
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 12, No. 2, June 2023, pp. 794~805

ISSN: 2252-8938, DOI: 10.11591/ijai.v12.i2.pp794-805 794

Journal homepage: http://ijai.iaescore.com

Innovations in t-way test creation based on a hybrid hill

climbing-greedy algorithm

Heba Mohammed Fadhil1,2, Mohammed Najm Abdullah1, Mohammed Issam Younis3

1Department of Computer Engineering, University of Technology, Baghdad, Iraq
2Department of Information and Communication, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq

3Department of Computer Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq

Article Info ABSTRACT

Article history:

Received Mar 18, 2022

Revised Nov 15, 2022

Accepted Dec 12, 2022

 In combinatorial testing development, the fabrication of covering arrays is

the key challenge by the multiple aspects that influence it. A wide range of

combinatorial problems can be solved using metaheuristic and greedy

techniques. Combining the greedy technique utilizing a metaheuristic search

technique like hill climbing (HC), can produce feasible results for

combinatorial tests. Methods based on metaheuristics are used to deal with

tuples that may be left after redundancy using greedy strategies; then the

result utilization is assured to be near-optimal using a metaheuristic

algorithm. As a result, the use of both greedy and HC algorithms in a single

test generation system is a good candidate if constructed correctly. This

study presents a hybrid greedy hill climbing algorithm (HGHC) that ensures

both effectiveness and near-optimal results for generating a small number of

test data. To make certain that the suggested HGHC outperforms the most

used techniques in terms of test size. It is compared to others in order to

determine its effectiveness. In contrast to recent practices utilized for the

production of covering arrays (CAs) and mixed covering arrays (MCAs),

this hybrid strategy is superior since allowing it to provide the utmost

outcome while reducing the size and limit the loss of unique pairings in the

CA/MCA generation.

Keywords:

Combinatorial testing

Computational intelligence

Covering array

Greedy methods

Hill climbing

Mixed covering arrays

This is an open access article under the CC BY-SA license.

Corresponding Author:

Heba Mohammed Fadhil

Department of Computer Engineering, University of Technology

Baghdad, Iraq

Email: ce.19.15@grad.uotechnology.edu.iq or heba@kecbu.uobaghdad.edu.iq

1. INTRODUCTION

Testing all possible combinations of configuration parameters using a sample of all possible

configurations is called combinatorial interaction testing (CIT), which is an alternative to exhaustive testing.

An exponential increase of test cases is seen during exhaustive testing; however, the number of configuration

options grows at a maximum logarithmic rate [1]–[3]. Testing the interactions between multiple

configuration options is critical to reducing the likelihood of interacting problems in software that is

extremely flexible. A system having m configuration options, for example, would require an exhaustive test

set to comprise mn test cases in order to cover entirely probable permutations of the configuration parameters

in use. When configuration choices are offered, the number of test cases grows at an exponential rate. Due to

lack of resources or time, it may be hard to thoroughly test a highly flexible system in its entirety. Over than

70% of computing system failures are caused by the interplay of configuration settings in two directions at

the same time [4].

Int J Artif Intell ISSN: 2252-8938

Innovations in t-way test creation based on … (Heba Mohammed Fadhil)

795

In software testing, test cases are represented as combinatorial objects known as covering arrays

(CAs) and mixed covering arrays (MCAs). Constructing a CA/MCA that is both effective and efficient is

necessary in order to get the most out of pair-wise testing. This is an intractable problem. Thus, researchers'

key goal is to develop an effective strategy for building an optimal CA/MCA. As a consequence of this, it is

more practical to make use of approximate approaches that are able to produce (almost) optimal solutions in

a reasonable amount of time when the problem at hand is extremely complex. Heuristics and metaheuristics

are two types of approximation strategies that can be used to solve problems [5], [6]. Whenever dealing with

CA, it is advisable to use metaheuristics like: Hill climbing (HC) [7], harmony search algorithm (HSA) [8],

particle swarm optimization (PSO) [9], tabu search (TS) [10], ant colony optimization (ACO) [11], and

simulated annealing (SA) [12].

For the advancement and improvement of CA, a variety of meta-heuristic methodologies are

available. This study anticipates one-test-at-a-time technique to build a valid CA with N rows intended for a

specific CIT problem instance in several procedures. Meta-heuristic search algorithms are used to condense

the number of arrays used in the initial CA repeatedly. This process is repetitive until all arrays are

eliminated. Once a predetermined stopping criterion, including the amount of retries or the allotted time

constraint, is met, the procedure is repeated. Greedy algorithm is a straightforward and fast method since it

only selects solutions that satisfy greedy requirements. Numerous papers combined greedy with their hybrid

algorithm like [13], [14] in the aim that the greedy solution will assist the hybrid algorithm in getting closer

to the nearest solution. To address these concerns, this article offers a new greedy technique for array

generating limitations based on the HC algorithm, named hybrid greedy hill climbing algorithm (HGHC). As

with rival meta-heuristic-based methods, HGHC produces results that are sufficiently optimum in

comparison to general computational-based and meta-heuristic strategies [15], [16].

Although a greedy strategy provides good coverage and run speed, there are some trials in which it

fails to provide the test cases that are required [17]. It is proposed in this study that the HGHC method be

used to tackle this problem by integrating the HC and greedy algorithms into a single solution. In this

technique, the HGHC algorithm takes use of the iterative nature of the HC algorithm, which always results in

feasible test cases, while the greedy section is added later to boost the optimality of the solutions produced by

the HC algorithm, as Figure 1 found in section 5.

This paper has seven more sections: section 2 reflects the work that is related with this. Section 3

presents combinatorial testing methods; section 4 describes meta-heuristic algorithms. In section 5, the

specifics of the hybridization strategy that has been presented. Section 6 the experimental data is summarized

and analyzed. Section 7 assesses the statistical analysis. After that, section 8 contains the conclusion and

specifics on future works.

2. RELATED WORK

Numerous algorithms are used to construct near optimal CAs and MCAs, including those that use

algebraic, greedy, metaheuristic, and random techniques for construction. It is not uncommon for

mathematicians to use algebraic methods. Because separately parameter must have the same number of

values, algebraic approaches despite their speed are rarely used in CIT.

Greedy methods are preferred by the software testing community when it comes to producing CAs.

There are two methods for building CAs with a greedy approach: one parameter per test and one-test per

attempt. The CA is built up row by row, and the manner in which each row is built can vary depending on the

approach used. When it comes to one test at a time (OTAT) methodologies, a comprehensive test case is

constructed for each iteration that incorporates the interface components that have been the most recently

uncovered. The same method is used to cover all areas of interaction with the system. Several other tools and

tactics are presented in the literature, all of which are derived from the OTAT method. such as automatic

efficient test generator (AETG) [18], pairwise independent combinatorial testing (PICT) [19], classification-

tree editor extended logics (CTE-XL) [20], deterministic density algorithm (DDA) [21], in parameter order

general (IPOG) [22], GTWay [23], in parameter order d-construction (IPOD) [24], and genetic multi-

parameter-order-algorithm (MIPOG)/(GMIPOG) [25] strategies are examples of techniques that have

adopted this approach.

In recent years, researchers have looked into metaheuristic techniques such as SA [12], [26] and

HSA [8], [27]. Heuristic techniques were used by Cohen et al. [26] to generate CAs and MCAs of strength

t=3, as well as the experimental outcomes indicated that heuristic strategies outclassed greedy approaches for

strength-2 CAs but not for higher strength CAs, notably at t=3. Regarding the number of iterations required

to reach an acceptable solution, HC surpassed SA in producing equal lower bounds.

Many approaches have been developed by Cohen et al. [28]–[30] which produce uniform covering

arrays, and variable coverage arrays using a mixture of varied methods (for example, algebraic and

computational techniques). Constrained systems complicate CIT because the resulting CA may contain

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 2, June 2023: 794-805

796

certain parameter values that are incompatible with the restrictions. As a result, it is best to exercise caution

when dealing with such limits. Garvin et al. [6] developed an extension of the SA technique to create CAs for

limited interaction testing. Calvagna and Gargantini [31] make usage of satisfiability modulo theory (SMT)

solvers, which they developed to produce pair-wise test coverage for CA.

Alazzawi et al. proposed several studies in the field of t-way testing, some of them employed hybrid

techniques such a hybrid artificial bee colony (HABC) approach [32] constructed on the HABC algorithm

and PSO to build optimal test suite with variable strength interaction. The hybrid nature of PSO is due to the

fact that it was integrated into the artificial bee colony (ABC) as an exploitation agent. ABC's performance is

improved by PSO's information-sharing via the weight factor. A T-way generating approach for both a

uniform and variable strength test suite called (ABCVS) is [33] by utilizing the ABC technique to reduce the

overall size of a test suite while simultaneously improving the interaction between tests in the suite. Alazzawi

et al. [34] proposed a new meta-heuristic-based t-way approach called hybrid artificial bee colony

(HABCSm). It combines the advantages of the ABC algorithm and PSO. HABCSm is the first t-way strategy

to use the HABC algorithm with hamming distance as its fundamental approach for creating a final test set

and final selection criterion for boosting the discovery of new solutions.

Gravitational search test generator is the name given to the novel t-way method that was developed

by Htay et al. [35] and is based on the gravitational search algorithm (GSA). The most significant

contribution of this research is the adaptation of GSA to the production of t-way test data for the first time.

Recently, Guo et al. [36] provides a synergistic solution for the constrained covering array generation

(CCAG) problems that is initially based on quantum particle swarm optimisation (QPSO). Three auxiliary

procedures are presented to increase QPSO's performance: contraction-expansion coefficient adaptive

modification, differential evolution, and discretization.

3. COMBINATORIAL TESTING

An insight to combinatorial testing is provided in this section. Combinatorial testing can be used for

a plethora of ways including drug screening and data compression as well as graphical user interface (GUI)

testing and web application testing. More than one area is covered by this umbrella, including drug screening

and data compression. There is at least one CA/MCA for every t-way combination of parameter value. Since

CAs and MCAs have proven to be useful in numerous industries, researchers are looking at the best

approaches to develop optimal CAs and MCAs [37], [38].

3.1. Covering arrays

It's called a covering array, and its notation is CA (N; t, k, v). A two-dimensional array with K

signifies how many parameters there are in S; N indicates how many columns there are; and v represents how

many possible values each parameter might have. t denotes how strong an interaction there is. Ideally, a CA

should have a minutest number of rows in order to mollify all of the criteria of the full covering array. An

abbreviation for the covering array number is covering array number (CAN); it stands for (t, k, v). An input

parameter is represented by a column and the values in that column indicate its respective input parameter's

range [1], [39].

3.2. Mixed covering arrays

In this case, the cardinality vectors v1v2...vk correspond to the values for each column in the mixed

covering array, resulting in an N-by-k two-dimensional array. MCAs have the following two features, both of

which are present: At least once, the rows of each N t sub-array contain all t-tuples of values from each of the

N t columns, with the exception of those in the set Si where |Si|=vi. This is true for all N t sub-arrays. It is

denoted by the symbol MCA (N (t, k, (v1 v2...vk))), and it represents the smallest number of variables for

which an MCA exists, which is also known as the mixed covering array number. It is possible to represent

MCAs in a shorthand notation by merging equal elements in (vi: 1... k) by merging equal values [40].

4. METAHEURISTIC APPROCH

Optimizing techniques that start with the best possible answer and enhance it over time are known

as metaheuristics. This work employs greedy and HC metaheuristic search approaches to solve optimization

problems. A metaheuristic is a way of improving a problem by iteratively improving a prospective solution's

quality. Metaheuristics can seek large spaces of possible solutions with little or no prior knowledge about the

problem. In the absence of a perfect solution, metaheuristics assure a workable one and prevent the issue

from being stalled. Optimization concerns three operators: i) refining the optimal solution by either reducing

Int J Artif Intell ISSN: 2252-8938

Innovations in t-way test creation based on … (Heba Mohammed Fadhil)

797

it or increasing it, ii) the objective function is controlled by moves, and iii) a conventional of constraints that

allows the moves to exclude some data while keeping others [41], [42].

It's possible to solve difficult issues using metaheuristic algorithms, even though it's impossible to

ensure that they'll find the global best solution. Metaheuristic-based algorithms are used to search the issue

space in an effort to find a better solution. This type of navigation is guided by an understanding of the issue

and the hope of locating a global optimum. The majority of metaheuristic implementations are based on local

search algorithms as well as population search algorithms.

The initial step in population-based approaches is to generate a collection of solutions chosen at

random. A subsequent step is to combine characteristics from many solutions in order to create better ones. It

is possible to simultaneously scan large areas of the search space with an algorithm that uses a large

population. These algorithms may miss the local optimum in each section. Because of this, it's possible that

the algorithm won't produce the best outcome. A few examples of population-based algorithms in use are the

genetic algorithm, bee colony optimization, and particle swarm optimization. Local search-based strategies

begin with a single solution, which is then iterated upon by a neighborhood-based strategy. Initially when it

finds a locally optimal solution, the algorithm comes to a halt. It is possible to break down the search area

into smaller parts. In contrast to population-based search methods, local search approaches focus on a smaller

search area in order to determine the most suitable way to perform the search. In spite of this, these strategies

do not cover a large portion of the possible search areas. HC is a local search method that is regarded to be

the most basic. Population-based approaches can be boosted in their ability to find local optima by using this

technique [12], [43].

5. THE PROPOSED APPROACH

This section provides in-depth information regarding the HGHC algorithm, which was developed

for the first time. Demonstrate how it incorporates the benefits of both the greedy and the HC algorithms

when they are combined to form a hybrid algorithm, and then explain why HGHC outperforms both the

greedy algorithm and the HC algorithm when they are deployed separately. In addition, the whole procedure

for developing HGHC test data is provided in order to achieve branch coverage with the fewest possible test

cases by applying HGHC. Using both greedy and HC algorithms, this is the first study of its kind to create a

hybrid solution to solve a wide variety of issues, making it unique in the area. Beginning with its intrinsic

limitations, the HC is prone to becoming caught in a local optimal, rendering it useless for determining

discrete issues. Nevertheless, the greedy method assumes a much simpler premise, making it easier to

incorporate, and is more effective; but it does not ensure that it will give a globally optimal solution. Due to

the complementing nature of the two procedures, it appears as though they might be utilized in conjunction to

tackle a wide variety of optimization issues. Our hybrid approach, which accepts as input a preliminary

covering array generated previously using the greedy method and then adds additional rows to it. When

adding a new row to the existing covering array, the initial stage is to use a greedy method to allocate distinct

element of the new row to the current covering array. If an element has an unallocated value, the greedy

algorithm iteratively tests separately possible value assignment to the unassigned element and formerly

chooses the assignment that results in the fewest missing tuples. Tuples that were not covered in the first

stage of the algorithm are covered in the second stage, which is when the HC method is used as explained in

Algorithm 1. If the HC algorithm fails to cover the entire array, repeat the HC algorithm by adding a new row

to the existing array and running it as stated in Figure 1. A covering array is shaped in two steps: first, build

the covering perfect hash families (CPHF). A CPHF (n;k,v,t) is an array of size n * k over 𝑭𝒗
𝒕 such that every

sub array of t columns cotains at least one row with a covering tuple as Figure 2. Let’s take an exmple of

CPHF (2;16,5,3); here the elements of 𝑭𝟓
𝟑 are written as c0 c1 c2 instead of (c0, c1, c2)T:

This array, which is composed of three columns, has at minimum one covering tuple present in each

and every one of its rows [44]. As explained in Algorithm 2, CPHFs is utilized in the first step to quickly

construct huge covering arrays, which is followed by the addition of rows to the resulting array while

maintaining the same number of columns throughout both processes. Non-redundant members from one row

can be copied to redundant elements in subsequent rows using this operation if it uses the greedy method.

The next stage of the metaheuristic method is to fill in the missing tuples that were introduced by the row

deletion. A new round of optimization takes place if the algorithm completes the array.

Algorithm 1: Hill climbing algorithm
Step 1: Evaluate the initial state. If it is a goal state then stop and return success.

Otherwise, make intial state as current state.

Step 2: Loop until the solution state is found or there are no new operators present whick

can be applied to the cirrent state.

a) Select state that has not been yet applied to the cureent state and apply it to

produce a new state

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 2, June 2023: 794-805

798

b) Perform these to evaluate new state

i. If the current state is a goal state, then stop and return success.

ii. If it is better than the current state, then make it cureent state and proceed

further.

iii. If it is not better than the current state, then continue in the loop until a

solution is found.

Step 3: Exit

Figure 1. The proposed HGHC approach

Algorithm 2: CPHF algorithm
Input: n: target number of rows, t: strength, k: number of factors, q:v symbols;

Output: A; a CPHF(M;k, q, t) with m ≤ n upon termination

Construct an n × k array A with each entry chosen independently;

Repeat

Set covered:= true;

Set M:=0;

for each t-set T of columns, in the same fixed order do

if T is covered in A then

Let R be the index of the first row covering T;

Set M:=max(M,R)

else

Set covered:= false;

Set missing set;= T;

Break;

If not covered then

Choose all the entires in the t columns of missing-set independently and uniformly at

random;

Until covered = true;

Output the first M rows of A;

Figure 2. Covering perfect hash families (CPHF) array

Int J Artif Intell ISSN: 2252-8938

Innovations in t-way test creation based on … (Heba Mohammed Fadhil)

799

For an improved covering array, the final step of the HGHC technique involves optimizing the

covering array called A1. Using a greedy approach, the optimization algorithm first searches A1 for

redundant items. The optimization method then uses a greedy approach to remove a row from A1 and then an

HC algorithm to fill in any missing tuples that may have appeared as a result of removing the row. Once a

row has been cleared, the procedure repeats again until all of the empty tuples have been filled. In

Algorithm 3, the algorithm is depicted in pseudocode.

Algorithm 3: Optimization pseudocode
Fungtion optimization (A 1)(

Do A 2 A 1;

Find redundant elements in A 1 using a greedy algorithm;

A row from A 1 using a greedy algorithm is deleted;

If a missing tuple is in A 1

Then cover missing tuples in A 1 using a HC

algorithm;

Until the HC algorithm cannot cover the missing tuples in A 1;

return A 2;

In order to concealment a relatively insignificant number of uncovered combinations, a technique

that constructs complete CPHFs may necessitate the insertion of an entire row to the derivative covering

array. To wrap up, consider how a greedy algorithm works in practice. In this case, the goal is to discover a

solution as quickly as possible by selecting a choice that appears to be local optimal at the time. Using the

greedy method, each iteration generates a random sample from an unknown distribution. The greedy method

has an effect on the distribution's mean and variance. If it's limited to a single component, the iterative

solution will be the same. The distribution's mean equals the greedy solution's value, and its variance is zero.

A search that is conducted in this manner repeatedly is referred to as an iterative search. Prior decisions are

relevant, but the option is independent of those made in the future or of those inherent in the sub-problem. In

other words, the greedy still commonly employed as a backup technique or to generate accurate estimations

of the optimal for particular instance scenarios. Meanwhile, the greedy strategy works well for problems

involving optimal substructures, where the globally optimal solution embraces local solutions to

subproblems.

6. RESULTS AND DISCUSSION

The results reported in Tables 1 to 5 was obtained using the hybrid approach outlined in this section.

The hybrid approach uses CPHFs massively reduce the time it takes to build covering arrays when using a

metaheuristic technique. An array with as many rows as possible is a good place to start when developing the

procedure. The greedy method is exceptionally fast when only t-combinations that may contain missing

tuples are considered. Column vectors of length v can be substituted for the CPHF's elements to create an

array subarray arrays that cover the entire t-tuple domain or have only a few missing tuples. This can be seen

when the CPHF's row count exceeds v and only a few more rows are required to complete the coverage. A

comparison of current state-of-the-art approaches is presented using Python to code the suggested algorithm

on a computer with a Core i7-7th Generation Intel processor, 8 Giga of random-access memory, and

Windows 10.

Table 1. The array size of the proposed approach vs other approaches at t = 2.
 Jenny TConfig PICT IPOG CPSO DSPO GS GALP ABCVS HABS HABCSm Proposed

HGHC

CA (N; 2,27) 8 7 7 7 7 7 6 6 NA 7 7 6
CA (N; 2,33) 9 10 10 9 9 9 9 9 9 9 9 9

CA (N; 2,34) 13 10 13 9 9 9 9 9 9 9 9 11
CA (N; 2,35) 14 14 13 15 11 11 11 11 11 12 11 13

CA (N; 2,36) 15 15 14 15 14 14 13 13 13 13 13 14

CA (N; 2,37) 16 15 16 15 15 15 14 14 15 15 14 15
CA (N; 2,38) 17 17 16 15 15 15 15 15 15 15 15 16

CA (N; 2,39) 18 17 17 15 16 15 15 15 16 16 15 15

CA (N; 2,310) 19 17 18 15 16 16 16 16 17 17 16 17
CA (N; 2,311) 17 20 18 17 16 17 16 16 17 18 17 18

CA (N; 2,312) 19 20 19 21 17 16 16 16 18 18 18 18

CA (N; 2,47) 28 28 27 29 25 24 24 24 NA 25 24 24
CA (N; 2,57) 37 40 40 45 36 34 36 35 NA 37 34 34

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 2, June 2023: 794-805

800

Table 2. The array size of the proposed approach vs other approaches at t=3.
 Jenny TConfig PICT IPOG CPSO DSPO GS GALP ABCVS HABS HABCSm Proposed

HGHC

CA (N; 3,27) 14 16 15 16 12 15 12 12 NA 14 13 12

CA (N; 3,28) 14 18 17 18 16 16 14 12 NA NA NA 13

CA (N; 3,29) 17 20 17 20 16 16 16 16 NA NA NA 16
CA (N; 3,210) 18 20 18 20 16 16 16 16 NA NA NA 18

CA (N; 3,34) 34 32 34 32 38 41 38 37 27 27 27 32

CA (N; 3,35) 40 40 43 41 30 28 27 27 38 39 39 28
CA (N; 3,36) 51 48 48 46 42 33 43 40 44 43 43 32

CA (N; 3,37) 51 55 51 55 49 48 49 48 49 47 46 48

CA (N; 3,38) 58 58 59 56 53 52 54 52 54 53 45 55
CA (N; 3,39) 62 64 63 63 58 56 58 56 58 56 56 61

CA (N; 3,310) 65 68 65 66 61 59 61 59 62 61 61 64

CA (N; 3,311) 65 72 70 70 63 63 63 62 66 68 65 62
CA (N; 3,312) 68 77 72 73 68 65 67 65 70 72 68 64

CA (N; 3,47) 124 122 124 112 115 112 116 112 NA 114 110 110

Table 3. The array size of the proposed approach vs other approaches at t=4
 Jenny TConfig PICT IPOG CPSO DSPO GS GALP ABCVS HABS HABCSm Proposed

HGHC

CA (N; 4,27) 31 36 32 35 24 31 27 24 NA 29 27 28

CA (N; 4,28) 37 38 35 39 32 32 30 29 NA NA NA 32

CA (N; 4,29) 37 41 41 41 33 34 33 25 NA NA NA 35

CA (N; 4,210) 39 45 43 46 37 34 25 26 NA NA NA 38

CA (N; 4,35) 109 97 100 97 94 81 88 88 98 81 81 81

CA (N; 4,36) 140 141 142 141 132 131 129 129 135 134 132 131

CA (N; 4,37) 169 166 168 167 153 150 152 152 157 155 149 148

CA (N; 4,38) 187 190 189 192 174 171 171 171 179 177 159 171

CA (N; 4,39) 206 213 211 210 191 187 187 189 197 196 185 185

CA (N; 4,310) 221 235 231 233 211 206 206 206 215 217 212 209

CA (N; 4,311) 236 258 249 251 226 221 223 221 234 237 229 220

CA (N; 4,312) 252 272 269 272 242 237 236 237 251 257 246 236

Table 4. The array size of the proposed approach vs other approaches at t>4
 Jenny TConfig PICT IPOG CPSO DSPO GS GALP Proposed HGHC

CA (N; 5,37) 458 477 452 466 441 428 431 432 429

CA (N; 6,38) 1,466 1,515 1,455 1409 1,397 1,402 1,398 1,392 1,396

CA (N; 7,39) 4,746 >day 4,618 NS 4,422 4,427 4,437 4,425 4,422
CA (N; 8,310) 14,999 >day 14,599 NS 13,925 13,933 13,907 13,903 13,909

CA (N; 9,311) 47,009 >day 45,521 NS 43,587 >day 43,808 43,543 45,520

CA (N; 10,312) 147004 >day 141,990 NS 135,498 >day 136,096 135,381 135,391
CA (N; 11,312) 3,057,977 >day 278,993 NS 268,173 >day 267,630 267,803 267,630

CA (N; 12,214) 9,422 >day 9,112 NS 8,882 8,972 8,890 8,904 8,890

CA (N; 13,214) 13,251 >day 12,441 NS 11,588 >day 10,251 11,051 10,250
CA (N; 14,215) 26,579 >day 25,036 NS 23,889 >day 23,377 22,642 23,360

CA (N; 15,216) 53,977 >day 51,127 NS 45,838 >day 46,575 41,820 42,990

Table 5. For various MCA configurations, a comparison of existing techniques
 Jenny TConfig PICT IPOG CPSO DSPO GS GALP Proposed HGHC

MCA(N; 2, 51 38 22) 23 22 15 16 15 NA 21 20 15

MCA(N; 2, 71 61 51 46 38 23) 50 51 42 42 42 48 51 48 44

MCA(N; 3, 52 42 32) 131 136 100 106 108 NA NA 113 100
MCA(N; 3, 101 62 43 31) 399 414 360 361 361 385 393 365 360

First, the CPHF is constructed using the first of two algorithms; the second used algorithm is to fill

in the missing tuples afterwards removing a row from the covering array. Range of 2 ≤v ≤12 and 2 ≤t ≤10

was used to evaluate the suggested system's performance. A combination of greedy and metaheuristic

algorithms, as well as the partition of the process into three stages, has resulted in a significant number of

improvements for our technique. It is necessary to compare HGHC's effectiveness in decreasing the size of

the test suite with that of other existing approaches as deliberated in [34]–[36]. A total of five sets of

comparisons are made in the experiment:

− HGHC is compared to the results of techniques for various setups involving t=2.

Int J Artif Intell ISSN: 2252-8938

Innovations in t-way test creation based on … (Heba Mohammed Fadhil)

801

− HGHC is compared to the results of techniques for various setups involving t=3.

− HGHC is compared to the results of techniques for various setups involving t=4.

− HGHC is compared to the results of techniques for various setups involving for CA, t varied from 2 to 10.

− HGHC is compared to the results of techniques for various setups involving for MCA different

configurations involving: MCA (N; 2, 51 38 22), MCA (N; 2, 71 61 51 46 38 23), MCA (N; 3, 52 42 32), and

MCA (N; 3, 101 62 43 31).

Based on a comparison of the findings, it is clear that the HGHC strategy surpasses the original

existing techniques (hill climbing and greedy) in terms of covering array size. As shown in Figure 3, that the

original two algorithms (hill climbing and greedy) are somewhat close, while the HGHC algorithm produces

less CA size. Figure 4 shows that the two original algorithms, hill climbing and greedy, are comparable in

certain tests, but the HGHC approach results in a smaller CA size from the fifth case and beyond. Regarding

the value of t=4, we can observe that the outcomes are rather near to one another in terms of the validity of

the HGHC algorithm. as illustrated in Figure 5.

Figure 3. New algorithm vs original performance for

t=2

Figure 4. New algorithm vs original performance

for t=3

Figure 5. New algorithm vs original performance for t=4

According to results, meta-heuristic-based techniques surpass those that are based on computation in

terms of performance. Compared to existing techniques, the suggested HGHC strategy performed well, as

shown in Table 1 Similar findings were achieved by HGHC, GALP, and HABCSm in configurations no. (2,

8, and 12) when the interaction was 2. In terms of configurations no. (3, 4, and 7) conventional PSO (CPSO)

and discrete particle swarm optimization (DSPO) came up with the ideal test set size. The worst results were

obtained by using Jenny, TConfig, PICT, IPOG and harmful algal blooms (HABS). For setups no. (7, 12, and

13) When the interaction is equal to 3, HGHC discovered the appropriate size for the test set. As with genetic

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 2, June 2023: 794-805

802

strategy (GS) and GALP, the HABC method yielded the smallest possible test set for configuration No. (1

and 3). As for configuration no. (1, 3 and 4) the CSPO method provided the ideal test set size, whereas the

HABCSm method produced the most effective size of the test set with the other three configurations (9,10

and 14). When compared to HABC, Jenny, TConfig, PICT, IPOG, ABCVS, and HABCSm consistently

produced the lowest outcomes as Table 2. Constructed on the results obtainable in Table 3, it is clear that the

HGHC method achieved excellent results for the configurations no. (7, 11 and 12); as configuration no. 9

produced a competitive test set that was somewhat near to the ideal test set. In Table 4, when the interaction

value is equal to 4, HGHC provided the ideal test set size for configurations no. (3, 5, 7, and 9), whereas

GALP created the optimal test set size for configurations no. (2, 4,6,10, and 11) correspondingly. HABC

approach yielded a set of tests that was competitive with the optimal set for configurations 1, 3, and 4, as can

be Table 5.

7. STATISTICAL EVALUATION

The use of statistical analysis is yet another approach that can be taken in order to evaluate the

proposed strategy in terms of its efficacy and determine the significance of the strategy. With a confidence

level of 95 percent (i.e., α=0.05), the Wilcoxon signed-rank test is utilized in order to evaluate the HABC

strategy in comparison to other existing strategies from Tables 1 to 4. The Wilcoxon signed-rank test will be

used to determine if there is a statistically significant difference between the suggested approach and the

other strategies being examined for this comparison. This test is ideal for measuring the difference between

the two sets because it compares them side by side. When multiple comparisons are involved, Bonferroni-

Holm correction (i.e., Holm's sequentially rejective step-down process) was used to adjust value. the

asymptotic significance (2-tailed) of the first value is used to scale the data [45]. As a result, Holm is

recalculated using the following factors,

∝ 𝐻𝑜𝑙𝑚 =
∝

𝑀−𝑖+1

where M is the total number of paired comparisons, and i is the number of tests. HGHC has three ranks:

HGHC>, HGHC<, and HGHC= are used to evaluate it. Other existing tactics are either greater, smaller or

equal to the suggested strategy's results. Asymptotic sig. (2-tailed) and Z are the two values that have a

statistical test component asymp. sig. (2-tailed) shows a significant difference between the two sets, and the

corresponding hypothesis will be retained if the value exceeds Holm. The Z value is not addressed in this

study (i.e., not considered). If the asymp. sig. (2tailed) value is less than Holm, the associated hypothesis is

rejected. Once a certain null hypothesis cannot be ruled out, the rest of the hypotheses are also kept. As there

is no test configuration for which a result is provided, the strategies with N/A results are regarded as

incomplete and ignored samples. The statistical findings from the wilcoxon test for Tables 1 to 4 are

presented in Tables 6 to 9, which may be seen. A considerable difference may be seen in asymp between

HABS and HABCSm alone. From Table 6, HGHC is clearly better to all other approaches, with the

exception of HABC and HABCSm. A look at Table 7 reveals that even though HGHC outperformed Jenny,

IPOG, CSPO, DSPO, GS, GALP, PICT, HABC, and HABCSm, it was inferior to TConfig. In Table 8,

HGHC did better than TConfig, IPOG, CSPO, DSPO, GS, GALP, HABC, and HABCSm, but not as well as

Jenny and PICT. The findings of the tests presented in Table 9. shows HGHC is significantly different from

those of CSPO, GS, JENNY, and PICT. The GALP strategy, on the other hand, outperformed the performers

of the HABC strategy. The other approaches' conclusions are labeled "missing" because they are either

unavailable or do not support a certain set up.

Table 6. Analysis of data from Table 1 using the wilcoxon signed rank sum test
Pairs Ranks Test statistics Conclusion

HGHC< HGHC> HGHC= Z Asymp. sig. (2-tailed) α Holm

HGHC-CPSO 9 3 3 0.8664 0.0707 0.05 Reject the null hypothesis
HGHC-DSPO 7 3 3 1.9439 0.0564 0.025 Reject the null hypothesis

HGHC-GALP 11 7 7 2.3102 0.0207 0.0167 Reject the null hypothesis

HGHC-GS 38 18 18 1.8363 0.0679 0.0125 Reject the null hypothesis
HGHC-HABC 9 4 4 0.07 0.11 0.0100 Retain the null hypothesis

HGHC-HABCSm 29 17 17 2.0304 0.0401 0.0083 Retain the null hypothesis

HGHC-IPOG 10 6 6 1.0703 0.0036 0.0021 Reject the null hypothesis
HGHC-JENNY 4 0 0 0.9435 0.0067 0.0060 Reject the null hypothesis

HGHC-PICT 6 4 4 2.6656 0.0079 0.0050 Reject the null hypothesis

HGHC-TCONFIG 9 3 3 2.6229 0.0085 0.0045 Reject the null hypothesis

Int J Artif Intell ISSN: 2252-8938

Innovations in t-way test creation based on … (Heba Mohammed Fadhil)

803

Table 7. Analysis of data from Table 2 using the wilcoxon signed rank sum test
Pairs Ranks Test statistics Conclusion

HGHC< HGHC> HGHC= Z Asymp. sig. (2-tailed) α Holm

HGHC-CPSO 15 11 11 0.9478 0.0038 0.4258 Reject the null hypothesis

HGHC-DSPO 21 13 13 0.169 0.0167 0.932 Reject the null hypothesis

HGHC-GALP 20 14 14 0.0845 0.0125 0.100 Reject the null hypothesis
HGHC-GS 17 17 17 0.6516 0.0100 0.5703 Reject the null hypothesis

HGHC-HABC 15 13 13 0.8885 0.0083 0.4258 Reject the null hypothesis

HGHC-HABCSm 15 11 11 0.8885 0.0071 0.4258 Reject the null hypothesis
HGHC-IPOG 5 0 2 2.5205 0.0063 0.0141 Reject the null hypothesis

HGHC-JENNY 6 3 0 2.6656 0.0050 0.0039 Reject the null hypothesis

HGHC-PICT 4 2 1 2.6661 0.0045 0.0039 Reject the null hypothesis
HGHC-TCONFIG 3 0 0 2.5205 0.0321 0.0014 Retain the null hypothesis

Table 8. Analysis of data from Table 3 using the wilcoxon signed rank sum test
Pairs Ranks Test statistics Conclusion

HGHC< HGHC> HGHC= Z Asymp. sig. (2-tailed) α Holm

HGHC-CPSO 3 0 0 2.5205 0.025 0.0141 Reject the null hypothesis

HGHC-DSPO 7 4 4 0.9439 0.0167 0.4164 Reject the null hypothesis

HGHC-GALP 7 3 5 1.5213 0.0125 0.1501 Reject the null hypothesis
HGHC-GS 7 5 5 1.0215 0.0100 0.1493 Reject the null hypothesis

HGHC-HABC 7 5 0 2.3664 0.0083 0.0225 Reject the null hypothesis
HGHC-HABCSm 7 5 2 1.1531 0.0071 0.2945 Reject the null hypothesis

HGHC-IPOG 4 0 1 2.0205 0.0167 0.0143 Reject the null hypothesis

HGHC-JENNY 15 11 11 2.5115 0.0125 0.0441 Retain the null hypothesis
HGHC-PICT 5 0 2 2.0005 0.0100 0.0514 Retain the null hypothesis

HGHC-TCONFIG 6 3 0 2.1105 0.0083 0.0742 Reject the null hypothesis

Table 9. Analysis of data from Table 4 using the wilcoxon signed rank sum test
Pairs Ranks Test statistics Conclusion

HGHC< HGHC> HGHC= Z Asymp. sig. (2-tailed) α Holm

HGHC-CPSO 13 11 11 1.3624 0.0925 0.0100 Reject the null hypothesis

HGHC-GALP 25 25 25 0.2548 0.8384 0.0083 Retain the null hypothesis
HGHC-GS 15 11 11 0.9802 0.0604 0.0171 Reject the null hypothesis

HGHC-JENNY 6 0 2 2.0361 0.0079 0.0063 Reject the null hypothesis

HGHC-PICT 3 1 0 2.8031 0.0059 0.0050 Reject the null hypothesis

8. CONCLUSION

Findings from comparative studies shows that the proposed strategy outperforms existing techniques

when it comes to CA/MCA generation quality and the number of generations it takes to get there. Most of the

time, when comparing CA/MCA size; The new method outperforms conventional methods. encompassing

orders of coverage arrays 2 ≤v ≤5 and strengths 2 ≤t ≤10 were constructed using an innovative hybrid

greedy-metaheuristic technique. This proves that it is a highly competitive technology for the production of

such arrays of coverings. In order to achieve the best outcomes, one needs to use both greedy as well as

metaheuristic algorithms. When it comes to evaluating the composition of compost, uniform cover arrays of

degree four are used, and it was offered as an illustration of how they can be used. The HGHC

experimentations were premeditated and carried out appropriate to appraise the influence of each decision on

the resultant array size. Observations based on the data allow us to say that i) the framework's configurations

have a substantial impression on the performance of the covering array. When compared to established

methods such as IPOG, PICT, and DSPO, ii) find that the optimal configuration has apparent advantages, and

in some systems, it is even improved than the existing methods. As a result, the proposed HGHC algorithm

may prove to be a more efficient tool for autonomously producing test data, particularly because it ensures

adequate coverage, optimality, and minimal complexity. In the future, investigate to see if the greedy strategy

is capable of being utilized to generate CAs and MCAs with higher strength, and consider the scenarios of

seeds and limitations in the production of a covering array.

REFERENCES
[1] S. Sabharwal, P. Bansa, and N. Mittal, “Construction of strength two mixed covering arrays using greedy mutation in genetic

algorithm,” International Journal of Information Technology and Computer Science, vol. 7, no. 10, pp. 23–34, Sep. 2015,

doi: 10.5815/ijitcs.2015.10.04.

[2] M. I. Younis, “DEO: a dynamic event order strategy for T-way sequence covering array test data generation,” Baghdad Science
Journal, vol. 17, no. 2, p. 575, May 2020, doi: 10.21123/bsj.2020.17.2.0575.

[3] M. I. Younis, A. R. A. Alsewari, N. Y. Khang, and K. Z. Zamli, “CTJ: input-output based relation combinatorial testing strategy using

 ISSN: 2252-8938

Int J Artif Intell, Vol. 12, No. 2, June 2023: 794-805

804

jaya algorithm,” Baghdad Science Journal, vol. 17, no. 3(Suppl.), p. 1002, Sep. 2020, doi: 10.21123/bsj.2020.17.3(Suppl.).1002.

[4] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault interactions and implications for software testing,” IEEE
Transactions on Software Engineering, vol. 30, no. 6, pp. 418–421, Jun. 2004, doi: 10.1109/TSE.2004.24.

[5] A. Arram, M. Ayob, and A. Sulaiman, “Hybrid bird mating optimizer with single-based algorithms for combinatorial optimization

problems,” IEEE Access, vol. 9, pp. 115972–115989, 2021, doi: 10.1109/ACCESS.2021.3102154.
[6] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating improvements to a meta-heuristic search for constrained interaction

testing,” Empirical Software Engineering, vol. 16, no. 1, pp. 61–102, Feb. 2011, doi: 10.1007/s10664-010-9135-7.

[7] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM Computing Surveys, vol. 43, no. 2, pp. 1–29, Jan. 2011,
doi: 10.1145/1883612.1883618.

[8] A. R. A. Alsewari and K. Z. Zamli, “Design and implementation of a harmony-search-based variable-strength t-way testing

strategy with constraints support,” Information and Software Technology, vol. 54, no. 6, pp. 553–568, Jun. 2012,
doi: 10.1016/j.infsof.2012.01.002.

[9] B. S. Ahmed and K. Z. Zamli, “PSTG: a t-way strategy adopting particle swarm optimization,” in 2010 Fourth Asia International

Conference on Mathematical/Analytical Modelling and Computer Simulation, 2010, pp. 1–5, doi: 10.1109/AMS.2010.14.
[10] K. J. Nurmela, “Upper bounds for covering arrays by tabu search,” Discrete Applied Mathematics, vol. 138, no. 1–2, pp. 143–152,

Mar. 2004, doi: 10.1016/S0166-218X(03)00291-9.

[11] M. F. Zeng, S. Y. Chen, W. Q. Zhang, and C. H. Nie, “Generating covering arrays using ant colony optimization: exploration and
mining,” Ruan Jian Xue Bao/Journal of Software, vol. 27, no. 4, pp. 855–878, 2016, doi: 10.13328/j.cnki.jos.004974.

[12] J. Torres-Jimenez and I. Izquierdo-Marquez, “A simulated annealing algorithm to construct covering perfect hash families,”

Mathematical Problems in Engineering, vol. 2018, pp. 1–14, Jul. 2018, doi: 10.1155/2018/1860673.
[13] I. Izquierdo-Marquez, J. Torres-Jimenez, B. Acevedo-Juárez, and H. Avila-George, “A greedy-metaheuristic 3-stage approach to

construct covering arrays,” Information Sciences, vol. 460–461, pp. 172–189, Sep. 2018, doi: 10.1016/j.ins.2018.05.047.

[14] M. A. Basmassi, L. Benameur, and J. A. Chentoufi, “A novel greedy genetic algorithm to solve combinatorial optimization
problem,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIV-

4/W3-, pp. 117–120, Nov. 2020, doi: 10.5194/isprs-archives-XLIV-4-W3-2020-117-2020.
[15] R. C. Bryce and C. J. Colbourn, “The density algorithm for pairwise interaction testing,” Software Testing, Verification and

Reliability, vol. 17, no. 3, pp. 159–182, Sep. 2007, doi: 10.1002/stvr.365.

[16] J. Xin, J. Zhong, S. Li, J. Sheng, and Y. Cui, “Greedy mechanism based particle swarm optimization for path planning problem of
an unmanned surface vehicle,” Sensors, vol. 19, no. 21, p. 4620, Oct. 2019, doi: 10.3390/s19214620.

[17] F. I. Telchy and S. Rafaat, “Intelligent neural network with greedy alignment for job-shop scheduling,” Iraqi Journal of

Computers, Communication, Control & Systems Engineering, vol. 15, no. 3, 2015.
[18] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETG system: an approach to testing based on combinatorial

design,” IEEE Transactions on Software Engineering, vol. 23, no. 7, pp. 437–444, Jul. 1997, doi: 10.1109/32.605761.

[19] J. Czerwonka, “Pairwise testing in the real world: practical extensions to test-case scenarios,” in in Proceedings of 24th Pacific
Northwest Software Quality Conference, 2008, pp. 419–430.

[20] E. Lehmann and J. Wegener, “Test case design by means of the CTE XL,” Proceedings of the 8th European International

Conference on Software Testing, Analysis & Review (EuroSTAR 2000), Kopenhagen, Denmark. 2000.
[21] C. J. Colbourn, M. B. Cohen, and R. Turban, “A deterministic density algorithm for pairwise interaction coverage,” in Proceeding

of the IASTED Conference on Software Engineering, 2004, vol. 41, no. 10, pp. 242–252.

[22] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG: a general strategy for T-way software testing,” in 14th Annual
IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’07), Mar. 2007,

pp. 549–556, doi: 10.1109/ECBS.2007.47.

[23] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG/IPOG-D: efficient test generation for multi-way combinatorial
testing,” Software Testing, Verification and Reliability, vol. 18, no. 3, pp. 125–148, Sep. 2008, doi: 10.1002/stvr.381.

[24] M. Forbes, J. Lawrence, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Refining the in-parameter-order strategy for constructing

covering arrays,” Journal of Research of the National Institute of Standards and Technology, vol. 113, no. 5, p. 287, Sep. 2008,
doi: 10.6028/jres.113.022.

[25] M. I. Younis, K. Z. Zamli, and N. A. M. Isa, “A strategy for grid based t-way test data generation,” in 2008 First International

Conference on Distributed Framework and Applications, Oct. 2008, pp. 73–78, doi: 10.1109/ICDFMA.2008.4784416.
[26] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, “Augmenting simulated annealing to build interaction test suites,” in 14th

International Symposium on Software Reliability Engineering, 2003. ISSRE 2003., 2003, pp. 394–405,

doi: 10.1109/ISSRE.2003.1251061.
[27] A. R. A. Alsewari and K. Z. Zamli, “A harmony search based pairwise sampling strategy for combinatorial testing,” International

Journal of the Physical Sciences, vol. 7, no. 7, Feb. 2012, doi: 10.5897/ijps11.1633.

[28] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, “Constructing strength three covering arrays with augmented annealing,”
Discrete Mathematics, vol. 308, no. 13, pp. 2709–2722, Jul. 2008, doi: 10.1016/j.disc.2006.06.036.

[29] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn, “Constructing test suites for interaction testing,” in 25th

International Conference on Software Engineering, 2003. Proceedings., 2003, pp. 38–48, doi: 10.1109/ICSE.2003.1201186.
[30] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Colbourn, and J. S. Collofello, “A variable strength interaction testing of

components,” in Proceedings 27th Annual International Computer Software and Applications Conference. COMPAC 2003, 2003,

pp. 413–418, doi: 10.1109/CMPSAC.2003.1245373.
[31] A. Calvagna and A. Gargantini, “T-wise combinatorial interaction test suites construction based on coverage inheritance,”

Software Testing, Verification and Reliability, vol. 22, no. 7, pp. 507–526, Nov. 2012, doi: 10.1002/stvr.466.

[32] A. K. Alazzawi, H. M. Rais, and S. Basri, “HABC: hybrid artificial bee colony for generating variable t-way test sets,” Journal of
Engineering Science and Technology, vol. 15, no. 2, pp. 746–767, 2020.

[33] A. K. Alazzawi, H. Md, and S. Basri, “ABCVS: an artificial bee colony for generating variable t-way test sets,” International

Journal of Advanced Computer Science and Applications, vol. 10, no. 4, 2019, doi: 10.14569/IJACSA.2019.0100431.
[34] A. K. Alazzawi et al., “HABCSm: a hamming based t -way strategy based on hybrid artificial bee colony for variable strength test

sets generation,” International Journal of Computer Communications & Control, vol. 16, no. 5, Oct. 2021,

doi: 10.15837/ijccc.2021.5.4308.
[35] K. M. Htay, R. R. Othman, A. Amir, and M. H. A. Jalal, “Gravitational search algorithm based strategy for combinatorial t-way

test suite generation,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 8, pp. 4860–4873, Sep.

2022, doi: 10.1016/j.jksuci.2021.06.020.

[36] X. Guo, X. Song, and J. Zhou, “A synergic quantum particle swarm optimisation for constrained combinatorial test generation,”

Int J Artif Intell ISSN: 2252-8938

Innovations in t-way test creation based on … (Heba Mohammed Fadhil)

805

IET Software, vol. 16, no. 3, pp. 279–300, Jun. 2022, doi: 10.1049/sfw2.12054.
[37] K. Z. Zamli, A. R. Alsewari, and B. Al-Kazemi, “Comparative benchmarking of constraints t-way test generation strategy based

on late acceptance hill climbing algorithm,” International Journal of Computer Systems & Software Engineering, vol. 1, no. 1,

pp. 15–27, Feb. 2015, doi: 10.15282/ijsecs.1.2015.2.0002.
[38] M. I. Younis, “MVSCA: multi-valued sequence covering array,” Journal of Engineering, vol. 25, no. 11, pp. 82–91, Oct. 2019,

doi: 10.31026/j.eng.2019.11.07.

[39] H. M. Fadhil, M. N. Abdullah, and M. I. Younis, “Combinatorial testing approaches: a systematic review,” Iraqi Journal of
Computers, Communications, Control, and Systems Engineering (IJCCCE), vol. 24, 2023.

[40] I. A. AbdulJabbar and S. M. Abdullah, “Hybrid metaheuristic technique based tabu searchand simulated annealing,” Engineering

and Technology Journal, vol. 35, no. 2, pp. 154–160, 2017.
[41] H. S. Abdullah, “Comparative study of swarm intelligence behavior to solve optimization problems,” Engineering and

Technology Journal, vol. 29, no. 14, 2011.

[42] N. Ramli, R. R. Othman, Z. I. Abdul Khalib, and M. Jusoh, “A review on recent t-way combinatorial testing strategy,” MATEC
Web of Conferences, vol. 140, p. 1016, Dec. 2017, doi: 10.1051/matecconf/201714001016.

[43] J. Torres-Jimenez and I. Izquierdo-Marquez, “Improved covering arrays using covering perfect hash families with groups of

restricted entries,” Applied Mathematics and Computation, vol. 369, p. 124826, Mar. 2020, doi: 10.1016/j.amc.2019.124826.
[44] A. B. Nasser, K. Z. Zamli, A. A. Alsewari, and B. S. Ahmed, “Hybrid flower pollination algorithm strategies for t-way test suite

generation,” PLOS ONE, vol. 13, no. 5, p. e0195187, May 2018, doi: 10.1371/journal.pone.0195187.

[45] S. Holm, “A simple sequentially rejective multiple test procedure,” Scandinavian journal of statistics, vol. 16, no. 2, 1979.

BIOGRAPHIES OF AUTHORS

Heba Mohammed Fadhil graduated from University of Baghdad with a

Master of Computer Engineering in 2014. In 2006, she graduated from University of Al-

Mustansiriyah with a Bachelor of Computer Engineering. Among her scientific interests

include parallel processing, encryption, algorithms, object-oriented technology, artificial

intelligence, image processing, cloud computing and the internet of things. She is a member

of several committees, including ACM, the International Association for the Engineers,

Cisco Networking Academy, and Oracle Academy, among others. At the moment, she

works as an instructor for both Cisco and Oracle. In addition to being a member of the

teaching staff at the Department of Information and Communication in the Al-Khwarizmi

College of Engineering at the University of Baghdad. She is a reviewer for the International

Journal of Computer Science, Peer-to-Peer Networking and Applications, BEEI,

International Journal of New Computer Architectures and their Applications, Circulation in

Computer Science Journal. She can be contacted at email:

ce.19.15@grad.uotechnology.edu.iq or heba@kecbu.uobaghdad.edu.iq.

Dr. Mohammed Najm Abdullah is currently an assistant professor at the

Department of Computer Engineering, University of Technology, Baghdad, Iraq. He

received his B.Sc. degree in 1983 in Electrical Engineering from the College of

Engineering, University of Baghdad. He received his M.Sc. degree in Electronics and

Communication Engineering from the same college in 1989 and his Ph.D. degree in 2002 in

Electronics and Communication Engineering/Airbrone Computer from the University of

Technology. He published many research papers in national and international journals and

conferences, as well as books. He can be contacted at email:

mohammed.n.abdullah@uotechnology.edu.iq.

Dr. Mohammed Issam Younis obtained his Doctorate in Computer

Engineering from Universiti Sains Malaysia in 2011. He had done the M.Sc. and B.Sc. in

Computer Engineering from University of Baghdad in 2001 and 1997 respectively. His

research interests are: distributed system, information security and cryptography, parallel

processing, algorithms, computer networking, software engineering, RFID, and IoT. He has

various publications as books, thesis, journals, Invited IEEE Tutorials. He is associated with

various committee like: Iraqi Union of Engineers, Cisco Networking Academy, Software

Engineering Research Groups, AIDL Research Groups. He honored by different awards,

medals, patents, and grants. Prof. Dr. Younis is currently a faculty member and Cisco

Instructor at the Computer Engineering Department, College of Engineering, University of

Baghdad. He can be contacted at email: younismi@coeng.uobaghdad.edu.iq.

https://orcid.org/0000-0003-2209-2965
https://scholar.google.com/citations?hl=en&user=fC7y0hIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57204101622
https://www.webofscience.com/wos/author/record/1236365
https://orcid.org/0000-0002-4249-9968
https://scholar.google.com/citations?user=5pao9rAAAAAJ&hl=ar
https://www.scopus.com/authid/detail.uri?authorId=57206254411
https://www.webofscience.com/wos/author/record/1761279
https://orcid.org/0000-0003-4884-3747
https://scholar.google.com/citations?user=nzSNl1sAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57188533914
https://www.webofscience.com/wos/author/record/441484

