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Abstract 

 

 

 
While efficacy and safety data collected from randomized clinical trials are the 

evidentiary standard for determining market authorization, this alone may no longer be 

sufficient to address the needs of key stakeholders (regulators, providers and payers) and 

guarantee long-term success of pharmaceutical products.  There is a heightened interest 

from stakeholders on understanding the use of real-world evidence (RWE) to substantiate 

benefit-risk assessment and support the value of a new drug.  This review provides an 

overview of real-world data (RWD) and related advances in the regulatory framework, 

and discusses their impact on clinical research and development.  A framework for 

linking drug development decisions with the value proposition of the drug, utilizing 

pharmacokinetic-pharmacodynamic-pharmacoeconomic (PK-PD-PE) models, is 

introduced.  The summary presented here is based on the presentations and discussion at 

the symposium entitled Innovation at the Intersection of Clinical Trials and Real-World 

Data to Advance Patient Care at the American Society for Clinical Pharmacology and 

Therapeutics (ASCPT) 2017 annual conference. 

 

 

Introduction 

 
 

The fundamental goal of advancing patient care through precision and 

translational medicine is to provide targeted treatments enabling favorable treatment 

outcomes while minimizing the risk.  Traditional clinical trials and regulatory approval 

processes focus on “does the drug work?” under a(n) selected/ideal design.  While this is 
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reasonable, it may not provide sufficient information on how well the drug works under 

real-world conditions in varied contexts (e.g., polypharmacy or comorbidities) and across 

patient sub-populations (1).  Consequently there has been an increasing focus on 

inclusion of real-world data (RWD) in healthcare decisions as well as in the development 

and commercialization of new medicines (2,3). Further, with the heightened attention to 

value based pricing, pharmaceutical companies are under increased pressure to 

demonstrate the value of new drugs in the context of their routine use.  It is more pressing 

than ever, therefore, to understand the value (cost-effectiveness) of new drugs early in the 

development process using novel predictive approaches such as PK-PD-PE models.  

Advances in digital technology and analytics are making use of RWD more 

feasible than ever; however, important challenges remain to be resolved.  Privacy laws, 

technical complications, and evolving regulations have all hindered access and 

implementation of RWD to improve the efficiency of the drug development cycle.  

Uptake of RWD to inform development of the target product profile and/or design of 

clinical studies is still a work in progress (4).  Nevertheless, as discussed in this review, 

many of these hurdles can be overcome to improve clinical research, support application 

for marketing authorization, conduct post-marketing safety surveillance and expand 

patient access. 

The aim of this paper is to provide an overview of RWD and recent advances in 

the regulatory framework, highlight gaps and limitations, and discuss implementation 

opportunities in the areas of drug development, regulatory assessments, medical practice 

and payer assessments to readers who are familiar with clinical development applications 

of PK-PD models.  More importantly, a method for integrating RWD within the 
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paradigm of model-based drug development, namely PK-PD-PE modeling, is introduced, 

to highlight opportunities for contribution in early value assessment for clinical 

pharmacology and pharmacometric scientists.    

 

Real World Data and Real World Evidence 

 

Real world data (RWD) and real world evidence (RWE) are typically used 

interchangeably. The following section will introduce, discuss, and provide clarity around 

these terms.  

Types and Sources of Real World Data 

When used in the healthcare context, the term “Real-World Data” usually refers 

to patient-level data gathered outside the conventional clinical trial setting. Such data 

may be generated in the course of normal clinical practice or administrative claims 

processing, or may be reported directly by patients.  Examples include data from: patient 

charts, laboratory reports, prescription refills, patient registries, patients treated on- and 

off-label, patients treated through expanded access, pragmatic clinical trials, surveys and 

mobile health devices, as well as other data from existing secondary sources used to 

support decisions concerning safety, quality, care coordination, coverage, and 

reimbursement (5).  

Advances in technology, data science and healthcare policies have resulted in 

tremendous growth in the volume, sources and utilization of RWD with collection of 

larger and more diverse datasets.  The expansion in the use of electronic health records 

(EHRs) and the proliferation of consumer digital technologies including mobile devices, 

wearables, sensors, adherence tools, social media platforms and online patient 
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communities, have provided new data sources as well as improved means of capturing, 

storing and analyzing longitudinal RWD on patients.  The current RWD landscape is 

characterized by enormous variety and complexity (Figure 1).  It extends beyond 

traditional sources such as chart reviews, prescription or claims data to include both 

structured and unstructured data from a host of heterogeneous sources. These data 

include, among others, phenotypic and genotypic data from discrete fields as well as 

clinical notes in electronic health records, multi-omics and other molecular profiling data 

from bio-specimen banks, and patient-reported outcomes from surveys and prospective 

registries.  Mobile health devices and other wearable applications comprise additional 

novel sources of previously unavailable patient-level data.  These devices offer 

continuous monitoring, data collection and real-time transmission capabilities that is 

rarely achieved in routine clinical care (6).  Online patient communities such as 

PatientsLikeMe (7) and initiatives like PCORnet (8) as well as consumer genetic services 

like 23andMe (Mountain View, CA) and uBiome (San Francisco, CA) have led to the rise 

of empowered patients who are more open and willing to share their health information 

for decision-making and research purposes.   

Real World Evidence 

Real-world evidence refers to the output of RWD analysis that is used to generate 

insights, using appropriate study design and scientific methods, to inform decision-

making by healthcare stakeholders.  Generating evidence from RWD therefore depends 

not only on capturing ‘big data’ – large volumes of these diverse data – but in effectively 

integrating these multiple and often disparate sources of data to obtain meaningful 

insights.  Most recently, a publication from the FDA broadened the definition of RWE to 
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any data “generated from any study design [including RCTs] as long as the data source is 

from routine care and the design is highly pragmatic, meaning the trial design and 

conduct closely approximate the eventual use of the product in clinical practice,” (9).   

 

Regional Perspectives on Real World Data 

The emphasis on the use of RWE to inform and improve healthcare decisions 

reverberates across all major markets. However, the acceptance and applications of RWE 

for decision making is variable across the globe.  In the US, the FDA has long been 

interested in using healthcare data generated in real-world to learn about medical 

products, particularly drug safety.  In considering this, the FDA launched the Sentinel 

initiative in 2008, which allows monitoring of the safety of FDA-regulated products 

using RWD from sources such as EHRs, insurance claims data and registries (10).  More 

recently, the Sentinel capabilities were expanded under a public-private partnership in 

order to provide access of Sentinel data also to private-sector entities, such as regulated 

industry, academic institutions, and non-profit organizations. This program, named 

Innovation in Medical Evidence Development and Surveillance (IMEDS), is a national 

resource of big healthcare data, promoting the use of RWD for research related to broader 

public health benefit and medical evidence generation (11). RWD is also used routinely 

in the EU, particularly for monitoring of safety and drug utilization for marketed 

products. Further, in EU there is “increasing interest in the use of RWE for efficacy, 

outcomes for Health Technology Assessment (HTA), and for rapid cycle evaluation of 

medicines” (12).  
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Government policies to address rising health care costs and the need for better 

ways to measure performance have also fueled a strong demand for RWD.  In the US, 

healthcare reforms intended to improve healthcare quality and reduce costs are a strong 

driver in this respect.  Value-based payment reforms contain direct provider incentives 

that rely on the collection, reporting and analysis of RWD to assess and improve provider 

performance based on approved quality metrics.  In Europe, similar budget pressures are 

driving HTA bodies and payers to use real world evidence in conjunction with evidence 

from clinical research to inform reimbursement decisions.   

 

Promise of Real World Data for Various Stakeholders 

As RWD has become more robust and ubiquitous, various stakeholders have become 

increasingly interested in its use and application in a variety of different settings (Figure 

2).   

Regulatory agencies 

The passage of the 21st Century Cures Act (“The Act”) by the US Congress in 

December 2016 opened up a new pathway for pharmaceutical companies to leverage 

RWD in the development and expansion of indications for their products in the US, 

which was reinforced in the Prescription Drug User Fee Act (PDUFA) VI authorization.  

The Act clearly defines a role for RWE in the regulatory process by mandating that the 

US FDA must issue guidance describing how pharmaceutical companies may use RWE:  

(1) To help support the approval of a new indication for a drug approved under 

section 505(c); and 

(2) To help support or satisfy post-approval study requirements.  



   8 

 

This has significant implications for both the cost and speed of drug development.  

Pharmaceutical companies have sought to utilize combinations of multiple existing 

registries to satisfy post-approval safety study (PASS) requirements in both US and EU 

contexts (12).  

In addition to increased use due to better data availability and regulatory 

accommodation, the role of RWD/RWE only appears poised to increase as drugs target 

smaller and smaller populations of patients.  These niche populations limit 

pharmaceutical companies’ attempts to undertake RCTs. RWD could potentially provide 

another axis of data to consider in how evidence of efficacy and safety are substantiated 

in niche populations. RWD may be combined with traditional data to increase efficiency 

and reduce costs of clinical development without lowering the standard of evidence. 

RWE can be leveraged for regulatory decision making related with label extension or to 

support a new indication for an approved drug as well as to substantiate confirmatory 

evidence for drugs approved under the expedited regulatory programs. Other authors 

have described opportunities for single-arm trials to be implemented and evaluated 

through the concept of “threshold-crossing” (13).  In this model, an efficacy or safety 

threshold is established as a benchmark for a new drug via the use of RWD, and if this 

threshold is achieved the new drug can be considered successful and can forgo RCT 

evaluation.  If unsuccessful, a traditional RCT is established.  Finally, RWD/RWE is 

being used to fulfill post-marketing commitments in many instances, and increased 

uptake of RWE will further improve the efficiency of such monitoring and surveillance 

activities.    

Payers 
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Besides the use of RWD in a regulatory context, novel types of RWD are creating 

efficiencies and permitting uses heretofore unavailable to pharmaceutical companies and 

payers.  In many indications, endpoints for efficacy and effectiveness are subjective, or 

occur so infrequently in early stages of the disease progression that drug developers 

choose to use proxies for the true clinical endpoints.  Examples include cholesterol as a 

surrogate for adverse cardiovascular events, HbA1c for diabetes endpoints such as nerve 

damage or kidney disease, and progression free survival in many types of cancer.  In 

addition to surrogate-to-real endpoint comparisons, payers have concerns about small 

sample sizes among drugs approved to treat rare diseases.  RWD can facilitate creation of 

larger cohorts of patients with rare diseases where patients are extremely difficult to 

identify, or those slow-progressing conditions, otherwise not amenable to prospective 

clinical trial-based analyses.  This is being achieved via aggregation of multiple RWE 

datasets to enable creation of “virtual control arms” or “synthetic patient cohorts” which 

combine smaller cohorts of similar indication and stage of disease multiple datasets.  This 

combined group of patients can then be used as both test and counterfactual arms for 

rare-disease analyses. 

Increasingly, payers are concerned about the validity of surrogate endpoints 

among their populations, and the smaller sample sizes used to test new medications in 

targeted and genetic therapies (14).  Payers are turning to their own or third party RWD 

repositories to undertake analyses of the relationships between these surrogate endpoints 

reported from randomized clinical trials, and the true clinical endpoints available in larger 

RWD repositories that are most relevant to the disease being treated.  Large datasets are 

also being used to collect data from prospective drug trials to provide estimates of drug 
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treatment effects in broader, more heterogeneous populations using a variety of 

endpoints.  The use of these datasets can overcome the limitations of clinical trials, where 

endpoints have to be valid within the (relatively short) duration of the trial, and the set of 

endpoints captured is often limited by financial and patient and provider burden 

considerations.  This is a concept exemplified by the Salford Lung Study (15). 

These questions of surrogate to real-endpoint consistency and efficacy in 

heterogeneous patient populations are significant in the context of medication value, 

where outcomes among the highly selected patient participants in an RCT can be 

markedly different when seen in a real-world patient population with comorbidities and 

imperfect medication adherence.  Payers have begun to use these RWD-enabled analyses 

to drive conversations with pharmaceutical companies regarding prices for therapies and 

appropriate payment models (16).  The availability of RWD enables these new payment 

models by allowing pharmaceutical companies and payers to identify performance in 

individual patients and pay for good outcomes, or avoid paying for bad ones for drugs 

while they are being used by patients in real practice.  This parallels the pay-for-

performance models that have been, and continue to be used for healthcare providers.  

Care Delivery System 

The use of RWD may also permit more accurate ways to align drugs to patients 

than is possible with clinical trial or anecdotal physician experience data.  Using RWD, 

population health analysts and epidemiologists are able to identify large subsets of 

patients within specific disease populations, and using phenotypic, genotypic or 

laboratory data available within the patient record, more effectively and appropriately 

assign treatments.  Examples of this in practice include analysis of RWD on diabetic 
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patients’ use of specific drugs to identify inappropriate use of medications with renal 

dosing implication among patients with kidney disease, through estimated glomerular 

filtration rate calculation via electronic medical record (EMR) data (17).  The application 

of these results at a population-level and via feedback to physicians through clinical 

decision support systems embedded within the EMR and data collection tools can lead to 

better patient management.  

The potential for RWD to improve the provision of healthcare is enormous. It 

remains to be seen, though, to what extent RWD can significantly change the healthcare 

landscape. 

 

Barriers and Solutions to Enable Use of Real World Data 

While RWD offers significant opportunities for improving healthcare research, 

innovation, and decision making, as with any rapidly evolving field there are challenges 

to leveraging its full potential.  These challenges range from technical (e.g., claims data 

are collected for administrative billing purposes but are envisioned now to support drug 

development decisions), to ethical (a risk to privacy as health information and patient 

datasets are aggregated), to analytical (selecting which RWD are appropriate to informing 

a particular decision, and reducing the risk of bias).  The growing emphasis on the use of 

RWD is expected to improve our understanding of these datasets as well as fill existing 

knowledge gaps. 

Data quality 

Since most RWD are not collected for research purposes, the data collection is 

episodic, reactive and at best offer a partial picture.  As a result, RWD is in general messy 
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and sparse, and requires statistically rigorous and valid methods to clean the data and 

correct inconsistencies.  Careful data curation, using both structured and unstructured 

data, is especially important for precision therapeutics in oncology where often crucial 

information related to molecular biomarkers or endpoints data can be missing.  Missing 

data may also need to be filled by linking to alternative data sources (18).  Analysts must 

also identify and adjust for confounding factors such as demographics, socioeconomic 

and insurance status, disease severity, co-morbidities, concomitant medications and 

genetic-predispositions to certain conditions before conducting in-depth analyses.  RWD 

is also subject to selection bias as cohort selection and treatment decisions in clinical 

practice are not random.  Therefore, following appropriate guidelines on design and 

validation of RWE studies can help in minimizing some of the sources of bias and 

inconsistencies (19).  

Interoperability 

In addition, standards for the development and maintenance of data assets have 

not yet caught up with the rapid evolution of RWD.  A lack of interoperability between 

real-world databases creates difficulties for combinatorial analysis and collaboration 

between data holders.  Even within individual organizations there is often a lack of 

consolidated or centralized data storage, leading to difficulties in analyzing data across 

different data sets.  Overall, there is a need to implement standardization and maintain 

robust quality assurance (QA)/quality control (QC) practices to support data robustness.  

The not-for-profit organizations such as Health Level 7 (http://www.hl7.org/) and the 

IMEDS initiative (11) are creating standards for electronic health data and promoting 

interoperability among systems.  In the future, advances in data standardization, 
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interoperability and linkage techniques are anticipated to further enable disparate data 

sources to converge into a single platform for more seamless and efficient analytics.  One 

such example is the Administrative Data Research Network (https://adrn.ac.uk) 

established in the United Kingdom in 2012, which allows access to linked, de-identified 

government data for social, economic, environmental and health research.  Commercial 

organizations like QuintilesIMS and Flatiron Health have linked numerous community 

healthcare practice datasets to provide larger, more robust data analytic platforms for 

research. 

Analytical PlatformsEven though the adoption and use of EHRs has grown 

significantly, extracting meaningful data from EHRs in an accurate and efficient manner 

remains challenging.  This is owing to the fact that a significant portion of high-value 

clinical information in EHRs is often stored in unstructured, free-text clinical documents 

that are inaccessible to algorithms and requires layers of pre-processing.  For example, 

even a frequently used metric such as the ankle-brachial index (ABI) – a ‘quantitative’ 

data point for defining peripheral arterial disease (PAD) is typically embedded in the text 

of radiology reports, hidden from structured data analytics tools.  

Natural Language Processing (NLP) methods provide one approach for extraction 

and conversion of unstructured information from clinical text data to structured 

observations  – such as, Karnofsky and Mini Mental State Examination scores for 

determination of disease severity and functional status in oncology and Alzheimer’s 

Disease patients, extraction of findings such as ejection fraction from laboratory reports, 

biomarker information from pathology reports as well as in the assessment of patient 

characteristics such as emotional and social behaviors from physician notes.  Further, pre-
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defined fields in EHR (e.g. problem lists, past history, or test result fields) capture only 

certain disease information and may miss the trends of other prevalent, but unlisted, 

health conditions.  NLP can be a powerful tool to extract symptoms from physician notes 

or textual data from lab reports to enable identification of those trends/conditions, thus 

complementing the assessments using structured data. 

NLP uses a combination of linguistics, pattern recognition and machine learning 

techniques to extract context-appropriate information from reports to derive insights from 

a clinical text narrative.  In addition to routine text-mining and extraction capabilities, 

more sophisticated machine learning algorithms can also be layered on top of NLP for 

automated assignment of diagnosis codes as well as in the identification of patient 

cohorts, using predefined inclusion/exclusion criteria, based on information contained in 

clinical notes.  More recently, application of deep learning methods have resulted in 

impressive advances in NLP, especially in the development of unsupervised models using 

recurrent neural networks and autoencoders that reduce dependence on high-quality, 

manual annotations of text data (20–22).  These methods allow algorithms to learn high-

level abstractions from clinical data and notes when concepts are not mentioned 

explicitly.  Availability of large volumes of real-world clinical data enables the training, 

development and validation of new algorithms.  However, before clinical notes can be 

used for research, adequate precautions must be taken to ensure all HIPAA (Health 

Insurance Portability and Accountability Act)-defined protected health information (PHI) 

elements are removed or anonymized to de-identify the dataset. Overall, NLP methods 

can add significant analytical capabilities that can increase the utility of EHR data.  
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Beyond NLP, advances in machine learning have enabled new approaches for 

prediction of disease onset, future diseases (23,24) and risk scores (25,26) from 

longitudinal EHRs and lab tests, identification of treatment course based on patient 

outcomes (27) and in image recognition for classification of radiology and pathology 

images (28,29).  Methods for assessing disease heterogeneity and predicting patient 

outcomes, given the information about a patient, their history and individual-specific 

variability, have demonstrated capabilities to include both observed as well as latent 

features extracted from messy, multivariate EHR data (30).  Advanced analytics using 

machine learning on longitudinal RWD has the potential to inform and reframe drug 

development and clinical trial design strategy - through patient stratification into sub-

groups based on disease subtypes, drug treatment efficacy, progress, side effects, and 

toxicity profiles - by shifting from presumption of a single disease to multiple, related 

diseases.  As machine learning algorithms and frameworks continuously advance, there 

will be improvements in the ability of these models to learn continuously as new 

information emerge either in the form of additional data sources or updated treatment 

guidelines (31). 

 

Applications of Real World Data for Pharmaceutical R&D 

The following section will discuss application of RWE in clinical development and 

introduce PK-PD-PE modeling to highlight opportunities for early value assessment as 

part of clinical development. 

Transforming Clinical Development through Real World Evidence 
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Real world data presents an opportunity to disrupt an inefficient pharmaceutical 

business model stifled by a high failure rate, rising development costs (32), and increased 

pressure from various stakeholders including regulators, payers, prescribers, and patients 

(33).  

To discuss future opportunities for leveraging real world data, a traditional drug 

discovery/development model is contrasted to propose a new model for drug 

discovery/development in the digital era (Figure 3).  In the traditional model, the goal is 

to obtain regulatory approval for a “pill-in-a-bottle” followed by real world 

considerations (differentiation, value, integration with other modalities, etc.).  The 

proposed new model leverages the advances in big data such as multi-omics, sensor 

devices and technology, imaging and other relevant data in health ecosystem wellness 

apps, social networking, etc. to garner the real world evidence while still gaining the 

necessary data for regulatory approval.  The new types of data can also allow 

pharmaceutical companies to change the product identity from merely selling a pill-in-a-

bottle, to offering a comprehensive therapeutic solution.  The new goal of drug 

developers should be to develop an integrated therapeutic strategy that takes into 

consideration real world usage of a therapeutic solution in the context of digital devices, 

behavioral interventions, and other therapeutic options, which may or may not include a 

pill.  

In addition to eventually changing the treatment paradigm from a product identity to 

a therapeutic solution that the pharmaceutical industry can deliver in conjunction with 

healthcare providers, there are some immediate benefits to the current business model 

that can be leveraged by using real world data during clinical development: 



   17 

 

Improve clinical trials execution and success 

 Optimize drug dosing through adherence measurement: Adherence in 

clinical trials remains largely unmonitored and is assumed to be high 

contrary to evidence (34,35).  There have been several developing 

approaches to monitor and potentially improve adherence (36).  As an 

example, with a combination of sensors and a mobile technology interface, 

Otsuka Pharmaceuticals and Proteus Digital Health developed the first 

FDA approved real-time adherence monitoring platform that will allow 

physicians, caregivers and others involved in care delivery to monitor 

adherence for a patient, as well as relate drug intake to activity and other 

vital measures (37).  The use of electronic monitoring devices coupled 

with provision of feedback to patients of their recent dosing histories is an 

evidence-based approach to enhancing patient adherence to medications 

(38).  These types of data are rarely available during clinical development 

and could be used to optimize dosing based on adherence profiles 

observed in clinical trials.  Collection of adherence data in clinical trials 

and real-world would strengthen the predictive analytics on generating the 

patient response given relevant data with respect to drug intake and action 

(39,40).  

 Leverage digital biomarkers/phenotypes to increase trial success by 

enriching clinical trial population: Understanding the determinants of 

placebo and drug response has been of interest to pharmaceutical sponsors 

and regulators (41).  However, traditionally these determinants have been 
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limited to demographics and certain baseline variables collected in a 

typical clinical study.  With the availability of dynamic measures as well 

as, detailed data on activity, sleep, vitals, circadian rhythm and behavior, 

speech, etc. there exists an opportunity to better understand these 

determinants and optimize the clinical trial population.  For example, one 

of the primary reasons for psychiatry trial failures is believed to be 

inclusion of refractory patients and partial responders.  However, 

traditional inclusion/exclusion criteria are unable to differentiate these 

types of patients.  It is possible that digital phenotype of patients based on 

activity, sleep, behavior, etc. might be able to offer a better view of 

potential response.  These data types have the potential to be leveraged to 

enrich the appropriate population studied in a given clinical trial (42).  

Real world differentiation for products 

 Predictive analytics of real-world effect given clinical trial response: Real 

world effect of drugs has always been debated in regards to the 

generalizability of the response observed in a clinical trial conducted with 

a specific and limited patient population (5).  Modeling and simulation is 

an often-overlooked tool that can be used early on in the development to 

project real world performance of drugs under different combinations of 

patient characteristics and/or conditions (such as adherence) not explicitly 

studied in clinical trials.  One such example is an integration of adherence 

rates taken from real world data with pharmacokinetic (PK) –

pharmacodynamic (PD) modeling to inform go/no-go decisions (43).  In 
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this example, as shown in the schematic in Figure 4b, dose and response 

data from RCTs were modeled using the PK-PD modeling approach. 

Separately, real world data on patient adherence from a large database 

with prescription refill history was transformed into an individual patient 

level database (by making some assumptions) to bring it in the same 

format as the PK-PD database (to allow simulations by using the PK-PD 

modeling software). Subsequently, the PK-PD model based on RCT was 

applied to the individual patient database created from the prescription 

refill history to simulate the clinical responses under different degrees of 

adherence in the real-world setting. These response predictions were 

entered into a health economic model to assess what degree of adherence 

improvement would result in a clinically meaningful improvement in 

clinical outcomes which is also cost-effective. Such approaches can be 

used to analyze the economic value of therapeutic interventions directed at 

improving adherence, as well as to assess the need of acquiring more 

information.  Predictive analytics is potentially the only way to project real 

world performance before a drug is released to a broader population.  Such 

model based outputs for future performance can be effectively leveraged 

to support realistic future value during clinical development. 

 Leverage digital biomarkers/phenotypes to generate hypotheses for real 

world differentiation: With a broader definition of real world data noted 

above, the ability to collect data in both a healthy and diseased state could 

enable generation of new hypotheses during clinical trials.  The 
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measurement of activity, vitals, sleep, behavior, speech, etc. in real-time 

makes it possible to learn more about the therapeutic or adverse effect of 

drugs and can be utilized to show differentiation among drugs.  While 

these data can be collected on an exploratory basis and likely have 

minimal impact on the primary results of a clinical trial, they provide a big 

opportunity to generate additional hypotheses and test those in prospective 

clinical trials. 

 

Pharmacokinetic-Pharmacodynamic-Pharmacoeconomic Modelling for Early 

Prediction of Outcomes  

 

Model-based clinical drug development uses pharmacometric (quantitative 

pharmacology) approaches to inform trial design and optimize compound development 

strategies (44).  This is achieved by integrating PK, PD and clinical evidence using 

empirical or mechanism-based modelling to predict efficacy and safety outcomes from 

simulated clinical trials.  Such approaches have been used to facilitate the identification 

of trial design inefficiencies, adjust for non-adherence and dropout, for exploration of the 

effects of different dosing regimens, for consideration of specific populations (45) and 

offer valuable insights for future studies with the aim of reducing late-stage failure and 

improving the efficiency of drug development (46–48).  

A natural extension to pharmacometric analyses, exploiting the structural 

relationship between dose and response and accounting for the statistical uncertainty, is 

to link with pharmacoeconomic (PE) models (Figure 4a) which consider the resource 

constraints of payers of healthcare (49).  Collectively these models can be defined as PK-

PD-PE models. PE models assess the incremental costs per QALY gained for a given 
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intervention. If the cost per QALY is below a pre-defined threshold (often accepted as 

£30,000; €50,000; $100,000 per QALY in the UK, EU and USA, respectively) then the 

intervention is considered cost-effective.  This evaluative framework has the potential to 

improve methods for strategic, clinical, and pricing decisions during phase II/III drug 

development and offers advantages over standard (empirical) PE models during these 

phases of clinical drug development (50,51).  The determination of a value-based price, 

for instance, will inform whether further development is commercially viable – it may be 

appropriate to halt the development of a drug with no prospect of achieving a value-based 

price.  Alternatively, a value of information analysis might be carried out, taking 

advantage of the PK, PD uncertainty as well as economic parameters derived from RWE.  

This can inform go/no-go decisions on whether a trial is worth undertaking, based on the 

expected net trade-off of the benefits of the trial in relation to its costs (52,53).  

Published examples of PK-PD-PE models are limited to application in relation to 

rituximab for follicular lymphoma (54), pharmacogenetics-guided warfarin dosing (55), 

eribulin for castration-resistant prostate cancer (56), a hypothetical drug (potentially 

representative of a drug in development) for chronic obstructive pulmonary disease (57), 

and oseltamivir for the management of influenza pandemics (58). While these studies 

support the proof of principle of the method, the application of pharmacometrics in 

pharmacoeconomic evaluation and HTA is very much in its infancy.  However, the 

limited published evidence to date suggests utility in many contexts, most evidently in 

integrating RWE in early stage evaluation.  These relate to: (i) providing early indications 

of cost-effectiveness before large-scale trial data become available; (ii) directing future 

research based on the cost of reducing uncertainty; (iii) assessing subgroups, dosing 



   22 

 

schedules and protocol deviations; (iv) informing strategic research and development 

along with pricing decisions; and (v) estimating the cost-effectiveness of complex 

pharmaceutical interventions (such as pharmacogenetics testing). 

Key challenges to the further advancement of PK-PD-PE model development and 

application, however, include overcoming different modeling paradigms in 

pharmacometrics and health economic evaluation, a need for increased acceptance of 

model-based drug development through to pricing and reimbursement to inform critical-

stage decision-making, and further evidence on the validity and reliability of complex 

and computationally intensive models. These may be overcome through closer 

integration and collaboration between the disparate disciplines of pharmacometrics, 

clinical pharmacology and health economics / outcomes research, which may be achieved 

through co-location and appropriate training of discipline-agnostic biostatisticians and 

mathematical modelers. This should ultimately lead to greater acceptance of model-based 

drug development incorporating RWE and PK-PD-PE, specifically, in the drug 

development process. 

 

Discussion/Future Directions 

 

The application of RWD is growing in several areas including, but not limited to, 

supporting decisions in drug development and medical practice, as well as decisions by 

HTA agencies and regulators.  Greater adoption of RWE in these areas is closing the gaps 

between evidence used to support drug approval or reimbursement decisions and 

evidence used by the medical community.  RWE is also augmenting the information 

health care providers’ use for clinical decision making by adding information that is not 
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collected as part of randomized controlled trials such as benefit-risk in under-represented 

patients with co-morbidities or in the elderly.  Overall, enhanced use of RWE is 

anticipated to enable the development of medicines with unambiguous value to patients, 

make the selection of medical treatments more effective and efficient, and reduce the 

time for bringing novel drugs to market.  

Impact on Drug Development: RWE will not replace the need for data from 

traditional trials; however, technologies supporting RWD are enabling far richer and 

more diverse information to be collected during drug development.  Traditional drug 

development restricts capturing of Quality of Life measurements within RCTs to when 

instruments like patient reported outcomes (PROs) are administered, whereas RWD 

allows for more efficient and unrestricted capturing of these data in larger volumes and 

novel settings. Incorporation of technologies for RWD collection (e.g., wearables) 

(Figure 5a) and use of RWE in drug development decision-making may also inspire 

innovation in clinical programs and trial designs. This has the potential to favorably 

impact the efficiency of planning and operations, and ultimately pave the path for 

reductions in the cost of drug development. To realize the full impact of RWE on drug 

development, the healthcare community will need to make fundamental changes in the 

way clinical information is collected.  Due to its historical use for billing and claims 

management the current system was not designed for research purposes. It therefore lacks 

some of the critical details that researchers require, for example detailed clinical 

information on such things as tumor biomarkers, patient reported outcomes or similarly 

nuanced, but valuable clinical insights. Often if this detailed clinical information exists, it 

resides in the unstructured data, making analytical tools such as NLP, even more 
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important.  The scientific community will need to continue working on improving the 

methodologies for handling complex and unstructured data.                                                                                                                                                                                                    

Impact on Regulatory Decisions: The use of RWE in regulatory decisions about 

efficacy has been historically very limited; however, the narrative is changing.  This has 

been spurred by the recent series of publications and presentations, as well as statutory 

changes enforced by the FDA.  In the short period from December 2016 to present, the 

FDA has published opinion articles (5,9) and actively participated in public discussions 

(59) to define and promote the use of RWD and RWE as an evidentiary standard for drug 

approval.  Additionally, the recently legislated 21st Century Cures Act and the new user 

fee laws (Prescription Drug User Fee Act VI) provide enough opportunity for expanding 

the use of RWE for demonstrating efficacy for drug approval and mandates the FDA to 

hold public workshops and develop draft guidance documents aimed at enhancing the use 

of RWE in regulatory decision making within the next five years.  In fact the current 

statutes provide enough latitude for incorporation of RWE in decision making as 

remarked by the FDA commissioner Dr. Scott Gottlieb at a recently held workshop; 

“there is nothing in our statute or regulations that prevent FDA from using a broad 

range of informative sources of evidence.  On the contrary many of our statutory 

responsibilities boil down to one principal calculus, what do we know and how do we 

balance benefits and risks based on the fullest possible information” (59). Dr. Gottlieb 

also remarked on the important role RWD can play in meeting the post-market study 

requirements and approval of new indications for already marketed drugs.  RWE is also 

playing a key role in approval of medical devices strengthened by the recently finalized 

FDA guidance.  Since 2015 alone, approval of at least eight new medical devices and 
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expanded use of at least six technologies have relied on evidence derived from RWD 

(59).  Other regulatory agencies such as EMA (60) and PMDA (61) are also taking 

initiatives to expand the use of RWD.  For example, the adaptive pathways approach 

implemented by the EMA aims to provide timely access for patients to new medicines 

and seeks to involve patients and health technology assessment agencies in discussions 

during drug development.  Overall, the evolving changes in the regulatory landscape 

regarding use of RWD hold promise for a new future.  

Impact on Medical Practice: Experiences with medication use in the real world 

has always influenced decisions in medical practice and is the foundation of evidence 

based medicine (EBM).  However, over reliance on inferences from RCT and the ensuing 

inability to individualize for specific clinical scenarios has often been seen to limit the 

application of EBM (62).  Ability to collect richer data from the real world both pre- and 

post-approval and advanced analytics has promise to overcome these limitations.  This 

change would offer the opportunity for integration of multiple sources of data and from 

many more patients than one provider sees on an individual basis, which in turn could 

bring medical decisions specific to the individual characteristics of patients, with the 

potential of making health care more personalized and effective.  Access to RWD can 

allow exploration of important clinical outcomes which may not be possible otherwise 

and it can also help with development and validation of surrogate instruments for such 

outcomes for incorporation in clinical practice.  RWD can also provide insights on rare 

safety events which could potentially be prevented.  To capitalize on these obvious 

advantages, healthcare stakeholders including Aetna, Kaiser-Permanente and Geisinger to 
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name a few are increasingly applying “big data” to improve patient care guidelines and 

manage formularies (63,64).  

Impact on Payer Assessments: The need to price drug products based on the value 

offered to patients is clearly reflected in value-based contracts between pharmaceutical 

companies and payers to link the price of a prescription drug to its clinical and economic 

performance (Figure 5b).  As discussed in this manuscript, collection of RWD is helping 

payers in economic assessments by providing information on outcomes in real-world 

settings (as opposed to controlled settings in clinical trials), by providing evidence of 

effectiveness (or lack of it) in population subgroups not adequately represented in 

randomized trials, and by aiding to the assessments of comparative effectiveness.  A 

repository of patient characteristics data built using RWD also enables payers to run 

simulations for effectiveness or budget impact in populations that are not clinically tested 

or for which only limited data exist.   

In conclusion, RWD and RWE have promise to strengthen the current ecosystem 

of data supporting healthcare decisions, and support transition into a new era of 

personalized, more effective, and more efficient healthcare.  Collaboration among 

providers, patients, payers, drug companies and other players of the health care system, 

aided by technology, would be necessary to unleash a new age of medicine.    
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FIGURES 

Figure 1 Variety of types of real world data 
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Figure 2 Key events leading to the importance of real-world evidence  
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Figure 3 Innovation in the traditional drug development paradigm moving from the 

randomized controlled trial to gain regulatory approval to an all-encompassing collection 

of real-world evidence in the context of a therapeutic solution.  
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Figure 4  (a) Conceptual framework of a pharmacometric-pharmacoeconomic 

model; and (b) an illustrative application in the context of medication adherence 
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Figure 5 Increasing application of RWD in drug development through (a) utilization of wearables in clinical trials and with 

payer assessments through (b) the use of value-based pricing agreements.   

 

  
(a) Data extracted from https://clinicaltrials.gov using the search term “wearables.”  (b) Data extracted from the University of Washington School of 

Pharmacy Performance Based Risk Sharing database®. 

 


