Regional Environmental Change (2018) 18:1235-1246
https://doi.org/10.1007/s10113-017-1258-6

ORIGINAL ARTICLE

® CrossMark

Innovation, cooperation, and the structure of three regional sustainable
agriculture networks in California

Michael A. Levy'® - Mark N. Lubell'

Received: 21 April 2017 / Accepted: 16 November 2017 /Published online: 7 December 2017
© The Author(s) 2017. This article is an open access publication

Abstract

Regional agroecological systems are examples of complex adaptive systems, where sustainability is promoted by social networks
that facilitate information sharing, cooperation, and connectivity among specialized components of the system. Much of the
existing literature on social capital fails to recognize how networks support multiple social processes. Our paper overcomes this
problem by analyzing how the social networks of wine grape growers exhibit structural features related to multiple social
processes: ties to central actors that build bridging social capital and facilitate the diffusion of innovations, ties that close triangles
and build bonding social capital to solve cooperation dilemmas, and ties to individuals that span community boundaries to
connect specialized components of the system. We use survey data to measure the communication networks of growers in three
viticulture regions in California. A combination of descriptive statistics, conditional uniform random graph tests, and exponential
random graph models provides empirical support for our hypotheses. The findings reflect regional differences in geography and
institutional histories, which may influence the capacity to respond to regional environmental change.

Keywords Agriculture - Sustainability - Social network analysis - Exponential random graph models - Complex systems

Introduction

This paper analyzes the structure of social networks among
wine grape growers in three regions of CA, USA, that have
implemented sustainability partnerships. As with other exam-
ples of regional environmental change, wine grape growers
make decisions in the context of an agroecological system that
must adapt to changing ecological, economic, and social pro-
cesses. To help growers adapt to these changes, sustainability
partnerships aim to build social networks that enable learning,
innovation, and cooperation. Our empirical study estimates
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the extent to which grower’s social networks feature structural
configurations associated with these key social processes.

Our analysis contributes to a broad literature that has
emerged in the past 20 years across the social sciences, which
has established the relevance of social networks among indi-
viduals, organizations, and political institutions for
responding to regional environmental change (Carlsson
2000; Adger 2003; Weible 2005; Janssen et al. 2006; Bodin
and Prell 2011; Barnes et al. 2016). Sometimes referenced
under the term “social capital,” social networks are hypothe-
sized to facilitate social processes such as learning and coop-
eration that enable human societies to adapt to dynamic and
complex social-ecological systems (Coleman 1988; Ostrom
1990; Boyd et al. 2011). For example, Doughty (2016) high-
lights how local policy partnerships can build capacity for
resilience by strengthening local networks. Likewise, Dow
et al. (2013) describe how bonding, bridging, and linking net-
work activities are used by management planning agencies to
facilitate climate adaptation. We build on this work with rig-
orous statistical tests for specific structural signatures of these
forms of social capital across multiple networks.

In the context of agricultural systems, in both developed
and developing countries, social networks have been found to
be among the most important variables for innovation and
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cooperation (Prokopy et al. 2008; Baumgart-Getz et al. 2012).
For example, Conley and Udry (2010) find that farmers in
Ghana innovate by mimicking the practices of their successful
immediate contacts. Fafchamps and Lund (2003) illustrate
how subsistence growers in the Philippines cooperate by in-
formally pooling risk through strong network ties. In
California, Hoffman et al. (2015) find that informal, social
learning channels are used far more than formal resources to
learn about vineyard management practices.

However, this literature faces two major puzzles. First,
while most researchers agree networks matter, there is no con-
sensus on how different types of networks affect behavior in
different regional contexts (Janssen et al. 2006; Bodin and
Crona 2009). Second, researchers often ascribe only a single
social process to networks—for example, learning or cooper-
ation—instead of analyzing how networks support multiple
social processes that contribute to sustainability and resiliency.
For instance, in the face of changing water availability in
agroecological systems, agricultural producers must learn
about new problems in the short-term (how should I irrigate
my crops given current water availability?) and long-term
(how much water will be available in the next decade, given
drought and climate change?) and self-organize to change
behaviors and institutions (how can our community reduce
groundwater pumping?). Networks that support multiple so-
cial processes are more capable of positively contributing to
sustainable and resilient social-ecological systems in the face
of environmental change.

This paper addresses the puzzle of multiple social process-
es by arguing that the observed structures in social networks
are signatures of three underlying social processes that moti-
vate interaction in agroecological systems: diffusion of inno-
vation, cooperation, and boundary-spanning. Diffusion of in-
novation theory hypothesizes that innovation is facilitated by
networks that efficiently transmit information. Cooperation is
facilitated by networks that allow the development of reputa-
tion and trust. Boundary-spanning networks link together spe-
cialized components of food systems, which help bring differ-
ent types of expertise into the overall agricultural value chain.

We test the basic hypotheses emerging from these argu-
ments using surveys of over 500 growers in three different
regions to measure their social network relationships. As
discussed below, each of these social processes is represented
by different structural characteristics of networks, which pro-
vides the basis for statistical models that estimate the frequen-
cy of different structural motifs that can be thought of as the
local building blocks for global network structures. The social
processes can be considered generative models for social net-
work structure: Local social processes affect with whom
each individual forms ties, and the aggregate of those
ties forms structural signatures of the social processes.
We also examine the extent to which these structural
motifs vary across different regions.
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Agroecological systems are important examples of complex
social-ecological systems. Globally, agricultural systems have
been crucial to the development of modern civilization and
they are now facing significant sustainability issues such as
food security, natural resource management, and climate
change. To address these issues, agricultural systems must cat-
alyze the diffusion of innovations such us new farm manage-
ment practices (Saltiel et al. 1994; Baumgart-Getz et al. 2012),
cooperation to address common-pool resource problems such
as groundwater management (Agrawal 2001; Dietz et al. 2002,
Henry and Dietz 2011), and boundary-spanning across differ-
ent specialized components of food systems (Lubell et al.
2014; Hoffman et al. 2015). Viticulture is a particularly useful
example because it is a highly innovative and economically
viable industry that is increasingly experimenting with sustain-
ability programs, policies, and practices (Warner 2007a; Lubell
et al. 2011). While our analysis identifies some of the general
processes that we expect are important in agroecology systems,
it is also important to consider more comparative research giv-
en regional differences in cropping systems, agroecological,
and social contexts.

In the next section, we discuss how the social network
literature has viewed the relationship between social capital,
network structure, innovation, and cooperation. We then de-
scribe our hypotheses about how network structures develop
in the context of agroecological systems.

Networks: the multiple faces of social capital

A central theme of the environmental change and broader
social science literature is that networks constitute a form of
social capital that affects the ability of individuals and groups
to acquire resources and achieve goals (Coleman 1988;
Putnam 1993). Networks are often advocated for enhancing
resilience and adaptive capacity in resource management
(Adger 2003; Folke et al. 2005; Weible 2005), but it is increas-
ingly recognized that a prescription of “more networks” is
insufficient: particular network structures emerge in various
situations and are needed for certain capacities (Newman and
Dale 2005; Bodin et al. 2006). Network density, for example,
may promote trust and compliance with social norms
(Granovetter 1985; Coleman 1988), but too much density
may lead to homogeneity and reduce capacity for innovation
(Oh et al. 2004; Bodin and Norberg 2005). Therefore, in dif-
ferent kinds of decision contexts and over time, we expect to
observe different types of social network structures.

The argument that networks support multiple social pro-
cesses builds on the classic distinction in the social network
literature between “open” and “closed” network structures.
This distinction appears in a variety of flavors: weak versus
strong ties (Granovetter 1973), bridging versus bonding social
capital (Putnam 1993; Adger 2003), structural holes versus
redundant networks (Burt 2000), and cooperation versus
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coordination networks (Berardo and Scholz 2010). Coleman
(Coleman 1988) and Granovetter (Granovetter 1985) argue
that closure, a network tie between two individuals who share
a common partner, is a key aspect of social capital, facilitating
cooperation through trust and the ability to sanction non-co-
operators. In contrast, Burt (Burt 2000) argues that individuals
with links to many other non-redundant groups and individ-
uals—open structures that bridge what he calls “structural
holes” between groups—are located in advantageous broker-
age positions, with access to diverse sources of information
and other resources. Adger (Adger 2003) argues that strong,
local bonding ties confer private benefits while bridging or
“networking” ties can enhance collective governance. More
recently, Berardo and Scholz (Berardo and Scholz 2010) argue
that the advantages of open versus closed structures depend on
the type of issue at hand. In collective action problems that
mainly require coordination, open structures facilitate infor-
mation transmission by forming ties to central brokers, where-
as in more problematic cooperation problems with free-riding
incentives, reciprocal and transitive ties that provide closure
can enable cooperation.

While the distinction between open and closed networks is
useful, we argue that networks may include a mixture of both
open and closed structures in order to support multiple social
processes. An actor may have some local ties that facilitate
cooperation, such as reciprocity or closed triangles. That same
actor may also have ties to central actors that serve as infor-
mation hubs, or to disparate groups that provide novel infor-
mation or resources. Aggregated to the network level, closed
ties create high levels of clustering, while open structures cre-
ate centralized networks with short-average path lengths that
facilitate the rapid diffusion of information. Networks with
structures that enable multiple types of social capital contrib-
ute to the resilience of complex adaptive systems, which must
simultaneously have the capacity to learn and self-organize
(Simon 1977; Anderies et al. 2007; Levin et al. 2013). The
balance between open and closed network structures is also a
feature of the canonical “small-world” network model (Watts
and Strogatz 1998).

Linking network structures to key social processes

In this section, we describe the three key social processes that
motivate social relationships in agroecological systems, and
how they are linked to specific structural properties of net-
works. Articulating the correspondence between a social pro-
cess and the network measures that are included in statistical
models is necessary to develop hypotheses that can be empir-
ically tested with our wine grape grower data. We test for the
structural signature of each social process first by comparing
the observed frequency of relevant network statistics to the
distribution of statistics in uniform random graphs that make
no assumptions about generative social processes, then more

rigorously with exponential random graph models (ERGMs)
that control for concomitant effects of multiple social
processes.

It is critical to recognize that this empirical strategy does
not directly observe the social processes at the individual lev-
el, for example the variables affecting an individual’s adoption
of an agricultural management practice. Rather, the logic of
the argument is that particular types of network structures are
more or less likely to occur conditional on the operation of a
particular social process. The structural motifs in the network
are analogous to the fingerprints of hypothesized social
processes.

Innovation, short-path lengths, and centralization

Diffusion of innovation is the classic theory used to describe
the process by which individual growers adopt agricultural
practices (Ryan and Gross 1943; Rogers 2003). The basic
version of diffusion of innovation theory is a variation on
rational choice theory, where actors make decisions based on
the benefits and costs of a potential innovation. It is assumed
that the innovations confer only private costs and benefits at
the individual level; the payoff from the adoption decision is
independent of the actions of others. Because farmers operate
in markets and ecosystems, strict independence is never real-
ized, but it may be a reasonable approximation for some farm-
management decisions (Drummond and Goodwin 2010). In
this context networks serve primarily to transfer information
about the innovation’s benefit/cost ratio and thus can be con-
sidered a form of social learning (Lubell et al. 2011; Hoffman
etal. 2015).

Diffusion on networks is facilitated by short paths between
pairs of nodes (Jackson 2010). At the individual level, rapid
access to information is achieved by linking to the center of
the network, where information accrues from all parts of the
network. At the network level, this generates centralized net-
works, i.e., networks with high-variance degree distributions.
To see why, consider the extremes for a network with N nodes
and N—1 edges: If one central node is connected to every
other node (i.e., a star graph), the average path length is min-
imal, 2 x ( 1—%), and degree centralization is maximal. The
central node serves as a coordinating hub so that wherever
information originates, it is within two edges of every other
node. At the other extreme, consider a line graph in which
every node is connected to two neighbors (except the two
nodes on the ends, which have one neighbor each). This net-
work has maximal average path length, NT“, and minimal
degree centralization. Wherever it arises, information will dif-
fuse slowly. In general, links to central nodes shorten paths
and speed diffusion on networks (Leavitt 1951; Peres 2014).

We provide an initial test for this aspect of the networks by
comparing observed path lengths and centralizations to those
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of uniform random graphs of the same sizes and densities as
the observed networks. For each network, we summarize path
lengths with the harmonic mean path length (HMPL), which
accounts for disconnected dyads (Newman 2003), and central-
ization with degree centralization, a measure of the absolute
difference of degree of each node in the network from the
highest-degree node, normalized to the maximum possible
value for a network of that size (Freeman 1978). In the
ERGM context, we test for network centralization with a geo-
metrically weighted degree (GWD) term, which measures re-
pulsion of edges from high-degree nodes. In networks where
access to innovation is a priority of individuals, we expect to
see shorter average path lengths and negative GWD estimates
(Levy 2016).

Hypothesis 1: HMPLs will be shorter in empirical net-
works than simulated random graphs, and GWD esti-
mates in ERGMs will be negative, reflecting a tendency
for edges to concentrate on popular actors.

Cooperation and triadic closure

In contrast to the classic diffusion of innovation model, there
are many agricultural practices for which the payoff is condi-
tional on the actions of others, implying interdependence
among growers. For example, pest and disease processes
spread over property lines, so if one grower fails to adequately
control a disease, the disease prevention efforts of nearby
growers will be less effective. Environmental public goods
have similar attributes; for instance, one grower’s efforts to
improve water quality by reducing pollution from irrigation
runoff will be ineffective unless other growers in the same
watershed also reduce their polluted runoff. These contexts
often resemble the strategic structure of a prisoner’s dilemma,
where cooperation requires overcoming free-riding
incentives.

A standard hypothesis within the social capital literature is
that closed networks facilitate cooperation by enabling mech-
anisms of trust and reputation. The classic closed structure is
the transitive triangle, where relationships between individ-
uals i—j and i—k facilitate the relationship j—k. These structures
help maintain reputation and trust by enabling indirect reci-
procity and social sanctions for free-riders and by providing
third-party verification of cooperative or uncooperative be-
havior. In a network where diffusion of innovation is the only
important process, the redundant ties in closed triangles would
have little value because the information that comes through
them is accessible through the shared partner. However, the
redundancy of ties that close triangles allows for verification
of information, which builds trust, and opens the possibility of
social sanctioning, which promotes cooperative behavior
(Ostrom 1990; Bodin and Crona 2009; Berardo and Scholz
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2010). Hence, closed networks are an important component of
community-level social capital thought to enable collective
action (Coleman 1988; Putnam 1993).

We test for closed network structures first by comparing
observed levels of triadic closure to levels found in uniform
random graphs of the same size and density and then via the
geometrically weighted edgewise shared partners (GWESP)
statistic in ERGMs to test whether there is a tendency for
triadic closure above what would be expected by other tie-
formation forces in the network (e.g., regional homophily).
In networks where cooperation challenges are being navigat-
ed, we expect a large number of complete triangles and posi-
tive GWESP estimates.

Hypothesis 2: Clustering coefficients will be greater in
empirical networks than simulated random graphs, and
GWESP estimates in ERGMs will be positive, reflecting
a tendency for triadic closure.

Boundary spanning and structural holes

Another important social process in agroecological and other
complex adaptive systems is the transfer of information across
specialized components of the system. Different components
of the system may develop specialized knowledge or capaci-
ties, which then must be linked in order to accomplish differ-
ent tasks. This argument parallels Burt’s concept of structural
holes, where individuals whose ties span different parts of the
system can access more and a greater variety of resources
(Burt 2004).

In the context of agriculture, university extension has tra-
ditionally filled this role by serving as a bridge between sci-
ence, policy-makers, and growers. However, this classical
model is rapidly being replaced by one of a network of dis-
tributed, specialized knowledge, in which both formal out-
reach professionals and others serve as knowledge brokers
(Lubell et al. 2014; Clark et al. 2016b). For example, most
cropping systems in California involve certified Pest Control
Advisors or Crop Consultants who specialize in specific as-
pects of agricultural decision-making, and individual growers
contract with these specialists to assist the overall farming
operation. In other cases, large-scale farming operations create
their own in-house expertise. The complex, specialized nature
of agricultural knowledge networks challenges the broad ste-
reotype of “one farmer, one farm.” Agricultural food systems
and innovation systems require sharing of knowledge and
coordinated action from many different specialized individ-
uals and organizations (Klerkx et al. 2010; Wigboldus et al.
2016; McCullough and Matson 2016).

Our networks are comprised of growers and outreach pro-
fessionals and some individuals who fall into both categories.
We expect that these “outreach-growers” will play a
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boundary-spanning role because they have specialized knowl-
edge, but at the same time, their grower perspective engenders
trust from other growers. In network terms, we expect these
outreach-growers to occupy positions with high-betweenness
centrality; that is, they sit on many shortest paths between
other actors in the networks. In ERGMs, we expect the
outreach-growers to have more connections.

Hypothesis 3: Outreach-growers will have greater be-
tweenness centrality than growers or outreach profes-
sionals, and in ERGMs outreach-grower node-attribute
estimates will be positive, reflecting their popularity.

Regional comparisons

The relative prevalence of these different structural motifs
may vary across regions, which feature different social and
agroecological contexts. For example, our three regions fea-
ture considerable geographic differences in their local terroirs,
which are administratively recognized as American
Viticultural Areas. The concept of terroir refers to a geograph-
ically specific constellation of agroecological variables that
confer unique character to the local crops. Terroir is especially
important for wine grapes because each terroir develops a
reputation for a unique flavor and quality of wine, which is
reflected in consumer behavior and market price. As a result,
wine grape growers have incentives to sub-divide larger AVAs
in to smaller regions in order to segment the market (Warner
2007b).

The consequences of these regional differences for our net-
works depend both on physical geography and historical in-
stitutional processes. In terms of physical geography, Lodi is a
relatively flat and clearly demarcated region in the Central
Valley and has only one AVA. Napa features considerably
more topographic variation and is subdivided into many small
AVAs reflecting the region’s long history of wine grape grow-
ing and high-value wines. The Central Coast spans a much
larger area ranging from Santa Barbara to San Francisco, with
disconnected groups of AVAs throughout.

The institutional structure of producer groups and sustain-
ability partnerships also varies across regions. Lodi has by far
the most institutionalized producer group, the Lodi Winegrape
Commission, which is formally a local special district that
spans the entire AVA and even has the authority to tax
growers. The Lodi Winegrape Commission developed its
own sustainability partnership and third-party certification
program called Lodi Rules. On the other hand, both Napa
and Central Coast tend to have producer groups associated
with specific sub-AVAs rather than a single consolidated or-
ganization. The sustainability partnerships in those regions are
sponsored by separate organizations who seek to recruit grow-
er participation via cooperation with producer groups.

We argue that the compact geography of Lodi along with
its strong institutional arrangements will produce networks
that are both more centralized and clustered. The networks
in Lodi are thus more effective at spreading information and
encouraging cooperation. The Central Coast networks will be
the most decentralized and least clustered, with strong
homophily at the hyper-local level that does not span across
the entire region. The network structures in Napa will fall in
between Lodi and Central Coast.

Hypothesis 4: The Lodi network will have the shortest
HMPLs, most negative GWD estimates and most posi-
tive GWESP estimates. The Central Coast network will
have the longest HMPLs, least negative GWD estimates
and least positive GWESP estimates. Napa will be
intermediate.

Methods
Study system, data, and software

Wine growers and viticulture-outreach professionals in three
wine growing regions were extensively surveyed as part of a
broader project; complete survey details are available in
Hoffman et al. (2014). Briefly, surveys were administered in
2011 for Lodi and 2012 for Napa and Central Coast. Growers
were identified from county Agriculture Commissioners’
Pesticide Use Reports, and additional eligible growers and
outreach professionals were identified through snowball
methods. Surveys were issued by mail, and non-respondents
were asked several times to respond. The survey response rate
was 24% in Central Coast, 39% in Napa, and 45% in Lodi
(detailed survey response data are provided in Online
Resource 1).

Networks were constructed from survey questions that
asked respondents to list up to eight growers and up to eight
other individuals with whom they communicate about viticul-
ture management in decreasing order of frequency of commu-
nication in Napa and Central Coast and up to four of each in
Lodi. To enable comparisons across regions, only the first four
individuals listed in each category for Napa and Central Coast
were used. Edges are treated as undirected and dichotomous.
Additional models, preserving all nominations in Napa and
Central Coast, and treating ties as directed, respectively, are
presented in Online Resourcel. Isolates were removed from
the dataset. Each node in the networks was assigned an attri-
bute type based on whether they are exclusively a grower,
exclusively an outreach professional, or both a grower and
outreach professional, based on county records and survey
question responses. Network data were manually cleaned to
merge duplicate entries, correct misspellings, etc. Network
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summary statistics and degree distribution plots are presented
in Online Resource 1.

All analyses were performed in R version 3.3.3 (R Core
Team 2016) using the statnet suite of packages, version
2016.4 (Handcock et al. 2008; Handcock and Hunter 2016).
All code and data are archived at https://github.com/
michaellevy/ViticultureNetworks-REC.

Random graph comparisons

For each region, we simulated 1000 random graphs with uni-
form edge probability and the same size and density as the
observed network, constrained to have no isolates, because
isolates were removed from the empirical networks. For each
region, we compare the empirical value of three graph-level
indices of interest to the distribution from the random graphs:
normalized degree centralization, harmonic-mean path length
(HMPL), and clustering coefficient. If the empirical value is in
a tail of the distribution generated by the random graphs, we
can infer that some social process has caused the structure of
the network to deviate from uniform randomness.

Exponential random graph models

In an ERGM, the network is the outcome variable and the
local processes that are hypothesized to generate it, measured
as network-level statistics, are the predictor variables. The
random graph comparisons described above test one network
structure at a time, but it is possible that a single deviation
from independence of edge probability drives multiple
network-level statistics into the tail of distributions expected
under edge independence. For example, a popularity effect
will lead to an abundance of closed triangles, even in the
absence of a specific triadic closure force (Levy 2016).
ERGMs guard against this by estimating parameters on a set
of network statistics that jointly maximize the likelihood of
generating networks with the observed values of the statistics.
Technical details are provided in Online Resource 1.

For each of the three regions, we estimated an ERGM with
terms for the GWD and GWESP distribution. For technical
details on these statistics and their parameter estimates, see
Online Resource 1. In brief, a positive GWD estimate indi-
cates a tendency away from centralization of the network
(sometimes called anti-preferential attachment), and a positive
GWESP estimate indicates a tendency for triadic closure. We
use fixed decay-parameter values of fg=3.0 and 8,7=0.7.

The models also included main-effect terms for nodal attri-
butes: whether the individual was a grower (baseline category,
“Grower”), an outreach professional (“Outreach”), or both
(“Outreach-Grower”) and, as a control, whether or not the
individual was a survey respondent (“Respondent”). The ten-
dency for actors to link to others who are spatially close was
accounted for by including a homophily term for whether the
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two individuals in a dyad are in the same zip code. Because we
lack information about the location of some individuals, we
include two terms: one where we know the two individuals are
in the same zip code, and one for which we do not have a zip
code for one or both individuals; both are compared to the
base case in which the two are known to be in different zip
codes. Rather than include a density term in our models, we
constrained the number of edges in the candidate graphs to be
the same as the empirical networks. This helped circumvent
the degeneracy issues that plague ERGMs (Handcock 2003).

Parameter estimates were obtained via Markov chain
Monte Carlo (MCMC) maximum likelihood estimation
(Hunter et al. 2008; Handcock and Hunter 2016). Details of
estimation, MCMC traces, and goodness-of-fit diagnostics are
presented in Online Resource 1. In summary, MCMC chains
were stationary and well-mixed, and graphs simulated from
the models were similar to the empirical networks across a
variety of criteria.

Modeled edge probabilities

To better interpret the ERGM parameter estimates, we calcu-
lated probabilities of edges conditional on the ERGM esti-
mates. Technical details of this calculation are given in
Online Resource 1. We calculated the probability of every
possible edge in each of the networks and then parsed the
probabilities by nodal and dyadic attributes of interest.

Results

Sociograms of the three wine grower networks are presented
in Fig. 1. The Lodi network is the smallest (447 nodes) and
most dense (0.0068, fraction of possible ties present), connect-
ed (0.84, fraction of dyads with a path between them), and
centralized (0.081, normalized sum of deviation of degrees
from the most popular actor) of the three, and Central Coast
is largest (785 nodes) and least dense (0.0031), connected
(0.73), and centralized (0.019), with Napa intermediate on
all measures. These differences are all consistent with our
regional differences hypothesis, which we subject to more
rigorous tests below. Additional descriptive statistics along
with degree distribution plots are presented in Online
Resource 1.

Outreach professionals and Growers both have relatively
low-betweenness centrality, but outreach-growers have high-
betweenness centrality in all three networks (Fig. 2, horizontal
axis). This is consistent with Hypothesis 3. The vertical axis of
Fig. 2 presents the coefficient of variation (o/u) in between-
ness centrality. While growers have consistently low between-
ness and outreach-growers have consistently high between-
ness, outreach professionals have more variability in their be-
tweenness centrality: on average, they have low betweenness,
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Central Coast

Fig. 1 Viticulture knowledge networks. Sociograms of viticulture
management communication in three California wine growing regions.
Nodes represent individuals and are colored by professional role and

but there are one or more in each region with very high be-
tweenness, generating large coefficients of variation.

Random graph comparisons

As initial tests of tendencies for triadic closure and popularity
effects, we conducted conditional uniform random graph tests
that compare the empirically observed clustering coefficients,
degree centralizations, and average path lengths to the distri-
bution of the same statistics in 1000 simulated uniform-edge-
probability random graphs of the same size and density as the
observed networks. The basic intuition of these tests is to
generate random graphs that correspond to an assumption of
structure unaffected by social processes. If structural configu-
rations representing the hypothesized social processes are
present in the empirical networks at a significantly different
frequency than in the random graphs, that is an indication of
social processes structuring the empirical networks.

51 Role
© Outreach

{_\. Grower

O Both

Region
@ Central Coast
A @ Napa
24 ‘ O O Lodi
= =

Coefficient of Variation

i__.‘ 1 y
0.000 0.002 0.004 0.008
Mean Betweenness Centrality

Fig. 2 Betweenness centrality by profession and region. For three
professional roles in three wine growing regions, the coefficient of
variation (o/p) in betweenness centrality versus the average
betweenness centrality

Lodi

Outreach® . * e
® Grower s, s
® EBoth

sized to popularity (node area is proportional to square-root of degree).
Graph layouts were generated by the Fruchterman-Reingold algorithm

Network centralization is greatest in Lodi and least in
Central Coast, and in all three regions, the observed level of
centralization was greater than in any simulated graph (Fig.
3a). The empirical networks feature a few highly popular ac-
tors, more popular than any nodes in the random graphs. In
terms of distances between dyads, Central Coast has the lon-
gest average path length, and the observed HMPL in Central
Coast falls squarely in the middle of the distribution of random
graphs (p(observed > simulated) = 0.45; Fig. 3b). In Napa and
Lodi, where the observed path lengths are shorter, all of the
simulated graphs had greater HMPLs than the empirical net-
work. These results are consistent with Hypothesis 1, demon-
strating the presence of open structures that enable diffusion of
information. The results are also consistent with Hypothesis 4:
Lodi is the most centralized with the lowest HMPL, while the
Central Coast is the least centralized with an HMPL no differ-
ent from the expectation in a random graph.

The conditional uniform random graph tests demonstrate
that the observed networks have far more clustering than ex-
pected by chance: no simulated graph in any region has a
greater clustering coefficient than the respective observed val-
ue (Fig. 3c). These results are consistent with Hypothesis 2. In
accordance with Hypothesis 4, Lodi has the greatest clustering
coefficient, followed by Napa and Central Coast.

Exponential random graph models

The ERGMs test for each social process while controlling for
the other social processes, geography, and aspects of the data
collection process. Table 1 presents ERGM parameter esti-
mates which, like logistic regression, reflect the increase in
the log-odds of a tie for a unit change in the associated
statistic.

Consistent with Hypothesis 1, in all three regions, GWD
estimates were significantly negative, indicating a tendency
for actors to form ties with popular actors. At the aggregate
level, this creates centralized networks with short paths
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Fig. 3 Simulated random q Central Coast e X
networks (boxplots) versus prdz?' - e X o
' . o | s
observed networks (red x's) for ad T T T T
three graph-level statistics: degree 0.02 0.04 o 0.06 0.08
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between nodes. The way GWD is formulated makes this effect
stronger among lower-degree nodes, but the relatively large 6
value of 3 gives the statistic significant action over the full
range of observed degrees (Levy 2016). For example, in
Central Coast, Napa, and Lodi, respectively, the odds of an
edge are 8, 9, and 12% greater on a degree-2 node than a
degree-1 node, and 5, 6, and 7% greater on a degree-12 node
than a degree-11 node. Consistent with Hypothesis 4, this
effect is strongest in Lodi and weakest in Central Coast.
Consistent with Hypothesis 2, the positive coefficient
estimates on GWESP indicate a strong force for triadic
closure in all three regions. Specifically, relative to hav-
ing no shared partners, the odds of a tie between two
people with a single-shared partner are 41, 41, and 49%
greater in Central Coast, Napa, and Lodi, respectively.

0.02 0.04

Clustering Coefficient

Additional shared partners make ties even more likely,
but the geometric weighting of GWESP implies a
diminishing effect for each subsequent partner.

Reflecting the boundary-spanning role posited in
Hypothesis 3, in all three regions, outreach-growers
have greater tie propensity than growers or outreach
professional. All else accounted for, in Napa, outreach
professionals are substantially less popular than
Growers, while in Lodi, outreach professionals are
somewhat more popular than growers. Finally, there is
strong regional homophily at the zip code level in all
regions, and this effect is strongest in Central Coast,
which is consistent with Hypothesis 4. Goodness-of-fit
and other model assessments are presented in Online
Resource 1.

Table 1 Parameter estimates for
ERGMs of viticulture knowledge

networks. Outreach, outreach-
grower, and respondent are main-
effect terms. Geographic terms
are homophily effects at the zip
code level

Central coast Napa Lodi
Structural terms
Anti-centralization (GWDegree, 6;=3.0) -1.70"" -2.00"" -2.52""
(0.23) (0.24) (0.19)
Triangles (GWESP, 81 =0.7) 034" 035" 040"
0.07) (0.07) (0.06)
Professional role (vs. Grower)
Outreach 0.19 -0.84™" 0.22""
(0.15) (0.20) (0.07)
Outreach-grower 031" 037" 023"
(0.05) (0.06) (0.05)
Geography (vs. known different zip codes)
Shared zip code 149" 0.74™" 0.89""
(0.10) (0.10) (0.09)
Possibly shared zip code -0.14 0.59" -0.14
0.15) (0.15) (0.13)
Control
Survey respondent 126" 129" 052"
(0.09) 0.11) (0.08)

*p<0.05;** p<0.01; *** p<0.001
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Modeled edge probabilities

To provide intuition on the implications of the ERGM esti-
mates, we calculate the model-implied probability of every
possible edge in each of the networks and then parse the prob-
abilities by nodal and dyadic attributes of interest (per Eq. 4).
The raw parameter estimates and relative odds presented
above speak to the effect of a single feature of the networks
independent of all others; in contrast, these edge probabilities
simultaneously account for all network statistics associated
with a particular edge. For example, if two actors live in the
same zip code and have shared partners, the effects of both are
reflected in the probability of an edge between them, and
correlations between shared zip codes and shared partners will
appear in these probability distributions, whereas the ERGM
coefficients for shared zip code and shared partners tease apart
those two effects.

Figure 4a shows the probabilities of all possible
edges versus the degree of edge’s nodes. For example,
the left-most box-and-whiskers presents the distribution
of probabilities of all possible edges to all degree-1
nodes, the next box-and-whiskers shows the probabili-
ties of possible edges on all degree-2 nodes, etc. In
general, there is a positive popularity effect, with edge
probabilities increasing with node degree, albeit with
decreasing marginal effect. Figure 4b shows the dramat-
ic positive effect of shared partners on tie probability.
Across the three networks, actors who share three con-
tacts are an order of magnitude more likely to be

connected than actors with no common contacts.
Figure 4c shows that ties involving growers are more
likely than ties involving Outreach professionals, and
ties involving outreach-growers are substantially more
likely still.

Discussion

We analyzed vineyard management networks for structural
patterns that support three key social processes for sustainable
agroecological systems: diffusion of innovation, cooperation,
and boundary-spanning. We find multiple pieces of evidence
for all three patterns. Diffusion of innovation is supported by
networks with short-path lengths and high levels of centrali-
zation, which are evidenced by high-degree centralization and
negative-GWD estimates in ERGMs (Table 1) that reflect the
tendency for links to go to popular actors. At the same time,
we find closed network structures that support cooperation,
where individuals are forming closed triangles at levels ex-
ceeding chance, leading to networks with high levels of clus-
tering (Fig. 3c) and positive-GWESP estimates in ERGMs.
Finally, in each region, there are a few (non-grower) outreach
professionals in highly central positions, but many more with
only a few connections (Fig. 2). In contrast, outreach profes-
sionals who are themselves growers are highly popular and fill
structural holes in all three networks. These individuals span
boundaries of the networks across groups that would other-
wise be poorly connected.
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Fig. 4 Edge probabilities implied by exponential random graph models.
For each region, the probability of a tie for each dyad in the network was
calculated according to Eq. 4. Edge probabilities were then parsed three
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ways: degree of the actors (a), number of partners shared by the actors (b),
and professional role of the actors (c)
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The results also suggest some important differences across
regions that reflect the physical geography and institutional
arrangements of agroecological systems. These geographic
differences reflect the way in which wine grape regions are
locally organized around American Viticultural Areas (AVAs),
which provide administrative recognition to the terroirs that
simultaneously confer unique attributes to local grapes while
also fostering a regional identity and sense of community
among growers.

Specifically, Lodi has the most homogeneous topography
with fewer administrative subdivisions along with a strongly
institutionalized grower association and sustainability partner-
ship. As a result, the network is highly centralized, with 5.9
times greater degree centralization (Fig. 3a) and significantly
shorter paths between individuals (Fig. 3b) than expected by
chance.

In contrast, the Central Coast network has relatively long
paths between actors compared to Lodi and Napa, which re-
flects the fact that the Central Coast is a large geographic
region encompassing 11 counties and multiple disconnected
AVAs. As aresult, 27% of dyads in the Central Coast network
have no path between them (the mean among corresponding
simulated networks is 11%). At the same time, there is stron-
ger spatial homophily (links between actors in the same zip
code) in Central Coast than the other regions (Table 1). In
addition, for dyads that are not extremely far from each other
in network space (less than ~ 12 edges on the shortest path),
empirical paths are substantially shorter than paths in the sim-
ulated networks. Thus, information is likely to rapidly diffuse
locally in all three regions; it is only across vast network dis-
tances that diffusion may be slower in Central Coast.

The inferences this paper can make are limited by survey
response rates. Network analysis can be sensitive to missing
data; however, we believe it is useful to identify what we can
learn from limited data, especially in contexts like agriculture
where collecting network data is difficult. Our exponential
random graph models partially address this problem by in-
cluding a parameter that distinguishes survey respondents
from non-respondents and demonstrates that survey respon-
dents have more network connections. This finding is consis-
tent with the observation that farmers are more likely to re-
spond to a survey if they are central in the network; the diffi-
culty of reaching more peripheral growers is a consistent
theme in agricultural research and policy. Hence, we suspect
that including these, more peripheral growers would not add a
large number of new links to the data. Additional research
(and measurement innovation) is needed to determine the ex-
tent to which these unobserved links would shift the relative
frequency of open versus closed network structures, which
will reflect whether the peripheral growers tend to men-
tion the same central actors or interact in local neigh-
borhoods. Regardless, we do not think the additional
data would threaten the validity of our main conclusions

@ Springer

regarding networks having a mix of structures for learn-
ing and cooperation.

From a theoretical perspective, the key advancement of this
paper is to highlight how social networks support multiple
social processes at the same time, not just one of the more
traditional models such as diffusion of innovation or cooper-
ation. The ERGMs demonstrate the co-existence of structures
that support more than one process, and it is important to note
that our models take an epistemological stance of explicitly
linking model parameters to hypotheses rather than including
parameters just for the purpose of model fit.

From a substantive and policy perspective, our results re-
inforce the importance of policies and programs that catalyze
the multiple functions of agricultural networks. Consider for
instance agricultural outreach professionals, who have tradi-
tionally been key actors for translating agricultural science
into grower behavior. To be effective, agricultural outreach
professionals cannot simply broadcast knowledge; they
should strategically assemble or “weave” networks (Vance-
Borland and Holley 2011; Lubell et al. 2014). Agricultural
outreach professionals can develop programs that explicitly
intervene in networks, by targeting communication at central
leaders or brokers, identifying network subgroups with differ-
ent communication needs or potential for linkages, or creating
new network links for open or closed structures depending on
whether the goal is spreading information or fostering coop-
eration (Valente 2012). Governing institutions like land grant
universities or other types of agricultural extension systems
should reward outreach professionals for engaging in these
types of network-smart strategies (Hoffman et al. 2015).

Clark et al. (p. 4572) echo this point in their discussion of
innovation systems, where "reformers have called for and im-
plemented more collaborative, iterative, and interactive
models of innovation that acknowledge the importance of
co-production relationships between knowledge-making and
decision-making. The systemic perspective emphasizes that
for success in crafting usable knowledge, researchers must
understand the need to work together not only with ultimate
users and decision makers, but also with a host of other actors
involved in performing the multiple tasks of a well-
functioning innovation system: funders, entrepreneurs, field
evaluators, etc." (Clark et al. 2016a). Our results provide direct
empirical evidence in support of these conceptual frameworks
and policy recommendations.

Agroecological systems are a subset of social-ecological
systems, which in turn are a subset of complex adaptive sys-
tems. The sustainability and resilience of complex adaptive
systems depend on having properties that enable them to learn
in the face of uncertainty, self-organize, and link together mul-
tiple specialized components of the system. Social networks
that encompass these multiple types of processes thus consti-
tute a multiplex conceptualization of social capital. By empir-
ically demonstrating the existence of these different types of
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network structures, we hope our study will inspire compara-
tive research across different types of social-ecological sys-
tems. Such comparative research will be more valuable if it
measures dynamic changes over time, especially how struc-
tural properties vary and link to social, environmental, and
economic outcomes.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.
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