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Abstract Reliable, tractable computational characterization of warm dense matter
is a challenging task because of the wide range of important aggregation states
and effective interactions involved. Contemporary best practice is to do ab initio
molecular dynamics on the ion constituents with the forces from the electronic
population provided by density functional calculations. Issues with that approach
include the lack of reliable approximate density functionals and the computational
bottleneck intrinsic to Kohn-Sham calculations. Our research is aimed at both
problems, via the so-called orbital-free approach to density functional theory.
After a sketch of the relevant properties of warm dense matter to motivate our
research, we give a survey of our results for constraint-based non-interacting free
energy functionals and exchange-correlation free-energy functionals. That survey
includes comparisons with novel finite-temperature Hartree-Fock calculations and
also presents progress on both pertinent exact results and matters of computational
technique.
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1 Setting and Perspective

Materials under extreme conditions have been a major and rewarding focus
of condensed matter physics for well over a century. Low-temperature physics is
a familiar example, with its modern form dating to the liquefaction of Hydrogen
by Dewar in 1898 and of Helium by Kamerlingh Onnes in 1908 [1]. High
energy-density physics (HEDP), the focus of the 2012 IPAM Long Program
“Computational Methods in High Energy Density Plasmas”, is less well-known,
even in the scientific community. But from the perspective of shock and detonation
phenomena at least, HEDP has as long and deep a scientific heritage as does
low temperature physics. A history of early work on detonation waves [2], for
example, notes the first detonation velocity measurements in condensed explosives
by Abel in 1869, the beginnings of detonation theory (antecedent to the Chapman-
Jouguet equation) by Michelson in 1890, and the Chapman-Jouguet relation itself
by Chapman in 1899 and Jouguet in 1905 and 1906. Other examples could be given
from plasma physics.

A sign of the richness of HEDP is that only much more recently has it been
recognized that HEDP includes a complicated condensed matter regime now called
warm dense matter (WDM). We discuss WDM traits briefly below. The challenge
and opportunity to develop computationally tractable, predictive methods suitable
for a comparatively unexplored condensed matter regime drew us together as a
team. That same combination of challenge and opportunity led to Workshop IV
“Computational Challenges in Warm Dense Matter” of the IPAM HEDP Long
Program. The Workshop was a de facto review of theory, modeling, and simulation
for WDM, with conversations among those already involved as well as with workers
whose research clearly could be of relevance. In that context, we offer here a survey
of our contributions, confident that we do not have to survey the entire area and,
hence, the entire Workshop!

It is fitting to begin with a system perspective. WDM comprises a condensed
matter regime characterized roughly by electron temperatures T � 1–15 eV and
pressures to 1 Mbar or greater. (Aside: Theoretical and computational treatment of
WDM involves diverse topics with many abbreviations. Most of the more common
ones are listed in the Glossary; see the Appendix.) Recently WDM has attracted
attention because of its importance in diverse physical systems, including exo-planet
interiors, the path to inertial confinement fusion, and neutron stellar atmospheres
[3–13]. The relationship between the WDM regime and other states of matter is
illustrated schematically in Fig. 1. The regime is inherently challenging because
its thermodynamics cannot be framed in terms of small perturbations from ideal,
solvable models. WDM temperature and pressure ranges correspond to values
of order unity in the two relevant expansion parameters: the Coulomb coupling
parameter � D Q2=rskBT and the electron degeneracy parameter � D kBT=�F.
(Here Q D the relevant charge, rs D Wigner radius, �F D electron Fermi energy,
T D temperature, kB D Boltzmann constant.) WDM thus does not fall neatly within
the parameter space typical of either ordinary condensed-matter physics or plasma
physics. One result is that plasma physics methods which originate in the classical
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Fig. 1 Qualitative positioning of WDM relative to other physical states and systems

limit do not extend well into the WDM regime. At a fundamental level, such
approaches cannot be entirely successful; the quantum limit cannot be recovered
from classical physics.

Conversely, condensed-matter physics methods must be extended well beyond
their normal realms of application. The logic is inexorable. A foundational element
for understanding and manipulating material behavior is the equation of state (EOS).
For materials under near-ambient conditions, best practice has evolved to be a
combination of electronic structure calculations using density functional theory
(DFT) and molecular dynamics (MD). In many cases, the zero-temperature EOS
(or cold curve), including crystalline phase transitions, can be predicted quite
accurately with DFT alone [14,15]. For the nuclear (or ionic) contribution, so-called
ab initio MD (AIMD; see Refs. [16–20]) is quite successful. In its simplest form
(Born-Oppenheimer MD), AIMD gets the electronic forces on the nuclei (or ions)
from a DFT calculation at each nuclear step. AIMD thereby combines chemical
realism from explicit quantum mechanical treatment of the electrons with the more-
or-less classical contributions of the nuclear species.

There are both conceptual and technical problems associated with this rosy
picture, however, and they are worsened by extending into the WDM regime. A
brief sketch of the customary DFT approach is needed for context. The variational
minimization of the density functional customarily is via the well-known Kohn-
Sham (KS) procedure [21]. It introduces a model (sometimes called “fictitious”)
non-interacting many-fermion system of the same density, n, as the physical system
of interest. The density is expanded in the one-body states (orbitals) of the KS
Hamiltonian

hKSŒn�'i D "i'i ; (1)

n.r/ D
X

i

fi j'i.r/j2 ; (2)
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with fi the occupation numbers. For ambient T, it is appropriate to use fi D 0; 1

(for the spin-polarized case); the T-dependence of the Fermi-Dirac distribution
is negligible. The KS equation follows from decomposition of the fundamental
Hohenberg-Kohn, Levy-Lieb functional [22–24] into non-interacting kinetic energy
Ts, Hartree, exchange, and correlation energies [25,26]. Observe that exchange and
correlation are defined in terms of the KS decomposition, hence differ subtly from
the quantities with the same names defined in other parts of many-electron theory.
A free-energy (i.e., non-zero T) version of the theory exists; we give relevant details
below. The essential point for now is that the KS equation continues to be valid but
with full Fermi-Dirac occupation number T-dependence:

fj � f ."j � �/ D Œ1 C exp.ˇ."j � �//��1 ; (3)

with ˇ D 1=kBT and � the chemical potential. In the WDM regime, the many
small, but non-negligible values of fj for levels far above � constrict drastically a
computational bottleneck that already is evident at T D 0 K. Simply, at T D 0 K,
diagonalization of the KS Hamiltonian means that the KS calculational cost scales
as N 3

e at best, with Ne D total number of electrons. If a conventional KS
DFT calculation drives the AIMD, each MD step therefore also scales as N 3

e or
worse. Matters worsen as T increases. Then the computational burden increases
proportionally to N 3

b , where Nb is the number of thermally occupied levels, with
Nb � Ne for WDM. This scaling of computational cost is a severe limitation for
thorough exploration of WDM, as noted in recent practitioner remarks (Sept. 2012)
[27,28]. Even with the massive computational power of the DOE labs, realistic KS-
driven AIMD simulations of WDM remain at the level of heroic.

Our research program aims to eliminate the KS bottleneck in WDM simulations
by making orbital-free DFT (OF-DFT) a viable alternative. Orbitals enter the
KS procedure primarily as a device for computing the major part of the KE
and, for nonzero T, also for computing the non-interacting entropy from the
occupation numbers. Putting aside for now the present-day emphasis on developing
explicitly orbital-dependent exchange-correlation functionals, the other free-energy
contributions in conventional DFT are all explicit density functionals.

Schematically, the OF-DFT simulation is compared with a conventional KS-DFT
simulation in Fig. 2. The crucial difference is that the Nb-dimensional Kohn-
Sham eigenvalue problem is replaced with a single 3-dimensional Euler-Lagrange
equation. As already stated, the challenge addressed in this project is to generate the
functionals which are ingredients of that equation. To illustrate the power of orbital-
free methods, Fig. 3 shows our comparison for Hydrogen at 0:983 g=cm3, about a
two-fold compression from ambient density. Discussion of these computations is
below. Here, the essential point is that the OF-DFT simulation replaces the power-
law scaling of the conventional KS-DFT-driven MD with a nearly invariant scaling.
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Fig. 2 Comparison of Kohn-Sham and orbital-free MD computational cycles (Credit for original:
W. Lorenzen)
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Fig. 3 Illustration of the dramatic advantage of OF-DFT: time per AIMD step as a function of T
for KS-DFT vs. OF-DFT for Hydrogen

2 Primary Challenges

Identification of the primary challenges to use of OF-DFT for predictive WDM
studies requires that we set out a few details of free-energy DFT (FE-DFT). At the
level of the Born-Oppenheimer approximation, FE-DFT follows from a constrained
search approach within the grand canonical ensemble [25, 29–32]. It should be
stressed that this approach provides a firm theoretical foundation for FE-DFT, so the
resulting equations cannot be dismissed as ad hoc or heuristic. The analysis yields
the key result that, in parallel with ground-state DFT [22–24], there exists a universal
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functional F Œn; T� which gives the equilibrium free energy of a many-electron
system with Coulomb interactions in terms of n and T. Once one has F for a given
configuration of nuclei or ions fRg, the electronic forces on those ions or nuclei can
be computed from rR.F C Eext/ with Eext D R

drn.r/vext.r/ and vext the external
potential. (The ion-ion Coulomb repulsion term is omitted here for simplicity.).

To compute F , one introduces, just as in zero-temperature DFT [21], a
non-interacting system with the same density as the physical (interacting) system.
The universal functional F Œn; T� thus partitions into a non-interacting part FsŒn; T�

plus the classical Coulomb repulsion energy (Hartree energy) FHŒn�, and the
exchange-correlation remainder FxcŒn; T�

F Œn; T� D FsŒn; T� C FHŒn; T� C FxcŒn; T� ; (4)

where

FsŒn; T� D TsŒn; T� � TSsŒn; T� : (5)

Here Ts and Ss are the non-interacting kinetic energy (KE) and entropy. The
motivation is that Fs and FH constitute the largest contributions to F , yet can be
calculated explicitly, while the smaller contribution FxcŒn; T� can be approximated.
Analogously with the zero-T formulation, Fxc contains not only Coulombic
correlation and exchange effects, but also the difference between the kinetic energies
and entropies of the actual and non-interacting systems.The expressions for the non-
interacting KE and entropy are:

TsŒn; T� WD �1

2

1X

j D1

Z
dr fj '�

j .r/r2'j .r/ W D
Z

dr �orb.r; T/ ; (6)

SsŒn; T� D �kB

X

j

ffj ln fj C .1 � fj / ln.1 � fj /g : (7)

Variation with respect to the density then gives the KS Hamiltonian as

hKS D �1

2
r2 C vKS.Œn�I r/ � �1

2
r2 C vext C vH C vxc : (8)

Here vH D ıFH=ın, vxc D ıFxc=ın, and the density is given in terms of the
Fermi-Dirac occupation numbers fj and the KS orbitals 'j as in Eqs. (2) and (3).

The expressions for the non-interacting KE and entropy just given illustrate
some of the challenges to OF-FE-DFT. In place of Eqs. (6) and (7), we must find
adequately accurate, general, orbital-free representations for both, namely

TsŒn; T� D
Z

dr �sŒn.r/; T� ; SsŒn; T� D
Z

dr �sŒn.r/; T� : (9)
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Further, we must restrict consideration to XC functionals that are not explicitly
orbital-dependent, i.e., functionals which correspond to rungs one or two on the
Perdew-Schmidt Jacob’s ladder [33] of complexity. This restriction motivates con-
tinued effort (including contributions from our group) to improve lower-rung zero-T
XC functionals, despite their de-emphasis in the quantum chemistry community
(which does not focus on orbital-free DFT). We therefore work with XC functionals
of the form

Fxc D
Z

dr fxcŒn.r/; T� : (10)

For simplicity of notation we have omitted possible dependence on density gradients
and higher derivatives of the density in several of the foregoing expressions. With
all contributions in orbital-free form, the Euler equation becomes

ıTs

ın
� T

ıSs

ın
C ıFH

ın
C ıFxc

ın
D � � vext : (11)

The primary challenges to the use of OF-DFT for WDM studies now can
be identified succinctly. First, there is no constructive route from the exact DFT
theorems [21–24] to viable approximations for the XC free energy [25, 29–32], an
observation that is hardly surprising in view of the fact that no such route has been
found for zero-temperature XC functionals. Secondly, the abandonment of an orbital
description means that there also is no obvious constructive path for approximate
functionals for either the non-interacting kinetic energy or entropy solely in terms
of the density. Third, our work has shown that the functionals Ts, Ss, and Fxc

have a significant dependence on temperature that thus far has received insufficient
attention.

Our research can be conceptualized in terms of these three challenges. The
discussion which follows surveys the main points of our work to

• Uncover the T-dependence of Ts, Ss for ranges of material densities and
pressures appropriate to WDM by finite-T KS calculations

• Develop new, T-dependent generalized gradient approximations for Ts and Ss

• Characterize the T-dependence of the exchange functional Fx by comparison
of both T-dependent local density approximation (LDA) [34] and ordinary
T-independent LDA with thermal (finite-T) Hartree-Fock (tHF) calculations
[35–37]

• Derive exact constraints and properties of the various contributions to the free
energy density functional

• Improve T D 0 K orbital-free Ts and Fxc functionals (the obvious low-T limits
of our target functionals)

• Develop the requisite technical means (algorithms, local pseudopotentials, pro-
jector augmented wave data sets, etc.).
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A brief discussion of the context of our work is useful. Zero-temperature OF-KE
functional development today has two streams. One uses two-point functionals, of
the generic form

TsŒn� D
Z

dr1dr2n
	.r1/KŒn.r1/; n.r2/; r1; r2�n


 .r2/ (12)

with 	 C 
 D 8=3 and the kernel K referenced to the response of the homogeneous
electron gas (HEG). See Ref. [38] for a didactic discussion. The motivation is
to describe Friedel oscillations in solids and corresponding atomic and molecular
electronic shell structure. While progress continues, the inherent non-locality of this
approach causes computational burden (for example, see remarks in Ref. [39]). The
two-point strategy also has conceptual limitations. The linear response formulation
implicitly requires a reference density (think of the homogeneous electron gas). But
a reference density is ill-defined for a truly unenclosed system, e.g., an atom or
molecule, a problematic limitation for proper low-density limits such as in WDM
(including the T D 0 K gas phase). So-called density-independent two-point kernels
also are intrinsically unstable [40]. More complicated, density-dependent kernels
thus are inescapable.

Another form of two-point functional development starts with modeling of the
first-order reduced density matrix [41]. Recently, one of us worked on algorithms
for two-point optimization of density matrices with respect to various idempotency
constraints [42] (D. Chakraborty, R. Cuevas-Saavedra, P.W. Ayers, J. Chem. Phys.,
Unpublished) for atoms and molecules. Though this approach requires ingenuity
in accurate modeling of a density matrix, it could be an alternative route to a
more accurate two-point OFKE functional. With emphasis on computational speed,
however, our main focus for Ts approximations is on one-point functionals. We
return to that emphasis at various points below.

One other matter of context also is important, namely that we are not working on
the embedding form of OF-DFT [43, 44]. The distinction is important because the
requirements on OF-KE embedding functionals differ substantially from those on
approximations for Ts.

3 Advances

3.1 T-Dependence of Ts, Ss, and New GGA Non-interacting
Functionals

Despite skepticism about obtaining adequate approximations for �s and �s, in fact
recent times have seen significant progress. Suffice it to say here that in roughly
the last decade a modest-sized but growing community of researchers is making
headway on effective zero-temperature OF-DFT functionals. Several of us were
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involved [45–48]. A bibliographic list we keep lists 115 papers in that decade (and
a total of 340). Though thorough, the list surely is not complete.

To have predictive capability, the approximate functionals should not be
parameterized to voluminous data. That requirement leads to what are called
constraint-based functionals. For the non-interacting functionals, our constraint-
based development starts with a rigorous decomposition of Ts that yields important
positivity constraints. Rearrange Eq. (6) into the form with a positive-definite
integrand,

Ts D 1

2

X

j

fj

Z
dr j r'j j2 : (13)

It follows that

TsŒn� W D TWŒn� C T� Œn�;

with TWŒn� D 1

8

Z jrn.r/j2
n.r/

dr and T� Œn� � 0 : (14)

Note the absence of a Thomas-Fermi term and the importance of TW , the von
Weizsäcker functional (vW) [49]. At T D 0 K, the non-negativity of T� (“Pauli
term”) is a rigorous requirement [50–53]. (Related discussions are in Refs. [48] and
[54].) Recently, two of us proved that the non-negativity requirement also holds
at T > 0 K [55]. In consequence, the “Pauli potential”, v� � ıT� Œn�=ın.r/, also
must be non-negative for all r. This constraint is extremely strict; see our earlier
work at zero temperature for examples [47]. (As occasionally happened during the
IPAM Long Program, the vocabulary “Pauli potential” can cause confusion. Clearly
the quantity discussed here is not the same as the effective potential used to mimic
quantum effects in classical potential models.)

The only nonzero-T non-interacting free-energy functionals known prior to the
work we are about to discuss are the Thomas-Fermi (ftTF) [56] and the gradient
expansion. It usually is truncated at second order, leading to the nonzero-T second-
order gradient approximation functional (ftSGA) [57–59]. Both functionals are
exact in the high-T limit, but are inadequate to serve as a Ts approximation in the
WDM temperature range.

To address this lack of an adequate nonzero-T non-interacting free-energy func-
tional, we have developed a generalized gradient approximation (GGA) framework
[60]. Analysis of the gradient expansion shows clearly that the non-interacting
kinetic energy and entropy contributions to the free energy differ in their dependence
on T. From this, we were able to define appropriate, T-dependent reduced density
gradients for parameterizing the kinetic and entropic contributions separately. By
analogy with zero-T GGA, the nonzero-T GGAs are formed as the LDA energy
density multiplied by a kinetic or entropic enhancement factor. Those factors are



70 V.V. Karasiev et al.

0.6 0.8 1 1.2 1.4 1.6 1.8 2

ρ
H

(g/cm
3
)

100

200

1000

60

1500

P 
(G

Pa
)

KS (LPP) T=50 000 K
ftGGA(KST2)
ftSGA
ftTF

Fig. 4 Pressure vs. material
density of simple cubic H at
T D 50;000 K for various
non-interacting free-energy
functionals Fs D Ts � TSs

compared to Kohn-Sham
calculation. Note that the
pressure axis is logarithmic

functions of the corresponding kinetic and entropic reduced density gradients. By
construction, these nonzero-T GGA functionals satisfy exact scaling properties [55].

A simple, straightforward choice for the form of the nonzero-T GGA KE
enhancement factor is a zero-T GGA enhancement factor (at least that choice
provides a correct zero-T limit) but with the new kinetic reduced density variable
instead of the zero-T reduced density gradient s.r/ D .24�2/�1=3jrnj=n4=3.
There is no analogous choice for the entropic contribution. Instead, from a basic
thermodynamic identity, we derived a differential equation which relates the two
enhancement factors such that, once the KE enhancement factor is specified, its
entropic counterpart can be calculated [60]. As a first example, we proposed a
simple approximate solution to that rather complicated relationship and used it and
a kinetic energy enhancement factor based on the zero-T “modified conjoint GGA”
kinetic energy of Ref. [47]. Compared to either ftTF or ftSGA, the new Karasiev-
Sjostrom-Trickey (KST2) functional is substantially superior, though still in need of
improvement. An example of the effects on the EOS is in Fig. 4.
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3.2 T-Dependence of Fxc

Contemporary nonzero-T DFT calculations for AIMD typically use [61, 62] an XC
functional derived for zero temperature, i.e.,

FxcŒn.r; T/; T� � ExcŒn.r; T/� : (15)

A few workers have used nonzero-T LDA functionals that are based on interpolation
between high and low-T limits, or on calculations in the intermediate temperature
region obtained via approximate methods such as RPA or local-field corrections
[34,63–65]. Beyond LDA, only the gradient expansion term for nonzero-T exchange
has been given [66–68]. In short, there is not a well-established set of XC functionals
suitable for DFT computations at nonzero temperature, in sharp contrast with the
enormous diversity of approximate ground-state functionals.

This situation makes it a priority item to generate XC free-energy functionals of
documented reliability at WDM temperatures. An important component of this task
is the establishment of reference data for calibration and/or validation of candidate
functionals. Somewhat surprisingly (and contrary to a referee comment we once
received), there is little reference data for nonzero temperature of anywhere near
the quality of the QMC data on which zero-T XC LDA is based [69]. This state of
affairs is in contrast to that for zero temperature, for which there are QMC data,
jellium surface data, and more-or-less standard test sets of molecular data and well-
established solid-state data for lattice constants and bulk moduli that can be used to
assess the quality of a new functional. Such benchmark data are not easy to generate
from first-principles calculations for T > 0 K.

In response, we have studied the effects of explicit T-dependence in the exchange
free energy functional Fx, by comparing nonzero-T Hartree-Fock (thermal HF)
calculations with nonzero-T DFT KS calculations for both extended (periodically
bounded) and confined systems. The DFT calculations used exchange-only func-
tionals, of both the nonzero-T [34] and ordinary zero-T types. Remark: Thermal
HF is rigorously established in the grand ensemble; see Refs. [35–37]. In particular,
the full T-dependence of the exchange free energy is obtained through thermally
occupied orbitals which appear in the familiar HF exchange term.

The periodically bounded case that we studied [70] was bcc Li, compressed
at one to three times ambient density and at 0 � T � 100;000 K. A careful
study (see below) eliminated any pseudopotential effects. The resulting tHF and
T-dependent LDA-exchange free energies agree semi-quantitatively. Both increase
(decrease in magnitude) with increasing T. In marked contrast, the zero-T Ex

functional with T-dependent density, n.r; T/, is essentially constant with increasing
T. The electronic pressure for the nonzero-T exchange functional tracks the thermal
HF results much more closely than the pressure from the zero-T functional. The
pressure difference from either of the former two with respect to the zero-T
functional is roughly 10 % at 100;000 K. See Fig. 5 for an example.
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Secondly, we devised and programmed an entirely new all-electron methodology
(discussed below) for treatment of multi-atom systems confined in a hard-walled
box [71]. For eight H atoms in a cubically symmetric array and 0 � T � 300;000 K,
we find semi-quantitative agreement between the exchange free energy from tHF
and that from the nonzero-T LDA X-functional Fx. As before, there is virtually no
T-dependence from the zero-T ExcŒn.r; T/�. The energy difference between the Ne

and Ne C 1 levels (the highest occupied and lowest unoccupied or virtual levels at
T D 0 K) decreases with increasing T for tHF but increases for DFT (for both zero-T
and T-dependent functionals). This differing shift of initial virtuals as they become
populated comes from their different self-interaction behavior. For DFT with an
approximate XC functional, the initially occupied KS orbitals suffer spurious self-
repulsion, whereas the original virtuals do not. In tHF, however, the virtuals arise
from a full Ne-electron potential. Thus, as T increases, the initially occupied KS
orbitals are partially depopulated and their self-interaction error decreases. In tHF,
the initial virtuals become fractionally populated and thereby fractionally corrected
(lowered).

For the correlation free energy, we compared several proposed nonzero-T XC
functionals [34, 64, 65] with zero-T functionals for warm dense Li and H [72]. We
find a non-trivial reduction in the total pressure. For simple cubic H (scH) with
densities 1–4 g=cm3 and temperatures 100–300 kK, we find a pressure lowering of
2–4 %, relative to values predicted using zero-T XC functionals.

By use of the QUANTUM ESPRESSO @ PROFESS code capacity discussed
below (see Methodological and Technical Advances) , we have done orbital-free
AIMD simulations for Hydrogen and Deuterium at material densities from near-
equilibrium at T D 0 K to about a four-fold compression in the range 2;000 K �
T � 4;000;000 K. We compared our newly developed KST2 non-interacting GGA
functional (discussed above) to the reference KS AIMD for T < 200;000 K and to
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both tTF and our finite-T generalization of the Tran-Wesołowski KE functional [73]
and the corresponding approximate entropy functional obtained by the procedure
in Ref. [60]. That functional is labeled ftTW. (We remark, in fairness to Tran and
Wesołowski, that their functional never was intended for this purpose. We simply
use it as an example of a zero-T functional from the literature which might, naïvely
perhaps, be generalized to non-zero T.) To isolate the effects of the non-interacting
functionals, all the simulations were done with simple ground-state LDA XC. Note
that for T > 200 kK, the KS procedure becomes an intractable task. Figure 6 shows
both the actual EOSs (with “instantaneous pressure”, that is, without the ideal gas
kinetic contribution) and the percentage error relative to the KS calculation for
Deuterium at 
D D 1:96361 g=cm3 (rs D 1:40 bohr). The EOS from the KST2
functional clearly is in better agreement with the reference KS results than the
EOS from either the ftTF or ftTW (which actually behaves rather like ftSGA)
functionals, particularly in the lower part of the temperature range. Note added in
proof: Subsequent development of the non-empirical VT84F functional provides
essentially the same improvement [74].
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3.3 Exact Properties

Success for the constraint-based strategy obviously depends on having a sufficient
number of meaningful constraints. The many formal relationships known for zero-
temperature DFT have played that role in the development of constraint-based
ground state XC functionals. Corresponding relationships at nonzero temperature
would be useful, hence it is important to determine the extent to which the zero-T
results remain valid or can be generalized for non-zero T. We have established a
number of formal results for free energy DFT.

Homogeneous scaling [75–78] has been particularly important in developing
zero-T XC functionals. We have extended this scaling to finite-T non-interacting
functionals with a thorough analysis [55] and showed that (i) exact representation
in terms of the one-particle Fermi density matrix is extremal among all single-
particle density matrices; (ii) the von Weizsäcker functional is a lower bound to
the non-interacting kinetic energy for all T; (iii) a single-particle density matrix
corresponding to the TF approximation can be identified, thus giving an upper bound
for the free energy; and (iv) exact scaling and associated upper and lower bounds can
be established for the free energy, energy, and entropy functionals. Similar scaling
results for the interacting system were published shortly thereafter by Pittalis et al.
[79] via an analysis analogous with ground-state DFT scaling. Our scaling uses
dimensional analysis and a demonstration of the relationship of DFT functionals to
those of inhomogeneous-system thermodynamics. We have extended the treatment
to the interacting case [80]. For it, both T and charge scaling are involved.

We also have investigated the phenomenological nonzero-T Thomas-Fermi
functional (ftTF) for the non-interacting free energy [81–83]. From a functional
expansion of the local free-energy density about its value at an arbitrary point, the
LDA emerges as the leading term. This is the TF approximation for very large Ne,
but not for finite Ne , as demonstrated by an exact evaluation for Ne D 4 in three
dimensions at T D 0 K. The non-interacting HEG free energy was calculated at
finite T for arbitrary Ne , which gives the basis for a generalized TF approximation.
Carried out to second order at nonzero T, the procedure generalizes the Perrot
result [59] to arbitrary gradients. The expansion coefficients are non-linear response
functions for the ideal Fermi gas as functions of the local density. The result
is an exact limit for a class of non-local, linear response functionals introduced
phenomenologically by others, for example, Refs. [38, 84–86].

Further, we have addressed the failure of the TF approximation for singular
external potentials (e.g., Coulomb potentials) by a formal map of the exact func-
tional for a given external potential onto a fictitious TF functional for an effective
external potential [87], which we find to be a thermal TF approximation without the
singularity.

The classical-map procedure [88] is an alternative route to functionals. It
represents an equilibrium non-uniform quantum system by a corresponding clas-
sical system chosen to reproduce thermodynamic and structural properties. The
connection allows application of classical strong-coupling methods. To obtain a
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better formal basis, we analyzed the grand canonical ensemble correspondence for
the two systems [89] and showed that it enables definition of the classical-system
effective T, local chemical potential, and pair potential. Approximate inversion
of these definitions follows from the integral equations of classical liquid state
theory. The structure and thermodynamics of the HEG (jellium) were calculated
this way across a wide range of T and densities, including various high-T, weak-
coupling, and low-density limits. We find good agreement with zero-T diffusion
Monte Carlo results. The shell structure of harmonically confined charges (nonzero-
T “harmonium”) also was studied, with the result that both diffraction and exchange
degeneracy can produce shell structure even in the absence of Coulomb correlations.

WDM transport properties are beyond the scope of strict DFT (which describes
thermodynamic properties). Nevertheless, the KS orbitals and eigenvalues often are
assumed to provide an effective medium, or mean field theory for the dynamical
properties as well (e.g., transport properties, opacities, scattering cross sections).
These uncontrolled approximations appear to have some empirical basis for validity.
To clarify this context and provide improved approximations, the following initial
results [90] have been obtained: (i) The exact Green-Kubo expression for the
frequency-dependent conductivity has been evaluated in an arbitrary single-particle
basis which is assumed to approximately diagonalize the Hamiltonian. The Kubo-
Greenwood form follows, providing the basis for a variational formulation and
associated improvements. (ii) A formal quantum kinetic theory for the Green-Kubo
time-correlation functions provides a second approach to the context for the Kubo-
Greenwood approximation. In particular, a natural mean-field approximation based
on exact initial correlations goes beyond Hartree-Fock and is closely connected to
the choice of a Kohn-Sham basis.

3.4 Better Zero-T Limit Functionals

To have at least reasonable levels of chemical realism in AIMD simulations of
WDM, the zero-T KE functional TsŒn; T D 0� is an important limit. In Ref. [91],
we showed that an intriguing and novel information-theoretic orbital-free form for
the zero-T KE functional is seriously flawed by violation of various positivity
constraints. The analysis led us to propose a modified form which is positive
definite. It remains to explore and develop that concept.

The zero-T XC functional ExcŒn� is a similarly important limiting case for WDM
simulations. In Refs. [92–95], one of us, with colleagues in Mexico, showed ways
to make significant improvements in GGA Ex energetics. In addition, we gave
both an improved (relative to B3LYP [96] and revTPSS [97]) meta-GGA and an
improved hybrid functional. If a proposed rung-reduction procedure (analogous
with the construction of the LYP functional [98]) works, these will give us better
GGA X functionals, hence also contribute to the OF-DFT agenda.
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3.5 Methodological and Technical Advances

With Eq. (14) and the substitution ıTW=ın D �n�1=2r2.n1=2/=2, the Euler
equation, Eq. (11), takes the form of a one-orbital eigenvalue equation,

�
�1

2
r2 C ıT�

ın
� T

ıSs

ın
C vKS

�
n1=2 D � n1=2 : (16)

The form of this equation led to the seemingly obvious notion that numerical
solution would be straightforward with a standard KS code. However, one of
our studies [99] confirmed the contradictory prior claim [100] that, in general,
such codes cannot handle the peculiar potential which appears in Eq. (16). The
difficulty is the repulsive nature of any KE functional. The problem is worsened
by the singular nature of approximate GGA KE functionals. Direct minimization
algorithms are essential.

Most KS codes used to study WDM employ non-local pseudopotentials (PPs).
The PPs are fitted to free ground-state atoms, hence their transferability to WDM
conditions is not guaranteed but must be verified. We developed a new procedure
to test PP transferability to high compression [70] by comparison to all-electron
results for clusters of the same local symmetry and near-neighbor distances. For Li,
we found that standard norm-conserving PPs and projector-augmented wave (PAW)
data sets used in packages such as ABINIT [101, 102], QUANTUM ESPRESSO [103]
and VASP [104–107] have relatively small transferability compression ranges, typi-
cally up to 1.5-, 4.5- or 7-fold compression depending on details. The compensation
charge density (CCD) sometimes included in PAW data sets was found to cause
problems at high compressions. Without CCD and with cutoff radius reduced by
about a factor of two, we were able to build all-electron PAW LDA and GGA data
sets for Li which are transferable to at least 140-fold compression.

Though OF-DFT in principle does not need PPs to exclude chemically inactive
core states, regularization of the nuclear-electron interaction singularity is required
for efficient implementation, e.g., in a plane-wave basis. PPs developed for KS
calculations generally are non-local, i.e., orbital-dependent, thus are inapplicable
in OF-DFT calculations. Local pseudopotentials (LPP) must be developed for OF-
DFT. But there is no standard or even dominant method to do that. We developed a
new method [99] aimed specifically at OF-DFT calculations. The LPP is constructed
as a normalized linear combination of l-components of a norm-conserving non-
local PP (NLPP). The coefficients are constrained to reproduce some bulk property.
The method was tested for bcc Li. An alternative procedure, used for scH, is to
fit the parameters of the simple Heine-Abarenkov model [108, 109] such that a
bulk property (in our case, the lattice parameter) from a more sophisticated PP is
reproduced. We showed that bulk properties are reproduced for material densities to
at least 15 g=cm3 and for T � 100;000 K.
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Most of our OF-DFT calculations were done with a locally modified version of
the PROFESS code [110, 111]. Originally set up with two-point KE functionals, it
performs periodic OF-DFT calculations. Our modifications included adding four
nonzero-T non-interacting free-energy functionals: (i) standard Thomas-Fermi
(ftTF); (ii) gradient-corrected ftTF, i.e., the nonzero-T second-order gradient
approximation (ftSGA)); and (iii) our new two-parameter Karasiev-Sjostrom-
Trickey (KST2) form and the nonzero-T extension of the Tran-Wesołowksi zero-T
KE (see details in Ref. [60]). For orbital-free AIMD, we coded an interface between
PROFESS and QUANTUM-ESPRESSO [103] to replace KS forces with those from
OF-DFT. This modified package enables comparison between KS AIMD and OF-
DFT AIMD on the same footing [112].

The thermal Hartree-Fock, hard-walled rectangular box calculations mentioned
in Sect. 3.2 [71] obviously require a basis set which is compatible with the box
boundary conditions and also yields a computationally tractable problem. Sine
functions, our original choice, turned out to have drawbacks for rapid matrix-
element evaluation. Thus, we exploited familiarity with Gaussian type orbitals
(GTOs) to provide efficient four-center integral calculation. The new basis is
Cartesian GTOs truncated to match the boundary conditions and scaled to retain
continuity at the atomic sites.

A Cartesian GTO of order � has factors of the form

g�.x/ D .x � xc/�e�˛.x�xc/2

(17)

The function can be made into one which is zero at the box boundaries x D 0

and x D Lx by subtracting a shift equal to the original function value at each end.
When xc is not at the box center, that shift differs for the two ends. Thus, we split
the original function into two pieces, then shift by the two end-values, and scale the
two shifted pieces such that the resulting function is continuous. The outcome is an
un-normalized Cartesian factor

g�
box.x/ D a0 .g�.x/ � �0/ 0 � x � xc

D aL .g�.x/ � �Lx / xc � x � Lx (18)

with �0 D g�.0/, �Lx D g�.Lx/. These are the Cartesian factors of our truncated
GTO (tGTO) basis. Because the tGTOs may not have continuous derivatives, kinetic
energy matrix elements require attention. In fact, nothing unusual happens. The
kinetic energy is the expected sum of piecewise contributions, except for the case
of p-type functions, which have a simple correction term. Appropriate matrix
element expressions were rederived to take account of these modifications from
normal molecular GTO-basis techniques. The procedure was implemented in an
entirely new code which supports both thermal HF and KS DFT calculations
for any ion arrangement and T. So far we have used 1–32 H atoms and T up
to 300 kK. The highly optimized code is written in C++ utilizing MPI. Future
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development includes nonzero-T post-tHF calculations for correlation and AIMD
with analytically calculated forces.

Faced with a dearth of nonzero-T HEG data for calibrating and validating new
OF-DFT functionals, we have undertaken a focused study using the restricted
path-integral MD (PIMD) technique [113, 114]. This choice is deliberately com-
plementary to the PIMC work underway elsewhere [69]. The original PIMD code
had been applied to a rather low density HEG .rs D 5 bohr/ and T < 2;500 K, which
is low for WDM. We have modified the code to extend the density and temperature
ranges as well as remedy some instabilities. Initial results at rs D 4 and 5 bohr and
T < 7;000 K are encouraging. For example, the average KE of these HEGs can be
fit with a Sommerfeld expansion

NT .T/ D T0Œ1 C ax2 C bx4 C � � � � ;

x WD 1

ˇT0

; (19)

where T0 WD T .T D 0/. Through fourth order, the data are fit well by a D 5:48,
b D 78:0 for both densities. Additional useful data for functional development is
being calculated (V. Kapila, K. Runge, P.A. Deymier, unpublished).

4 Outlook and Challenges

While authors’ perspectives on their own work may merit some skepticism, we think
the spirit of the IPAM Long Program is exemplified by the word “Challenges” in the
program name. So we venture comment on three questions.

1. What does this all mean, especially for application to the WDM problem?

2. What do we recommend as preferred practice at this point?

3. What are the shortcomings of the approaches and approximations we have used
thus far?

About all these, prudence requires keeping clearly in mind that there is much still to
be learned about free-energy DFT, about its orbital-free form, and about dynamics.
That in mind, we plunge ahead.

The finding relative to question (1) that is perhaps most intriguing is that there
is significant temperature-dependence in the XC free energy. Equation (15) does
not hold in general. But how, then, are the apparent successes, e.g. Ref. [115],
in using Eq. (15) to be understood? We suspect that the underlying distinction is
between calculating the EOS or the Hugoniot for a system versus calculating a
Kubo-Greenwood conductivity. Such a conductivity is given by
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Here ˝ is the system volume, wk is the weight of point k in the Brillouin zone and
the KS quantities have multiple indices in consequence of configurational sampling
(“snapshotting”) over the AIMD trajectories. The obvious distinction with an EOS
or Hugoniot calculation is that transport coefficients depend on matrix elements with
respect to KS orbitals and upon the associated KS eigenvalues. It has been known
since the earliest days of ground-state DFT that one can have an Exc functional
that gives good bulk properties (e.g. lattice parameters) but a poor band structure.
However, another simple functional, call it QExc, usually can be found such that
Qvxc D ı QExc=ın gives a good band structure (but poor bulk properties) [116]. We
suspect that a similar distinction may be relevant to the T-dependent case. What we
have found is that the T-dependence of Fxc is important for the EOS. It does not
necessarily follow that the T-dependence of the associated vxc is important. If the
T-dependence is important in principle, it is not necessarily true that an approximate
vxc has the correct T-dependence for Eq. (20) even if its precursor Fxc does well for
the EOS or Hugoniot.

For OF-DFT, question (1) invites a discussion of the obviously related issue of
the T-dependence of the non-interacting functionals Ts and Ss. For these, we
think the evidence is clear. The only functionals that come reasonably close to
reproducing the KS results are our KST2 and the combination of full vW with full
TF, i.e., ftVWTF. We have not discussed ftVWTF here, but refer to Ref. [60].
What is relevant here is that the two functionals behave quite similarly. They
also share a drawback, in that both have empirical elements. But ftVWTF is, we
think, irretrievably empirical in the sense that it is an ad hoc combination of two
functionals, one for the high-T, high density limit, the other for the 1- and 2-electron
localized limit. Our KST2 is empirical only in the sense of having two constants
chosen to match KS calculations on a few reference silicate systems. (Silicates were
chosen for historical reasons having nothing to do with WDM.) We have formulated
a procedure by which we believe we can eliminate that empirical dependence. That
procedure is under study at this writing.

Question (1) also implicates the issue of approximate Fxc functionals that are
orbital free. Were we to have the exact Ts and Ss, we still would be stuck with XC
approximations which, in the T ! 0 K limit would be no better than today’s XC
GGAs. The problem is that no current EGGA

xc does equally well on molecular and
extended systems. For a given GGA functional form, constraint-based arguments
can be used (and have been) to give parameterizations that are well-suited to
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molecules, but do poorly on solids. A different choice of constraints leads to the
opposite result. (Discussion and references are in Ref. [94].) Since WDM can
comprise both extended phase and localized regimes concurrently, this is a problem.

So what do we recommend? For now, use KST2 for Ts and Ss, but be aware that
better functionals will be forthcoming from our group as well as from others. For
Fx, what we have designated above as LDAx(T) is the choice for the moment if one
wants to include T-dependence at least semi-quantitatively. We do not know what
to say about Fc at the moment. Whatever the choice of OF-functionals, for those
computing transport coefficients, the need to do KS calculations at snapshotted ion
configurations provides an internal consistency test on the OF calculation. For a
given ion configuration {R}, simply compare the KS and OF-DFT densities and
energies. This also leads to recommending, once again, the graded-sequence-of-
approximations (GSA) procedure [117]. In the present context, the simplest GSA
simulation is to run a few AIMD-MD steps with approximate OF-DFT functionals,
then do a single KS step to get force corrections, then do another set of OF-DFT
steps, etc.

Some of the shortcomings of the present state of affairs already have been
mentioned, e.g. the lack of uniformly good predictive behavior from any EGGA

xc
available today. It is worth emphasizing that the problem is more tangled (and may
be worse) in WDM than in ordinary materials because of the thermal occupation
of KS levels which, at T D 0 K, are virtuals (unoccupied). Self-interaction error,
which is known in EGGA

xc and FGGA
xc , may also play an unexpected role in Ts and

Ss. This problem is easy to state. Improper self-repulsion allowed by approximate
Exc and Fxc functionals (zero T, non-zero T respectively) delocalizes the density n

incorrectly. Presumably that delocalization has the effect of reducing the numerical
values of TsŒn� (zero-T) or TsŒn; T � (non-zero T) from what they would be were one
to use the exact (non-self-interacting) XC functionals. We do not know what such
delocalization does to Ss. A second shortcoming of all current OF-DFT functionals
at T D 0 K is that none of them is built to satisfy the differential virial relationship
between the KE and XC functional [75]. Presumably this problem carries over to
non-zero temperature.
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Appendix

Acronyms

AIMD Ab initio molecular dynamics
B3LYP Empirical XC functional [96] which combines Becke 3-parameter

X with Lee, Yang, Parr parameterization of Colle-Salvetti correla-
tion [118]

BO; BOMD Born-Oppenheimer; Born-Oppenheimer molecular dynamics
DFT Density functional theory
ftSGA Finite-T second-order gradient approximation
ftTF Finite-T Thomas-Fermi
FE-DFT Free-energy density functional theory, i.e. nonzero-T DFT
GGA Generalized gradient approximation; most commonly an XC func-

tional but also used here for KS (non-interacting) kinetic energy
and entropy functionals

GTO Gaussian-type orbital
HEDP High energy-density physics
HEG Homogeneous electron gas
meta-GGA An approximate functional (most commonly XC) dependent on

higher derivatives of the density than a GGA. Most use the KS KE
orbital density �orb

KE Kinetic energy
KS Kohn-Sham
LDA; LSDA Local-density approximation; local spin-density approximation
OF-DFT Orbital-free density functional theory
OF-KE Orbital-free kinetic energy (usually, orbital-free KS kinetic

energy)
PAW Projector Augmented Wave
PIMD Restricted Path Integral Molecular Dynamics
PP Pseudopotential
QMC Quantum Monte-Carlo
RPA Random phase approximation
tHF thermal Hartree-Fock
TF Thomas-Fermi
VASP Vienna Ab-initio Simulation Program
vW von Weizsäcker functional
WDM Warm dense matter
X Exchange
XC Exchange-correlation



82 V.V. Karasiev et al.

Symbols

Not infrequently the same symbol is used for different quantities in the T > 0 K
and T D 0 K DFT literature. An example is temperature and kinetic energy. In our
papers we have worked toward a simple standard, as close as reasonably possible to
the T D 0 K DFT literature. In its present form, that usage is as follows.

ˇ D 1=kBT

Ex; Exc D exchange, exchange-correlation functional

F D Helmholtz free energy

Fxc; Fs D XC and KS free energies

kB D Boltzmann’s constant

S ; Ss D total, KS entropy

n.r/ D electron density at point r

T D temperature

T ; Ts D total, KS kinetic energy
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