 > nc0=P 0 > 0). Then dne

dS > 0.

The comparative statics results on F are very intuitive. Increasing the entry cost de-

creases the free�entry number of �rms, and it increases (decreases) output and R&D e¤ort

whenever outputs are strategic substitutes (complements). In the usual strategic substi-

tutes case decreasing entry barriers induces more entry and each �rm is smaller and has

less incentive to invest.

Remarks

� It is easy to check that in equilibrium

L � p� c
p

=
1 + F

z

1 + 1
(z) +

F
z

=
"(nx)

n
;

36For example, if P (X=S) = (X=S)�1 then, letting n(S) denote the free-entry number of �rms for a given

symmetric investment pro�le z and Cournot competition, we have n(S)=S = (F=S)1=2.
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where  (z) � �zc0 (z) =c (z) and " (X) � �XP 0 (X) =P (X).37 It is immediate also

that L = (z + F )=px.

� If F = 0 then L = z=px (R&D intensity) and

ne = "(nexe)
1 + (ze)

(ze)
:

If  is increasing in z; then increasing S increases z and R&D intensity. Note that, for

a given inverse elasticity ", increasing the technological opportunities  will tend to

increase concentration. This is consistent with the empirical �ndings that industries

with more technological opportunities are more concentrated (see, e.g. Scherer and

Ross (1990)).

� With constant elasticity innovation and demand functions and F > 0; we have that

L decreases (strictly) with z and hence increasing S increases z, decreases L; and

increases n. However, if F = 0; then L = =(1 + ) and ne = "(1 + )= are

independent of S:

Constant elasticity examples

� Let p = (X=S)�" (E � 1 = " > 0), c(z) = �z� and F = 0. Then, indeed, both

ze =
�
S"2"�"�1"�" (1 + )�(1+")

�1=("�(1�"))
and

xe =
1

�

�
S"2"�"�1"�" (1 + )�(1+")

�(1+)=("�(1�"))
increase with S and the free�entry number of �rms is [" (1 + ) =] (Dasgupta and

Stiglitz (1980)).

� Tandon (1984) considers a linear demand example p = a � bX with c (z) = a � �z�

and F = 0. Strict concavity of pro�ts of �rm i with respect to xi and zi requires

� < 1
2 . Then n

e = 1��
� . Both z

e =
�
�2�2

b

� 1
1�2�

and xe =
�
��
b

��
�2�2

b

� �
1�2�

, as well as

R&D intensity ze=pexe, increase in S (decrease in b) since � < 1
2 , and n

eze increases

in �.
37Note that sign "0 = sign f1� "� Eg :
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� Sutton (1991) considers a three-stage game featuring (i) an entry decision, (ii) in-

vestment in cost reduction, and (iii) quantity competition. Demand is given by

P (X=S) = (X=S)�1and the innovation curve by c(z) = (za�1 + 1)�1= , where

 > maxf1; 2a=3Fg and F is the sunk cost of entry. Then, for S small, ze = 0;

for larger S, ze is increasing in S while ne decreases (increases) in S if F < a=

(F > a=). This model can also be given a quality investment or advertising inter-

pretation. In this example, investment has a strategic commitment e¤ect.

Product di¤erentiation The results could be easily extended to product di¤erentiation.

In fact, Spence (1984) has shown how a certain class of cost�reduction Cournot models

with homogenous product can be reinterpreted in a product di¤erentiation environment.

In the constant elasticity case, for example, it is possible to check that, under quantity

competition, the same comparative statics with respect to S hold as in the Bertrand case.

That is, dn
e

dS > 0 for F > 0 and
dne

dS = 0 for F = 0.
38

4 Extensions

4.1 An alternative measure of competitive pressure

Competitive pressure could be measured also by the extent that each �rm internalizes the

pro�ts of other �rms. This could arise, for example, when �rms in the industry have cross-

shareholdings. Suppose that �rm i maximizes

�i + ��j 6=i�j ;

where � ranges from � = 0 (no internalization as before) to � = 1 (full internalization or

collusion), and consider the simultaneous�move game. An increase in � will then mean a

decrease in competitive pressure. The parameter � was called by Edgeworth the coe¢ cient

of �e¤ective sympathy�. It is possible to check (proofs available on request) that, under

Cournot and under Bertrand competition, an increase in competitive pressure 1=� will:

� increase output and innovation e¤ort with restricted entry; and

38 Inverse demand is given by pi =
S1�������x��1i�P

j x
�
j

�1�� for i = 1; :::; n (Koenker and Perry (1981)).
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� increase innovation e¤ort and decrease the number of entrants (and varieties) with

free entry.

The intuition is straightforward. With restricted entry, if �rms are more aggressive (a

lower �) then output per �rm and the incentive to innovate will increase. With free entry,

a �rm (when deciding whether to enter) considers only its own pro�ts but knows that,

once in the market, competition will be softer if � is higher. Tougher competition thus

means that fewer �rms will enter and that output per �rm will be larger, inducing a larger

innovation e¤ort. The results with � parallel those obtained in the Bertrand case with

degree of substitutability � whenever changes in � are demand�neutral (@H@� = 0).

4.2 Investment in quality

The cost�reduction model can be interpreted as investment in quality (in terms of product

enhancement) in the context of the Cournot model. The most straightforward case is when

investment increases the intercept of the inverse demand function (�(z)+P (X) with �0 > 0).

In the Cournot duopoly model of Vives (1990) a higher product substitutability increases

investment in product enhancement that expands the market. Spence (1984) or Sutton

(1991) present other cases where such extension is possible. Results by Sutton (1996) and

Symeonidis (2000) are in line with those obtained in this paper. Sutton (1996) considers a

linear demand example (a quality-augmented version of the Bowley demand system) with

Cournot competition and quality-enhancing investments and �nds, as in our model, that

it is possible to have a high level of R&D intensity and a high number of varieties (low

concentration) when substitutability (�) is low. Symeonidis (2000) considers a (strategic)

three-stage game of entry, investment in product quality, and quantity competition within

a model in which horizontal and vertical product di¤erentiation coexist. Demand func-

tions are linear as in Sutton (1996) and the innovation function is of the power variety.

The author �nds that increasing the degree of horizontal product substitutability increases

concentration and R&D e¤ort and that increasing the market size increases R&D e¤ort.39

39 Interestingly, Berry and Waldfogel (2003) show that in the restaurant industry (where quality is produced

mostly with variable costs) the range of qualities increases with market size, whereas in daily newspapers

(where quality is produced mostly with �xed costs) the average quality increases with market size and there
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It is worth noting that the same straightforward reinterpretation does not hold with

price competition. In this case decreasing unit costs are not equivalent to an increase in the

intercept of the demand function. However, in the Bertrand duopoly model of Vives (1990)

it can be shown that a higher product substitutability increases investment in product

enhancement that raises the willingness to pay of consumers.

4.3 Spillovers

When the e¤ort of one �rm a¤ects (favorably) the cost reduction of other �rms, we say

that there are (positive) spillovers.40 With high enough (positive) spillovers, the R&D cost

reduction investments of rivals may be strategic complements in a two-stage game with in-

vestment at the �rst stage and Cournot competition in the second. This is what happens in

the linear-quadratic speci�cations of d�Aspremont and Jacquemin (1988, 1990) and Cecca-

gnoli (2003).41 In principle this suggests that, with high enough spillovers and with Cournot

competition, it could be that increasing the number of �rms increases individual �rm inno-

vation e¤ort. However, it can be checked that this does not happen in the linear-quadratic

speci�cation where increasing the number of �rms always lowers innovation e¤ort.42

5 Concluding remarks

Does competitive pressure foster innovation?

The answer to the question is a quali�ed �yes�because it depends on what measure of

competitive pressure we use and what type of innovation (process or product) we have in

mind. The results and testable empirical implications of our analysis may be summarized

as follows. (See Table 3.)

is no fragmentation as the market grows large.
40See Spence (1984), d�Aspremont and Jacquemin (1988, 1990) and Amir (2000).
41Ceccagnoli (2003) also shows that with fringe �rms that do not invest in R&D and do not bene�t from

the spillover, strategic complementarity among the investing �rms increases with the number of fringe �rms.
42The setting is as follows: P (X) = a� bX and c (z) = c� zi � �

P
j 6=izj . If a �rm invests z2i =2, then

its marginal cost will be reduced by zi + �
P

j 6=i zj ; where 1 > � > 0 is the spillover rate. When � > 1=2

investments at the �rst stage are strategic complements.
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Table 3

Restricted entry Free entry

Indicator n � S � 1=F

Process

Innovation
�

+

(with no market contraction)
+

+

(with no market contraction)
�

Product

Innovation
�

�

(with no market expansion)
+

� In markets with restricted entry : More competitive pressure in terms of a larger

number of �rms means less R&D e¤ort per �rm, whereas more competitive pressure

in terms of a greater product substitutability (that does not shrink the total market

for varieties) means more R&D e¤ort per �rm.

� With free entry : Increasing the market size or product substitutability (with no shrink-

ing of the total market for varieties) increases innovation e¤ort and per �rm output.

Increasing the market size may increase or decrease the number of varieties introduced

(product innovation) although the former is more likely than the latter. Increasing

product substitutability will decrease entry and product variety if the market does

not expand. Lowering entry costs will increase the number of entrants and lower

(individual) innovation e¤ort.

Taking into account that with restricted entry increasing the number of �rms tends

to increase research intensity (e¤ort over sales), and with free entry decreasing the cost of

entry tends to increase total research e¤ort, we could safely state that �competitive pressure

fosters innovation�.

These results are consistent with the available empirical evidence and help reconcile it

with the theory when we take account of the di¤erent measures of competitive pressure used

by di¤erent authors. It is reassuring that the results hold for both Bertrand and Cournot

competition since the competition mode is not easy to distinguish empirically. Furthermore,

the approach should help also to avoid pitfalls in empirical analysis by making clear what

results are robust and which ones are not. For example, it cannot be taken for granted that

a good proxy for the degree of product substitutability, as indicator of competitive pressure,
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is the Lerner index.

A potential application of these results is to regulated markets. For example, in banking

both the deregulation process in Europe and the removal of restrictions on U.S. intrastate

and interstate branching have been claimed (by Gual and Neven (1993) and Jayaratne and

Strahan (1998), respectively) to deliver cost e¢ ciencies. More in general, Alesina et al.

(2004) show that in OECD countries deregulation has tended to increase investment. This

is consistent with our analysis as long as deregulation is interpretable as increases in market

size and/or product substitutability. If deregulation implies a reduction in entry barriers

then it will increase product variety but decrease cost reduction e¤ort by individual �rms,

although total investment may still increase. The e¤ects of price caps on innovation are

discussed in the pharmaceutical industry. A tighter price cap is akin to an increased product

substitutability with neutral demand e¤ects. The result then is more cost reduction e¤ort

but less product innovation.

Many extensions of the analysis could be envisioned. I have already commented on

alternative ways of parameterizing competitive pressure, investments to enhance quality,

and spillovers. An immediate extension would be to consider investment that a¤ects the

slope of (increasing) marginal costs. More substantial extensions would include asymmetric

market structures and performing a welfare analysis with a view toward competition and

industrial policy. Leahy and Neary (1997) have developed part of this program.
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6 Appendix:

6.1 Proofs

Proof of Proposition 2: Consider the symmetric regular interior free-entry equilibrium

(pe; ze; ne). The equilibrium will be characterized by

(p� c (z))h (p;n) +H (p;n) = 0

�SH(p;n)c0 (z)� 1 = 0

(p� c(z))SH(p;n)� z � F = 0

It can be checked that the Jacobian of the system is negative de�nite under the assump-

tions (B < 0 and @�n=@n < 0 for n = ne). Di¤erentiating totally the equilibrium conditions

with respect to S and evaluating at the equilibrium, we �nd that

sign
dpe

dS
= sign

�
H2Sc00 (p� c)

�
(p� c) @h

@n
+
@H

@n

��
< 0;

sign
dze

dS
= �H

�
(p� c) @h

@n
+
@H

@n

�
> 0;

and

sign
dne

dS
= sign

n
H2Sh�1 bBo = signn� bBo :

Di¤erentiating totally the equilibrium conditions with respect to F and evaluating at the

equilibrium, we �nd that

sign
dne

dF
= sign

�
c00H

�
h+

@H

@p
+ (p� c) @h

@p

�
+
�
c0
�2
h
@H

@p

�
= sign fBg < 0:

Furthermore,

sign
dpe

dF
= � sign

��
c0
�2
h
@H

@n
+Hc00

�
(p� c) @h

@n
+
@H

@n

��
= �sign dpn

dn

and

sign
dze

dF
= � sign

�
@H

@p

@h

@n
(p� c)� @H

@n

�
h+ (p� c) @h

@p

��
= �sign dzn

dn
;

where (pn; zn) is the equilibrium with exogenous n evaluated at n = ne. �
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Proof of Proposition 3: Similarly as in the proof of Proposition 6, di¤erentiating

totally the equilibrium conditions and evaluating at the equilibrium yields

sign
dpe

d�
= sign

�
Hc00 (p� c) 


	
;

and

sign
dze

d�
= sign

�
Hc0


	
;

where


 =

�
@H

@�

�
(p� c) @h

@n
+
@H

@n

�
� @H
@n

�
(p� c) @h

@�
+
@H

@�

��
:

We obtain that dp
e

d� < 0 and
dze

d� > 0 because 
 < 0 (
@H
@� � 0, sign

�
�
�
(p� c) @h@n +

@H
@n

�	
=

sign @�@n > 0,
@H
@n < 0, and sign�

�
(p� c) @h@� +

@H
@�

�
= sign @�

@� > 0); and

sign dne

d� = sign f�H�g, where

� � @H
@�

h
c00 (p� c)

�
h+ @H

@p + (p� c)
@h
@p

�
�
�
c0
�2
h
i

�
�
H + (p� c) @H@p

�
c00
�
(p� c) @h@� +

@H
@�

�
:

In general sign
dne

d�
is ambiguous. If

@H

@�
= 0 then sign

dne

d�
< 0 because

�
H + (p� c) @H@p

�
c00
�
(p� c) @h@� +

@H
@�

�
<

0.

If bB > 0 then sign dne
d�

< 0 because

� � @H

@�

bB
�h �

�
H + (p� c) @H

@p

�
c00
�
(p� c) @h

@�
+
@H

@�

�
:

�

Proposition 7 Let P 0 < 0 and c0 < 0, and let the following boundary conditions hold:

There exist c > c > 0 and X > 0 such that c > c (z) > c > 0; c0(0+) = �1; c0(z) ! 0 as

z !1, P (xn) � c if xn � X, and limx!0 fP (xn) + xP 0 (xn)g � c . Consider an extremal

symmetric interior equilibrium (x�; z�). Then x� and z� are strictly decreasing (increasing)

in n if Cournot best replies are strictly decreasing (increasing).

Proof: Given a symmetric investment pro�le z and given that P 0 < 0, there exist

extremal symmetric Cournot equilibria x (z) and x (z) that are increasing in z (Amir and
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Lambson (2000), Vives (1999, pp. 106�107)). This means that there exist extremal symmet-

ric equilibria in the game. Indeed, just consider x (z), where z is the smallest equilibrium

associated to x (�) and z is the greatest equilibrium associated to x (�) : At an extremal

interior equilibrium (x�; z�), we have P (xn) + xP
0
(xn) � c(z) = 0 and �xc0(z) � 1 = 0.

Therefore, � (z; n) � �x(z; n)c0(z) � 1 = 0, where x(z; n) is an extremal Cournot equi-

librium given z. We know that � (�; n) cannot jump down, since x(z; n) is increasing in

z; � (0+; n) > 0, since c0(0+) = �1; and � (z; n) < 0 for z large, since c0(z) ! 0 as

z ! 1. It follows that, for extremal z, � (z; n) is decreasing in z (indeed, it could not

otherwise be an extremal equilibrium) and therefore, if � (z; n) is strictly increasing (de-

creasing) in n then so will z be. We have that � (z; n) is strictly increasing (decreasing)

in n if and only if x(z; n) is strictly increasing (decreasing) in n. Given that x(z; n) ful�lls

'(x; z; n) � P (xn)+xP 0(xn)� c(z) = 0 and that, at extremal equilibria, ' is decreasing in

x �because (a) '(x; z; n) < 0 for x large (for xn � X we have p � c ) and (b) '(0+; z; n) > 0

(since limx!0
n
P (xn) + xP

0
(xn)

o
> c)�we conclude that x(z; n) is strictly increasing (de-

creasing) in n if and only if '(x; z; n) is, and this happens if P 0(xn) + xP 00(xn) is positive

(negative). �

Proof of Proposition 5: At the symmetric SPE we have that

' (z) � @V (zi; z�i)

@zi
jzi=z= �xc0 (z)

�
1 + (n� 1) P 0 + xP 00

(n+ 1)P 0 + nxP 00

�
� 1

= �x(z; n)c0(z)(1 +G(x; n))� 1 = 0;

where G(x; n) = ((n�1)=n)(n�E)=(1+n�E).43 Note that E(X) � 0 because P 00 � 0

and therefore E(X) < 1 + n (so that, for a given symmetric pro�le of investments, there

is a unique and stable symmetric Cournot equilibrium). Hence, dz
�

dn = �@'=@n
@'=@z . We have

@'
@z =

@2V
@z2i

+(n� 1) @2V
@zi@zj

evaluated at a symmetric solution. 44 Very tedious algebra shows

43With n + 1 > E; we have that signG = sign fn� Eg. That is, innovation e¤ort is larger (smaller) in

the two-stage (simultaneous) game depending on whether best responses in the Cournot game are downward

(upward) sloping.
44 Interestingly, Berry and Waldfogel (2003) show that in the restaurant industry (where quality is produced

mostly with variable costs) the range of qualities increases with market size, whereas in daily newspapers

(where quality is produced mostly with �xed costs) the average quality increases with market size and there
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that @2V
@zi@zj

< 0 when P 0 < 0, P 00 � 0; and P 0P 000 � (P 00)2 � 0; therefore, investments are

strategic substitutes at the �rst stage. Moreover, the second order necessary condition at

the equilibrium is @2V
@z2i

� 0 and so @'
@z < 0. Under the assumptions it is possible to check

also that @'=@n < 0. �

Proof of Proposition 6: We have (x; z; n) ful�lling:

P (xn=S) + (x=S)P 0(xn=S)� c(z) = 0

�xc0(z)� 1 = 0

(P (xn=S)� c(z))x� z � F = 0

Di¤erentiating totally the equilibrium conditions and evaluating at the equilibrium, we

�nd that
dxe

dS
=

(xc00)(x=S2)P 0

(2P 0 + (x=S)P 00)c00(x=S) + (c0)2

and
dze

dS
= � c0(x=S2)P 0

(2P 0 + (x=S)P 00)c00(x=S) + (c0)2
:

We have that sign
�
dze

dS

	
= sign

�
dxe

dS

	
> 0 because the denominator is negative (strict con-

cavity of pro�ts of �rm i with respect to xi and zi implies xc00(((n+1)P 0=S)+((xn=S)(P 00=S)))+

(c0)2 < 0 for any n, which in turn implies the result). Furthermore,

dne

dS
=
((n+ 1)P 0 + (x=S)nP 00)c00(x=S2) + (n=S)(c0)2

(2P 0 + (x=S)P 00)c00(x=S) + (c0)2
:

Su¢ cient conditions for dne=dS > 0 are that P 0+(x=S)P 00 < 0 and �c00x=Sc0 > nc0=P 0 > 0.

We obtain also

dxe

dF
=

c00
�
P 0 + x

SP
00�

�P 0
�
xc00
S

�
2P 0 + xP 00

S

�
+ (c0)2

� ;
dze

dF
=

�c0
�
P 0 + x

SP
00�

�xP 0
�
xc00
S

�
2P 0 + xP 00

S

�
+ (c0)2

� ;
and

dne

dF
=

xc00

S

�
(n+ 1)P 0 + nxP 00

S

�
+ (c0)2

x2

S P
0
�
xc00
S

�
2P 0 + xP 00

S

�
+ (c0)2

� < 0:
is no fragmentation as the market grows large.
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As before, we have that xc
00

S

�
2P 0 + xP 00

S

�
+(c0)2 < 0; and the inequality follows because

D = xc00

S

�
(n+ 1)P 0 + nxP 00

S

�
+ (c0)2 < 0: �

6.2 Examples

6.2.1 Exogenous market structure (restricted entry)

Denote by x and p the symmetric Bertrand equilibria for a given z; and let S parameterize

total market size.

Linear demand (Shapley and Shubik (1969)).45 Let S = 1 and Di (p) =

S
n

�
�� �

�
pi + 

�
pi � 1

n

P
i pi
���

for i = 1; ::; n, where �, �,  are positive constants. We

have H = (���p)=n. At a symmetric solution, the direct elasticity of substitution is given

by � = (1 + ) (�� nx) =nx, and it increases with the substitutability parameter .46 We

have that @H@n < 0 and that
@h
@n > 0;

@�
@n > 0;

@�
@ > 0; and

@H
@ = 0. For a given symmetric

pro�le z; there is a unique and symmetric Bertrand equilibrium with price p and output

per �rm x. We have that @p
@n < 0;

@x
@n < 0,

@x
@ > 0; and

@p
@ < 0. In summary,

@x
@n < 0 and

@x
@� > 0.

Linear demand (Bowley (1924)). Let Di (p) = S

 
an � bnpi + cn

P
j 6=i
pj

!
for i = 1:::; n,

where an = �= (� + (n� 1) ),

bn = (� + (n� 2) ) = ((� + (n� 1) ) (� � )) ; and

cn = = ((� + (n� 1) ) (� � )) and where � > 0 and � >  > 0 are utility parameters.47

At a symmetric solution, the direct elasticity of substitution � = p= (� � )x increases

with . The Chamberlinian DD demand function is given by H = (�� p) = (� + (n� 1) ),

where @H
@n < 0; @h@n < 0; @�@n > 0; @�@ > 0, and @H

@ < 0. For a given symmetric pro�le z;

45This linear demand system can be derived from a quadratic utility function (with preferences linear in

the numéraire) in which the number of �rms n enters as a parameter. See Vives (1999, Chap. 6).
46For symmetric solutions (with demands arising from the maximization of a quasilinear utility function),

the (direct) elasticity of substitution is given by � = ("ij + "i)
�1, where "ij is the cross�elasticity of inverse

demand, "ij =
qj
pi

@Pi
@qj

. Note also that "ij � 0 and "i � 0.
47This linear demand system can be derived also from a quadratic utility function (with preferences linear

in the numéraire). See Vives (1999, Chap. 6).
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there is a unique and symmetric Bertrand equilibrium with price p and output per �rm

x: p = (an + bnc (z)) = (2bn � (n� 1) cn). We have that @p
@n < 0; @x@n < 0, and @p

@ < 0 but

@x
@ < 0. Hence, in this case, increasing competitive pressure by increasing the elasticity of

substitution decreases output. With this particular demand system we have the unusual

feature that @H@� < 0. In summary,
@x
@n < 0 and

@x
@� < 0.

Location models (Salop (1979)). Although formally in models with localized competi-

tion the demand system is not exchangeable for n > 2; the analysis is easily adapted. A

uniform mass of customers S is distributed within a circle in which n �rms have located

symmetrically and each produces at constant marginal cost c. Consumers have a linear

transportation cost t > 0. Then the demand of �rm i setting price pi (with neighbors

setting a price equal to p) is S
n +

p�pi
t when there is direct competition among �rms. We

can take � � 1=t. Therefore H = S=n and H is independent of p and �. There is neither

price�pressure e¤ect nor a demand e¤ect coming from �. The unique Bertrand equilibrium

is p = c + t=n and � = 1 + nc=t, which for given c is increasing in n and in �. If the

transportation cost is quadratic with parameter t; then the Bertrand equilibrium is given

by p = c+ t=n2.

Constant elasticity. Let

Di (p) = S (��)
1

1��� p
1

1��
i 

nP
j=1

p

�
��1
j

! 1��
1���

for i = 1:::; n; with 0 � � < 1 and also 0 � �� < 1.

The (direct) elasticity of substitution is � = 1= (1� �); for � = 0 goods are independent, and

for � = 1 they are perfect substitutes. We have thatH = S (��)1=(1���) p�1=(1���)n�(1��)=(1���)

and that @H
@p < 0, sign @H

@n = sign (� � 1), and @H
@� > 0. Restrict attention to the case

� � 1 < 0 in order to ensure a limited market for the di¤erentiated varieties: @H
@n < 0.

We have that � = 1
1��

�
1� �

n
1��
1���

�
, which is strictly increasing in n and � (and therefore

the Lerner index L will be decreasing in n and �). For a given symmetric pro�le z; there

is a unique and symmetric Bertrand equilibrium with price p and output per �rm x (the

price game is log-supermodular and there is a unique symmetric equilibrium, hence the

symmetric equilibrium is the unique one). In equilibrium, @h@n > 0, @�@n > 0 (for n > 1),

and p = (n (1� ��) + � (� � 1)) c= (�n (1� ��) + � (� � 1)), and it is easily checked that

sign @p
@n = sign (� � 1) < 0 and @x

@n < 0. Furthermore, @p
@� < 0 and @x

@� > 0 because
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@x
@� =

@H
@� +

@H
@p

@p
@� ;

@H
@� > 0;

@H
@p < 0, and

@p
@� < 0. In summary,

@x
@n < 0 and

@x
@� > 0.

Assuming that c (z) = �z� with � > and  > 0; we can obtain a closed�form solution.

It can be shown that, evaluating at a symmetric equilibrium, B < 0 if and only if �� < 1
+1 .

Some computations then yield

z� =

�
��� (S)���1 n1�� (��)�1

n (1� ��) + � (� � 1)
�n (1� ��) + � (� � 1)

� 1
��+���1

;

and

p� =

24(S�)���1 (��)�1 n1�� �� n (1� ��) + � (� � 1)
�n (1� ��) + � (� � 1)

� (+1)(1���)
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1������

:

By Proposition 4 it follows that if �� < 1
+1 then

dz
dn < 0 and dz

d� > 0. Indeed, for

�� < 1
+1 we have sign

dz
dn = sign (�� + �� � 1) < 0 and dp

dn < 0 because sign dp
dn =

�sign ��+���1
��+���1� < 0. Furthermore, �

�
n = z

� 1����
�
1� 1

n
1��
1���

�
�
�
1� 1

n
1��
1���

� = z�
�

1

(� � 1)  � 1
�
and

sign bB = �sign 1
1��

n
1� � � �

�
1� 1

n
1��
1���

�o
. As a result, ��n > 0 if and only if bB < 0.

This means that ��n is strictly decreasing in n whenever positive. Note also that � � 1
+1

guarantees that bB < 0 for all n.
Constant expenditure model. Let Di (p) = S

pi

g(pi)
nP
j=1

g(pj)
; i = 1; :::; n; with g > 0, g0 < 0;

and S > 0. We have that H = S=np and therefore @H
@n < 0 and

@H
@� = 0. We have also that

d�
dn > 0 because

@H
@n + (p� c)

@h
@n = �

S
pn2

h
c
p �

g0(p)
g(p)

i
< 0:

Let g (p) � e��p with � > 0. Observe that goods are independent for � = 0 yet are

perfect substitutes for � !1. Let S = 1. For a given symmetric pro�le z; there is a unique

and symmetric Bertrand equilibrium with price p and output per �rm x (the price game is

log-supermodular and symmetric and there is a unique symmetric equilibrium, so the sym-

metric equilibrium is the unique one). We have p =
�
c+

�
c2 + (4cn= (� (n� 1)))

�1=2�
=2,

x = S=np, @p@n < 0;
@x
@n < 0;

@p
@� < 0;

@H
@� = 0; and

@x
@� > 0.

Another example is of the constant elasticity variety: g (p) � p�r where r > 0 (see

Anderson, de Palma and Thisse (1992, Chap. 7)).48 Goods are perfect substitutes when r !
48This is also the speci�cation in Aghion et al. (2002).
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1 but are independent when r ! 0. We can take � = 1+r. (The demand system may arise

from W (x0; x) =
�P

i x
r

1+r

i

� 1+r
r
x�0 for � > 0, yielding S = I=(1+�), where I is the income

of the representative consumer.) We have that h = �S n(r+1)�r
(np)2

, @h@p = �S
2(n(r+1)�r)

n2p3
< 0,

and � = n(r+1)�r
n (which increases with n and r). For a given symmetric pro�le z; there

is a unique and symmetric Bertrand equilibrium with price p and output per �rm x (the

price game is log-supermodular and symmetric and there is a unique symmetric equilibrium,

hence the symmetric equilibrium is the unique one). We have that p = cn(r+1)�rr(n�1) ;
@p
@n =

� c
r(n�1)2 < 0;

@x
@n < 0;

@p
@r = �

cn
r2(n�1) < 0, and

@x
@r > 0 because

@H
@p < 0 and

@H
@r = 0.

Assuming that c (z) = �z� with � > and  > 0, we can obtain a closed�form solution.

It can be shown that B < 0 if and only if +1 > r(n�1)
r(n�1)+4n . This is always true. The

equilibrium solution is z� = Sr(n�1)
n(n(r+1)�r) and p

� = �

�
S
n

�
r(n�1)
n(r+1)�r

� +1


��
. Indeed, we have

that sign dz
dn =

sign
n
d
dn

�
r(n�1)
n(r+1)�r

�
< 0
o
and sign dp

dn =

�sign
�
� 1
n2

�
r(n�1)
n(r+1)�r

�1=
r

n(r+1)�r

�
1� +1


n

n(r+1)�r

��
: We have also that dxdn < 0:

Pro�ts are given by �n = S
h
n�r(n�1)
n(r(n�1)+n)

i
; they are strictly decreasing in n, and �n > 0

if and only if n > r (n� 1). This holds for all n if r < 1. Positive pro�ts imply thatbB < 0 � bB < 0 if and only +1


n
r(n�1)+n >

r(n�1)
r(n�1)+4n

�
and dp

dn < 0.

We have that L = n
n(r+1)�r , which is decreasing in n and r. The R&D expenditure/sales

ratio z�n
p�x�n =

z�n
S = r(n�1)

n(r+1)�r is increasing in r and n.

Logit. Let Di (p) = e�pi=�P
j
e�pj=�

S, i = 1; :::; n, � > 0. We have that goods are perfect

substitutes for � = 0 and are independent for � = 1, and the elasticity of substitution is

pn=�. Furthermore, H(p) = S=n and h(p) = �(S=n)(1� 1=n)=�, @H@n < 0; and
@h
@n > 0. We

have that � = p(n�1)
�n , which is increasing in n and � � 1=�. For a given symmetric pro�le z;

there is a unique and symmetric Bertrand equilibrium with price p and output per �rm x (the

price game is log-supermodular and symmetric and there is a unique symmetric equilibrium,

so the symmetric equilibrium is the unique one). We have that p = c+ n�= (n� 1) ; @p@n < 0;

and @x
@n < 0. There is no price�pressure e¤ect because

@H
@p = 0; but there is a demand e¤ect

@Hn
@n < 0. Furthermore, @H@� = 0 and therefore there is no demand e¤ect. Neither there is

a price�pressure e¤ect, (because @H
@p = 0) and hence, despite that @p�

@� < 0, we have that
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@x�

@� = 0. (In this case B < 0 always because
@H
@p = 0.)

As before, assuming that c (z) = �z� with � > and  > 0 yields a closed�form solution:

p = n�
n�1+�

h
S�
n

i� 
+1
and z =

h
S�
n

i 1
+1
. We have that L =

�
1 + n�1

�S

�
S�
n

� 1
+1

��1
, which

is decreasing in n and � � 1=� and that z�

p�x� =

�
1
S +

�
n�1

�
n
S�

� 1
+1

��1
, which is increasing

in n and �:

6.2.2 Endogenous market structure (free entry)

Constant elasticity. It can be shown that, evaluating at a symmetric equilibrium, B < 0 if

and only if �� < 1
+1 and sign

bB =
�sign

n
1
1��1� � � �

�
1� 1

n
1��
1���

�o
. We have, that for given n,

zn =

�
��� (S)���1 n1��

n (1� ��) + � (� � 1)
�n (1� ��) + � (� � 1)

� 1
��+���1

and

pn =

24(S�)���1 (��)�1 n1�� �� (n (1� ��)) + � (� � 1)
� [n (1� ��) + (� � 1)]

� (+1)(1���)
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1������

:

The free�entry number of �rms is [ne]; where ne is the solution to

�n = zn
1� � � �

�
1� 1

n
1��
1���

�
�
�
1� 1

n
1��
1���

� � F = 0

given that variable pro�ts (whenever positive) are strictly decreasing with n. It is straight-

forward to check that pro�ts are strictly increasing in S because @z=@S > 0. It follows then

that dn
e

dS > 0.

The following expression implicitly de�nes ne:

�
(S�)���1 n1�� (��)�1 �

n (1� ��) + � (� � 1)
�n (1� ��) + � (� � 1)

� 1
��+���1

=
F� (n (1� ��)� (1� �))

(1� � � �)n (1� ��) + (1� �)� :

In equilibrium it should hold that ze = F�([ne](1���)�(1��))
(1����)[ne](1���)+(1��)� or z

e = F(��1)
1�(��1) ;

where � = 1
1��

�
1� �

n
1��
1���

�
. From this expression, knowing that dne

dS > 0 it follows that
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dze

dS > 0: (This holds even if [ne] stays constant for increasing S; in this case, the direct

impact of S increases z.)

With constant elasticity demand and  constant, the Lerner index is decreasing in z.

Therefore, increasing S increases z, decreases L, and increases �. The result is that n must

increase.

We know also that increasing F increases z (because sign dze

dF = �sign dzn
dn > 0) and

increases p (because sign dpe

dF = sign
dpn
dn > 0). It can be checked that

dzene

dF < 0 if � � 1
+1 .

If F = 0 and � � 1
+1 ; then pro�ts are strictly positive for all n and n

e =1.

If F = 0, � > 1
+1 ; and �� <

1
+1 , then we still know that pro�ts (whenever positive)

are strictly decreasing with n . Then the free�entry number of �rms is
h

�(1��)
(1���)(�+��1)

i
because, at this n; adding one more �rm would result in negative pro�ts. In this case the

free�entry number of �rms is independent of S, and ne � 1 as long as � > 1
+1 ; as before,

under our assumptions
�
�� < 1

+1

�
, dzdS > 0 and

dp
dS < 0. (Note that for n =

�(1��)
(1���(�+��1))

we have bB = 0.) Furthermore, dned� < 0 (using the assumption �� < 1
+1).

Constant expenditure (and constant elasticity). Given n, zn =
Sr(n�1)
n(n(r+1)�r) and pro�ts

are given by �n = S
h
n�r(n�1)
n(r(n�1)+n)

i
. They are strictly decreasing in n, and �n > 0 if and only

if n > r (n� 1). This holds for all n if r < 1. Positive pro�ts imply that bB < 0 ( bB < 0
if and only if +1

n
r(n�1)+n >

r(n�1)
r(n�1)+4n).

Using the zero pro�t�entry condition we obtain

ne =
(F � S) r + S +

q
(Fr + S � Sr)2 + 4rSF (r + 1)
2F (r + 1)

;

which is strictly increasing in S provided that r < 1: Furthermore, as expected, dz
e

dS > 0;

dze

dr > 0; and sign
dn
dr = sign

d�
dr < 0 (recall that @H=@r = 0). We know also that increasing

F increases z (because sign dze

dF = �sign dzn
dn > 0) and increases p (because sign dpe

dF =

�sign dpn
dn > 0). It is immediate then that dneze

dF < 0. The Lerner index is given by

L = n
r(n�1)+n ; and it can be checked that (a)

dL
dr < 0 whenever n > r (n� 1) and (b) L is

increasing in F because n is decreasing in F .

Logit. Given n, we have pn = c (z) + �n
n�1 and zn =

h
S�
n

i 1
+1
. Pro�ts (gross of �xed

costs) are given by �n =
S�
n�1 �

h
S�
n

i 1
+1
. For pro�ts to be decreasing in n we need
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S�(+1)
n�1 � n�1

n

h
S�
n

i 1
+1

> 0 (which is equivalent to bB < 0 and is implied by positive pro�ts
�n > 0).49 We conclude that if �n is positive then it is strictly decreasing in n: The free�

entry number of �rms is implicitly de�ned by [ne] where ne solves S�
n�1 �

h
S�
n

i 1
+1

= F .

Consistent with our other results, we have dn
e

dS > 0 and
dze

dS > 0;
dx
d� < 0 or

dx
d� > 0;

dz
d� < 0 or

dz
d� > 0; and

dne

d� > 0 or
dne

d� < 0. Increasing F increases z
e (because sign dze

dF = �sign
dzn
dn >

0), decreases neze (because neze = [S�]
1

+1 n


+1 ) and the impact on p is ambiguous

(because sign dpe

dF = �sign dpn
dn ). We have that L =

�
1 +

�
�
n�1

��1 �
S�
n

� 1
+1 1

S

��1
and

dL=d� < 0 (taking into account the impact of � on L), and dL=dF > 0 because L decreases

in n and n decreases with F .

Constant elasticity demand with innovation function c(z) = 1
A+z . Let Di (p) = S

p��i
�jp

��
i

and A > 0. It can be shown that at a symmetric equilibrium B < 0 always and sign bB =
sign [(� � 1) (n� 1)� n]. We have that for given n, zn = S(��1)(n�1)

n[n��(��1)] � A + F and pn =
n[n��(��1)]2

S[(��1)(n�1)]2 . We have also that sign
dz
dn = sign [�n� (n� 2)� � + 1] < 0 and sign dpdn =

sign [n� (n� 3) + (� � 1) (n+ 1)] is positive for n � 3 and ambiguous for n 2 (1; 3). The

free entry number of �rms is ne, where ne solves S[n�(��1)(n�1)]
n[n��(��1)] + A � F = 0 given that

pro�ts are decreasing in n. (Whenever n > 2; @�@n < 0 ) � < 2n�1
n�2 :) It is straightforward

that sign@�@n = �sign (A� F ). It follows that signdnedS = �sign (A� F ). As expected
dne

d� < 0: Also, increasing F increases z (sign dzdF = �sign dzdn > 0) and has an ambiguous

e¤ect on p (sign dpdF = �sign
dp
dn). The Lerner index is L =

n
n��(��1) and it can be checked

that sign dLdF = �sign
dn
dF > 0: We have also that sign

dL
d� = sign (A� F ) :
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