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Abstract

Metabolites, the chemical entities that are transformed during metabolism, provide a functional

readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of

metabolites can now be quantitatively measured from minimal amounts of biological material,

which has thereby enabled systems-level analyses. By performing global metabolite profiling, also

known as untargeted metabolomics, new discoveries linking cellular pathways to biological

mechanism are being revealed and shaping our understanding of cell biology, physiology, and

medicine.

Metabolites are small molecules that are chemically transformed during metabolism and, as

such, they provide a functional readout of cellular state. Unlike genes and proteins, whose

function is subject to epigenetic regulation and post-translational modifications respectively,

metabolites serve as direct signatures of biochemical activity and they are therefore easier to

correlate with phenotype. In this context, metabolite profiling, or metabolomics, has become

a powerful approach that has been widely adopted for clinical diagnostics.

The metabolome, typically defined as the collection of small molecules produced by cells,

offers a window to interrogate how mechanistic biochemistry relates to cellular phenotype.

With developments in mass spectrometry, it is now possible to rapidly measure thousands of

metabolites simultaneously from only minimal amounts of sample1. In particular, recent

innovations in instrumentation, bioinformatic tools, and software enable the comprehensive

analysis of cellular metabolites without bias. In many instances, these metabolites can be

spatially localized within biological specimens with imaging mass spectrometry2, 3.

The application of these technologies has revealed system-wide alterations of unexpected

metabolic pathways in response to phenotypic perturbations. Moreover, many of the

molecules detected are currently not included in databases and metabolite repositories,

indicating the extent to which our picture of cellular metabolism is incomplete4, 5.

Nonetheless, the field of metabolomics has made remarkable progress within the last decade

and implemented new tools that have offered mechanistic insights by allowing for the

correlation of biochemical changes with phenotype.
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In this Innovation article we first define, and differentiate between the targeted and

untargeted approaches to metabolomics. We then highlight the value of untargeted

metabolomics in particular and outline a guide to performing such studies. Finally, selected

applications of untargeted metabolomics are described and their potential in cell biology is

discussed.

Designing a metabolomic experiment

The first step in performing metabolomics is to determine the number of metabolites to be

measured. In some instances, it may be of interest to examine a defined set of metabolites by

using a targeted approach. In other cases, an untargeted or global approach may be taken in

which as many metabolites as possible are measured and compared between samples

without bias. Ultimately, the number and chemical composition of metabolites to be studied

is a defining attribute of any metabolomic experiment that and shapes experimental design

with respect to sample preparation and choice of instrumentation.

Targeted metabolomics

This approach refers to a method in which a specified list of metabolites is measured,

typically focusing on one or more related pathways of interest6. Targeted metabolomic

approaches are commonly driven by a specific biochemical question or hypothesis that

motivates the investigation of a particular pathway. This approach can be effective for

pharmacokinetic studies of drug metabolism as well as for measuring the influence of

therapeutics or genetic modifications on a specific enzyme7. Developments in mass

spectrometry (MS) and nuclear magnetic resonance (NMR) offer distinct advantages for

performing targeted metabolomic studies because of their specificity and quantitative

reproducibility, however, there are many analytical tools available for measuring

metabolites that could in principle be considered such as ultraviolet-visible spectroscopy and

flame ionization. Although the term “metabolomics” was only recently coined, examples of

targeted studies of metabolites date back to the earliest of scientific inquiries8–12. Therefore,

there is a wealth of literature investigating optimal protocols for the sample preparation and

analysis of specific classes of metabolites that has been discussed extensively

elsewhere13–17.

Not to diminish their significance, targeted approaches have undoubtedly played an

important role in the development of the field of metabolomics. In particular, advances have

been made in using triple quadrupole (QqQ) MS to perform selected reaction monitoring

experiments such that routine methods are now available to analyze most of the metabolites

in central carbon metabolism as well as amino acids and nucleotides at their naturally

occurring physiological concentrations18–20. These developments provide a highly sensitive

and robust method to measure a significant number of biologically important metabolites

with relatively high throughput. Additionally, QqQ MS methods are quantitatively reliable

and therefore offer opportunities to achieve absolute quantitation of low-concentration

metabolites that are difficult to detect with less sensitive methods such as NMR (Fig. 2).

(Fig. 2) By applying QqQ MS-based methods to human plasma, targeted lists of metabolites

can be screened as potential metabolic signatures for disease. For example, targeted

screening recently revealed citric acid metabolites and a small group of essential amino

acids as metabolic signatures of myocardial ischemia and diabetes respectively.21, 22 In

another diabetes-related study, targeted metabolomic methods were used to investigate

patient response to glucose challenge.23 Here, the levels of specific plasma metabolites were

measured after glucose ingestion to determine insulin response in patients.
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Untargeted metabolomics

Untargeted metabolomic methods are global in scope and have the aim to simultaneously

measure as many metabolites as possible from biological samples without bias. Although

untargeted metabolomics can be performed by using either NMR or MS technologies, liquid

chromatography followed by MS (LC/MS) enables the detection of the most metabolites and

has therefore been the technique of choice for global metabolite profiling efforts24–27. By

using LC/MS-based metabolomic methods, thousands of peaks can be routinely detected

from biological samples14, 28, 29. Each of these peaks are referred to as metabolite features

and correspond to a detected ion with a unique mass-to-charge ratio and a unique retention

time (it should be noted that some metabolites may produce more than one feature).

In contrast to targeted metabolomic results, untargeted metabolomic datasets are

exceedingly complex with file sizes on the order of gigabytes per sample for some new

high-resolution MS instruments. Manual inspection of the thousands of peaks detected is

impractical and complicated by experimental drifts in instrumentation. In LC/MS

experiments, for example, there are deviations in retention time from sample to sample as a

consequence of column degradation, sample carryover, small fluctuations in room

temperature and mobile phase pH, and so on. Although these challenges initially presented

significant obstacles for interpreting untargeted profiling data, major progress has been

made in the last decade such that the ability to measure dysregulated features in global

metabolomic datasets has now become routine with the introduction of metabolomic

software such as MathDAMP, MetAlign, MZMine, and XCMS1, 30–34. These

accomplishments have already had an impact in revealing not only that an astounding

number of metabolites remain uncharacterized with respect to their structure and function,

but also that many of these uncharacterized metabolites change as a function of health and

disease4. It is in this area that untargeted metabolomics has great potential to provide

insights into fundamental biological processes. The remainder of this article will focus on

the untargeted metabolomic approach.

Impetus for untargeted metabolomics

In 1941, G. Beadle and E. L. Tatum proposed the one gene–one enzyme hypothesis. This

hypothesis was based on their experimental results showing that X-ray-induced mutant

strains of the fungus Neurospora crassa were unable to carry out specific biochemical

reactions35, 36. By systematically adding individual compounds to minimal N. crassa media

and screening for those that rescued the growth of mutant strains, Beadle and Tatum

identified metabolites whose biosynthesis had been affected by genetic mutation. In doing so

they were the first to directly connect genotype to phenotype at the molecular level. From

their results they purported that a single gene serves as the primary control of a single

function, in this case a specific chemical reaction.

In many ways, modern day metabolomic experiments seek to similarly connect genotype

and phenotype by metabolite screening. The experimental screening methods used today,

however, are much advanced and allow us to study many more compounds simultaneously.

Additionally, contemporary metabolic profiling experiments have the advantage of being

complemented by genomic sequencing and proteomic screening37–40. From the combination

of these global analyses, the field of systems biology has emerged and shown us that the

effects of a single nonlethal gene mutation can be dauntingly large41. Indeed, single gene

mutations can affect a significant number of metabolic pathways, thereby complicating the

hypothesis that a single gene controls a single function (Figure 1). Moreover, mutations in

some unique genes have unexpected phenotypic effects. As an example, consider the daf-2

gene which encodes an insulin-like receptor in the nematode worm Caenorhabditis elegans.

Mutations in daf-2 cause C. elegans to live more than twice as long as its wild type
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counterpart and result in alterations in the abundance of at least 86 identified proteins42, 43.

Or, as another example, consider genes that encode for enzymes of the phosphatidyl-inositol

3-kinase family. The protein products of these genes function in cell growth, proliferation,

differentiation, motility, signal transduction, and mutations in these genes are thought to

have an oncogenic role in some cancers44.

As these examples highlight, one gene can influence a multitude of metabolic pathways and

thereby have a functional role in many cellular processes. Even knowledge of encoded

protein structure is often insufficient to infer function at the whole-organism level. Such

functions can have intricate regulatory mechanisms involving epigenetic control, post-

translational modifications, and feedback loops that enable context-dependent activation or

deactivation. Thus, investigations to detangle the role of any one specific gene benefit from

systems-level analyses. While these types of global studies were once limited to genes,

transcripts, and proteins, technological developments over the last decade now allow for the

untargeted profiling of metabolites and provide opportunities to comprehensively track

metabolic reactions directly for the first time.

Untargeted metabolomic workflow

Although untargeted metabolomic experiments are often hypothesis generating rather than

hypothesis driven, it is important to carefully construct an experimental design that

maximizes the number of metabolites detected and their quantitative reproducibility. With

the workflow that is described below, metabolite identification is a manual and time-

intensive process. Thus, the choice of sample type, preparation, chromatographic separation,

and analytical instrumentation should be considered and the choice that is most likely to

yield high-quality data used for analysis. Here we focus on an LC/MS-based workflow

because this technique enables the detection of the highest number of metabolites and

requires only minimal amounts of sample (for example, typically less than 25 mg of tissue,

around 1 million cells, or approximately 50 µL of biofluids such as plasma and urine).

Sample preparation and data acquisition

The first step in the untargeted metabolomic workflow is to isolate metabolites from

biological samples (Figure 3a). Several approaches involving sample homogenization and

protein precipitation have been utilized, which are described in detail elsewhere14, 15, 45, 46.

Prior to MS analysis, isolated metabolites are separated chromatographically by using

relatively short solvent gradients (on the order of minutes) that allow for high-throughput

analysis of large numbers of samples. Given the heterogeneous physiochemical landscape of

the metabolome, multiplexing extraction and separation methods maximizes the number of

metabolites detected47. For example, extracting the same cells with both organic and

aqueous solvents increases the number of hydrophobic and hydrophilic compounds

observed, respectively. Similarly, reversed-phase chromatography is better suited for the

separation of hydrophobic metabolites, whereas hydrophilic-interaction chromatography

generally separates hydrophilic compounds more effectively. Most frequently data is

collected on a quadruopole time-of-flight (QTOF) mass spectrometer or an Orbitrap mass

spectometer, but other time-of-flight and ion trap instruments can also be used28, 29, 48.

Given the challenge of predicting tandem MS (MS/MS) fragmentation patterns for most

metabolites, unlike in shotgun ‘omic approaches, untargeted metabolomic profiling data is

typically acquired in MS1 mode (that is, only the mass-to-charge ratio (m/z) of the intact

metabolite is measured) 49, 50.
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Data analysis

With recent developments in bioinformatic tools, identification of metabolite features that

are differentially altered between sample groups has become a relatively automated process.

Several metabolomic software programs that provide a method for peak picking, non-linear

retention time alignment, visualization, relative quantitation, and statistics are available1, 51.

The most widely used metabolomic software is XCMS, which is freely available online

where users can upload data, perform data processing, and browse results within a web-

based interface1 (https://xcmsonline.scripps.edu/).

Metabolite identification

It is important to note that the metabolomic software currently available does not output

metabolite identifications. Rather, it provides a table of features with p-values and fold

changes related to their difference in relative intensity between samples. To determine the

identity of a feature of interest, the accurate mass of the compound is first searched in

metabolite databases such as the Human Metabolome Database and METLIN52–54 (http://

www.hmdb.ca/ and http://metlin.scripps.edu/). A database match represents only a putative

metabolite assignment that must be confirmed by comparing the retention time and MS/MS

data of a model compound to that from the feature of interest in the research sample (Figure

3b). Currently, MS/MS data for features selected from the profiling results are obtained from

additional experiments and matching of MS/MS fragmentation patterns is performed

manually by inspection. These additional analyses are time intensive and represent the rate-

limiting step of the untargeted metabolomic workflow. Additionally, although metabolite

databases have grown considerably over the last decade, a substantial number of metabolite

features detected from biological samples do not return any matches. Identification of these

unknown features requires de novo characterization with traditional methods. Taken

together, it should be recognized that comprehensive identification of all metabolite features

detected by LC/MS is currently impractical for most samples analyzed.

Addressing the challenges

Untargeted metabolomics has revealed that the number of endogenous metabolites in

biological systems is larger than anticipated and cannot be accounted for merely by

canonical biochemical pathways. That is, the masses of a significant fraction of compounds

detected in global analyses do not match any of the masses included in metabolite databases.

Therefore, given that the metabolome is not encoded in the genome like proteins and

transcripts, systems-level studies of metabolites are complicated by attempting to analyze an

undefined set of molecules. In response to this challenge, metabolite databases have

expanded rapidly over the last decade. Although database expansion has facilitated

untargeted studies, there are still many metabolites for which the chemical structure, cellular

function, biochemical pathway, and anatomical location remain uncharacterized. Here,

innovative technologies and experimental strategies that can be coupled with untargeted

profiling are driving progress in the field.

Improving metabolite databases

Over the last decade, the information catalogued in metabolite databases has evolved beyond

lists of one-dimensional data that is traditionally acquired by mass spectrometry- and NMR-

based screens. The Human Metabolome Database, for example, includes a “MetaboCard”

for each of its included metabolites (~8550).52, 53 In addition to having molecular weights

and experimental NMR spectra, the MetaboCards list information on each compound’s

biochemical pathway, concentration, anatomical location, metabolizing enzymes, and

related disorders when available. Currently, the Human Metabolome Database and METLIN

are among the most widely used metabolite databases publicly available.54–56 Similar to the
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Human Metabolome database, METLIN contains experimental data for a subset of the total

number of compounds included (~45000). In METLIN, MS/MS data is available for more

than 10000 metabolites. For each of these metabolites, MS/MS data were experimentally

generated from model compounds analyzed at four different collision energies in both

positive and negative mode. When used together with other publicly available tools, the

Human Metabolome and METLIN databases can facilitate both metabolite identification as

well as data interpretation.

Meta-analysis: prioritizing unknowns

Alterations in a single enzyme can lead to a cascade of metabolic perturbations that are

functionally unrelated to the phenotype of interest. Untargeted metabolomic profiling of a

particular disease or mutant can therefore reveal hundreds of alterations that are unlikely to

have mechanistic implications. Given the resources needed to identify both known and

unknown compounds, strategies to reduce lists of potentially interesting features prior to the

time commitment of identification are of great utility. One such strategy is meta-analysis, by

which untargeted profiling data from multiple studies are compared (Figure 1). By

comparing multiple models of a disease, for example, features that are not similarly altered

in each of the comparisons may be de-prioritized as being less likely to be related to the

shared phenotypic pathology. To automate the comparison of untargeted metabolomic data,

freely available software called metaXCMS has been recently developed57. As proof of

concept, metaXCMS was applied to investigate three pain models of different pathogenic

etiologies: inflammation, acute heat, and spontaneous arthritis58. While hundreds of

metabolite features were found to be altered in each model, only three were similarly

dysregulated among all the groups. One of the shared metabolites was identified as

histamine, a well-characterized mediator of pain that works by several mechanisms. The

application of similar data-reduction strategies to other biological systems may justify

aggressive analytical investigations of unknown features likely to be physiologically

relevant.

Imaging approaches to localize metabolites

One of the first steps in the untargeted metabolomic workflow applied to biological tissue is

metabolite isolation by sample homogenization. Thus, standard metabolic profiling

techniques do not permit high-resolution spatial localization of metabolites within samples.

Investigations of heterogeneous tissues such as the brain are therefore complicated by the

averaging of various cell types, each with a potentially unique metabolome. Given these

limitations, correlating a dysregulated metabolite with a specific region of tissue or cell type

can be challenging.

NMR-based imaging technologies have been applied to spatially localize metabolites in

intact samples, but these methods have limited chemical specificity and sensitivity59–61. By

contrast, MS-based approaches relying on matrix-assisted laser desorption ionization

(MALDI) offer improved chemical specificity and sensitivity but they are limited in their

application to metabolites due to background interference caused by the matrix in the low-

mass region characteristic of metabolites62. As an alternative, a matrix-free technique called

nanostructure-initiator mass spectrometry (NIMS) has been developed for the analysis of

metabolites with high sensitivity and spatial resolution (Figure 4)63, 64. By using NIMS to

analyze 3 µm sections of brain tissue from mice with impaired cholesterol biosynthesis,

metabolic precursors of cholesterol were found to localize to the cerebellum and brainstem2.

These types of NIMS imaging applications coupled with histology will allow metabolite

localization patterns to be correlated with tissue pathology and drive developments in our

understanding of chemical physiology.
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Untargeted metabolomics applied

Given its sensitivity, high-throughput and minimal sample requirements, untargeted

metabolomics has wide applicability across a myriad of biological questions. Despite its

relatively recent emergence as a global profiling technology, untargeted metabolomics has

already increased our understanding of comprehensive cellular metabolism and been utilized

to address a number of biomedical issues. Among the biomedical applications in which

untargeted metabolomics has provided unique insight is in identifying altered metabolic

pathways in disease that represent novel drug targets, an evolving application referred to as

“therapeutic metabolomics”.65, 66 An example of this application is the discovery of

increased levels of the metabolite 2-hydroxyglutarate in cancer cells with isocitrate

dehydrogenase 1 mutations, which are a common feature of a major subset of primary

human brain cancers.67 These results suggest that inhibition of 2-hydroxyglutarate

production may be an effective therapeutic approach to slow or halt conversion of a low-

grade glioma into lethal secondary glioblastoma. In another example, levels of the

sphingolipid dimethylsphingosine were found to be increased in the spinal cords of rats

suffering from neuropathic pain.68 Increased levels of dimethylsphingosine were determined

to induce pain-like behavior in vivo and point to the inhibition of methyltransferase or

ceramidase as potential therapeutic approaches for treating chronic pain by blocking

dimethylsphingosine production.

Another area in which untargeted metabolomics has been successfully applied is in

characterizing gene and protein function. In addition to successfully identifying the function

of unknown genes and proteins, untargeted profiling has been applied to discover new

functions for known genes and proteins. By screening for metabolites that accumulate after

gene mutation or enzyme inhibition, unanticipated connections between the proteome and

metabolome have been established that were not accurately predicted from in vitro activity

measurements.69 As a demonstration of characterizing a yeast gene of unknown function

(YKL215C), untargeted methods were applied to organisms harboring a mutation in

YKL215C. Increased levels of 5-oxoproline were detected in these organisms, allowing the

assignment of YKL215C as an oxoprolinase.48 In an independent study, an untargeted

screen identified a previously unidentified activity for the yeast enzyme sedoheptulose-1,7-

bisphosphatase. The finding that sedoheptulose-1,7-biosphosphatase hydrolyzes

sedoheptulose-1,7-bisphosphate to sedoheptulose-7-phosphate identified a

thermodynamically driven route from trioses produced by glycolysis to the synthesis of

ribose.70 A similar type of enzyme-activity characterization was also accomplished for

Mycobacterium tuberculosis by incubating a purified recombinant enzyme with a

mycobacterial small molecule extract. The small molecule extract was analyzed by LC/MS

for altered substrate and product, leading the incompletely characterized protein Rv1248c to

be assigned as a 2-hydroxy-3-oxoadipate synthase71. As these examples highlight,

untargeted metabolomics not only has implications for therapeutic screening, but also for

providing chemical insight across a broad area of mechanistic cell biology.

Concluding remarks

While there has been a longstanding interest in metabolic profiling, only recently have

technologies emerged that enable the global analysis of metabolites at a systems level

comparable to its ‘omic predecessors. Unlike genomics, transcriptomics, and proteomics,

however, metabolomics provides a tool to measure biochemical activity directly by

monitoring the substrates and products transformed during cellular metabolism. Untargeted

profiling of these chemical transformations at a global level serves as a phenotypic readout

that can be used effectively in clinical diagnostics, to identify therapeutic targets of disease,

and to investigate the mechanisms of fundamental biological processes.
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Although untargeted metabolomics is still in its infancy, early studies have shown that the

complexity of comprehensive cellular metabolism exceeds that expected based on classical

biochemical pathways. In this sense, our understanding of metabolism is evolving much like

our notion of physics evolved in the early twentieth century with the emergence of

experimental results such as the photoelectric effect, which could not be explained by

Newtonian laws72, 73. Ultimately, the ideas that emerged from this disparity resulted in a

new set of principles for understanding physical phenomena known as quantum mechanics.

As metabolomic technologies continue to advance and facilitate the characterization of

unknown pathways, the potential of untargeted metabolomics to shape our understanding of

global metabolism is yet to be fully realized.
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Box 1: Glossary of Terms

Imaging mass spectrometry; Nuclear magnetic resonance (NMR); triple quadrupole

(QqQ) MS; liquid chromatography (LC)/MS; MathDAMP, MetAlign, MZMine, XCMS:

bioinformatic software for analyzing untargeted LC/MS-based metabolomic data;

quadruopole time-of-flight (QTOF) mass spectrometer; Orbitrap mass spectometer; ion

trap; metaXCMS; matrix-assisted laser desorption ionization (MALDI); nanostructure-

initiator mass spectrometry (NIMS).
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Figure 1. The central dogma of biology and the ‘omic’ cascade
While genes and proteins are subject to regulatory epigenetic processes and post-

translational modifications respectively, metabolites represent downstream biochemical end

products that are closer to the phenotype. Alterations in a single gene (illustrated by blue

dots) or a single protein can lead to a cascade of metabolite alterations. In the theoretical

schematic shown, up- and down-regulated metabolites are shown in red and unaltered

metabolites are shown in grey. Untargeted metabolomics aims at comprehensively profiling

metabolites without bias to identify changes that correlate with cellular function or

phenotype. By performing meta-analysis, metabolic alterations shared between multiple

animal models or multiple genetic modifications may be identified as shown by the

superimposed Venn diagram.
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Figure 2. The untargeted and targeted workflow for LC/MS-based metabolomics
The untargeted metabolomic workflow (top). Metabolites are first isolated from tissues,

biofluids, or cell cultures and subsequently analyzed by LC/MS. After data acquisition, the

results are processed by using bioinformatic software such as XCMS to perform nonlinear

retention time alignment and identify metabolite features that are changing between the

groups of samples measured. Metabolite features of interest are searched in metabolite

databases on the basis of accurate mass to obtain putative identifications. Putative

identifications are then confirmed by comparison of MS/MS and retention time data to that

of standards. The untargeted workflow is global in scope and outputs data related to

comprehensive cellular metabolism. The targeted metabolomic workflow (bottom). First,

standard compounds for the metabolites of interest are obtained and used to setup selected

reaction monitoring methods. Here instrument voltages are established and concentration

curves are generated for absolute quantitation. After the targeted methods have been

established on the basis of standards, the metabolic extract is analyzed from the research

samples. The data output provides quantitation only of those metabolites for which standard

methods have been built.
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Figure 3. Metabolite characterization in the untargeted metabolomic workflow
In LC/MS-based untargeted metabolomics, metabolites are identified on the basis of

accurate mass, retention time, and MS/MS data. Experimental and standard data are shown

here for the metabolite A2E (A2-ethanolamine) as an example of the identification process.

The accurate mass as measured from the mass spectrometer (obs.) is less than 3 ppm

different than that theoretically expected (theo.) on the basis of the compound’s molecular

formula. This mass error is within the range expected from most modern mass

spectrometers. The retention time of the research sample (38.9 min, black) is then compared

to that of a standard (39.0, red). Finally, to confirm an assignment, a follow-up targeted MS/

MS analysis is performed. The MS/MS data from the research sample are shown in black

Patti et al. Page 15

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2013 June 14.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



and the MS/MS data from the standard are shown in red. As illustrated, all three

experimental data parameters are consistent with those obtained from the standard, thereby

supporting the identification of A2E in the research sample.
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Figure 4. Spatial localization of metabolites in tissue by mass spectrometry-based imaging
An example of a surface-based image of cholesterol from mouse brain by using

nanostructure-initiator mass spectrometry (NIMS, reference 2). NIMS is well suited for

metabolite imaging because it is highly sensitive and does not suffer from matrix

interference in the low-mass range. Sections of frozen tissue are first transferred to a NIMS

chip that is subsequently analyzed by using a laser-induced desorption/ionization approach

(bottom). By systematically rastering the laser across the tissue, a mass spectrum is

generated from each point. The mass spectral intensity of the metabolite of interest is plotted

spatially to generate images as shown for cholesterol here (top, m/z 493.26).
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