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ABSTRACT: Winter storms are disruptive to society and the economy, and they often cause signifi-
cant injuries and deaths. Innovations in winter storm forecasting have occurred across the value 
chain over the past two decades, from physical understanding, to observations, to model forecasts, 
to postprocessing, to forecaster knowledge and interpretation, to products and services, and 
ultimately to decision support. These innovations enable more accurate and consistent forecasts, 
which are increasingly being translated into actionable information for decision-makers. This paper 
reviews the current state of winter storm forecasting in the context of the U.S. National Weather 
Service operations and describes a potential future state. Given predictability limitations, a key 
challenge of winter storm forecasting has been characterizing uncertainty and communicating the 
forecast in ways that are understandable and useful to decision-makers. To address this challenge, 
particular focus is placed on establishing a probabilistic framework, with probabilistic hazard 
information serving as a foundation for winter storm decision support services. The framework is 
guided by social science research to ensure effective communication of risk to meet users’ needs. 
Solutions to gaps impeding progress in winter storm forecasting are highlighted, including better 
understanding of mesoscale phenomenon, the need for better ensemble calibration, a rigorous 
and consistent database of observed impacts, and linking multiparameter probabilities (e.g., 
probability of intense snowfall rates at rush hour) with users’ information needs and decisions.
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W inter storms are disruptive to society and the economy and are often deadly. Major 
storms can immobilize transportation, knock out power, and shutter stores and 
schools for days. In a study of winter storms affecting New York City, Hosterman 

et al. (2019) and Lazo et al. (2020) quantified the economic impact of just two storms at over 
$200 million for the aviation and energy sectors alone. The historic February 2021 Southern 
Plains snow and cold wave was the most destructive and costly winter storm to affect the 
United States in recorded history, with 210 deaths in Texas alone, and $24 billion in direct 
losses overall (NCEI 2021). Many of the deaths and damages in this event were caused by 
cascading failures in the power, water, and transportation infrastructure. Winter storms also 
have dramatic impacts on human health (falls, cardiac events, hypothermia) (Mills et al. 
2020; Lin et al. 2021). In agricultural regions, severe winter storms lead to animal and crop 
losses (Zhang and Liang 2021).

Winter storms have a profound effect on transportation, leaving commuters cold, 
hungry, and stranded in vehicles, trains, and planes. Recent episodes include Chicago 
(February 2011); Atlanta (January 2014); Washington, D.C. (January 2011, 2016);  
New York (February 2013, November 2018); northern Virginia (January 2022); and Buffalo, 
New York (December 2022). Black and Mote (2015) documented an annual average of 
over 800 winter-related vehicle accident fatalities (direct and indirect), with a majority 
being caused due to road conditions or visibility reductions from blowing snow. In a study 
of 196 variable-length winter storm events, Mills et al. (2019) highlight that injury and 
noninjury vehicle collisions increased by 66% and 137%, during winter storms relative 
to dry weather conditions at comparable times of day and days of the week. Tobin et al. 
(2021) find that the largest fraction of winter-weather-related road fatalities is associated 
with deteriorating weather conditions, suggesting that adverse changes in weather may 
play a role in a large number of road fatalities. Call and Flynt (2021) studied the impact of 
snowfall on the New York State Thruway and found that for every 5.1 cm of snowfall, up 
to 2.6 additional crashes occurred. Thus, improved forecasts of the timing, location, and 
severity of winter storms can decrease traffic volume and improve public safety during 
these events (e.g., Knapp et al. 2000).

At the close of the twentieth century, numerous studies reported on the state of winter 
storm forecasting (Maglaras et al. 1995; Gurka et al. 1995; Keeter et al. 1995; Niziol et al. 
1995; Kocin and Uccellini 2004a). Over the past two decades, new observations, improved 
models, and advanced forecasting tools have been developed. Emphasis on collabora-
tive research partnerships has accelerated the transition of research to operations (R2O)  
(Waldstreicher 2005; Jacobs 2021). These efforts have translated into nearly a doubling of 
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lead time for official NWS Winter Storm Warnings—approaching a full day—while maintain-
ing a POD largely above 80% (Fig. 1).

Public safety officials are making more complex decisions and require more accurate, 
consistent, and specific forecasts with greater lead time. Uccellini and Ten Hoeve (2019) 
emphasize that accurate forecasts can improve preparedness and responsiveness to  
extreme weather events when the forecasts are understood and acted upon by public safety 
decision-makers. This connection between forecasts and key decision points in the emergency 
management, water resource management, and public safety communities has been termed 
impact-based decision support services (IDSS) and is the lynchpin that connects science, 
technology, forecasts, and warnings to societal outcomes (Uccellini and Ten Hoeve 2019). 
Specifically, IDSS is defined in NWS policy as “the provision of relevant information and 
interpretative services to enable core partners’1 decisions when 
weather, water, or climate has a direct impact on the protection 
of lives and livelihoods” (NWS 2019). Such connection is built 
on a foundation of trusted relationships, including repeated 
in-person interactions well in advance of an event to understand 
partners’ needs and decisions, “shoulder-to-shoulder” engage-
ment during an event, and assessments after an event.

A key challenge of winter weather IDSS is characterizing and communicating uncertainty. 
As noted by Kocin and Uccellini (2004a, chapter 7), winter storms are the rare product of a 
combination of synoptic and mesoscale processes that come together at just the right time and 
place. Accordingly, the predictability of winter storms varies by time frame (typically more 
predictable closer to the event), by scale (an area of snowfall is more predictable than intense 
mesoscale snowbands embedded within the area of snow), by phenomenon (e.g., lake effect, 
orographic precipitation, mesoscale snowbands), and even among the same phenomenon 
from event to event [see predictability analysis of the December 2010 nor’easter (Zheng et al. 
2013; Kocin et al. 2011) and the January 2015 and 2016 nor’easters (Greybush et al. 2017)].  
Moreover, subtle changes in the meteorology can dramatically change the impacts. For 
example, a subtle shift of just 40 km in the rain–snow line along the Northeast urban  
corridor dramatically changes the impacts for ~40 million people. Effectively characterizing 
and communicating these meteorological and impact-based uncertainties in ways that are 
understandable is complex and challenging—but essential to do.

This paper highlights the current state of winter storm forecasting and the ongoing  
evolution toward a probabilistic framework to support user decisions. The probabilistic 
framework includes forecasts explicitly conveyed with probabilities as well as forecasts  

Fig. 1. Trend of the NWS Government Performance Results Act scores for Winter Storm Warning lead 
time (h; green) and POD (blue).

1 NWS Core Partners are defined as government 
and nongovernment entities that are directly 
involved in the preparation, dissemination, 
and discussions involving weather-, water-, or 
climate-related National Weather Service infor-
mation that supports decision-making for routine 
or episodic high-impact events.
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conveyed through ranges, scenarios, and categories based on the underlying probabilities.  
We further articulate a vision of providing decision-makers skillful and quantitative  
information on the likelihood of impacts from winter storms. This vision includes the role 
of social, behavioral, and economic science (SBES) research to identify users’ perceptions, 
needs, and decisions so that effective probabilistic information is provided.

The concepts expressed herein are in the context of U.S. NWS operations. For the purposes 
of this paper, winter storms are defined as inclusive of the phenomenon warned for by NWS 
Winter Storm Warnings, including heavy snow, sleet, freezing rain, and blowing snow. Other 
key terms used in the work are summarized in Table 1.

Current state of winter storm forecasting
Numerous advances have occurred across the forecast value chain (WMO et al. 2015) over 
the last 20 years. For example, our physical understanding of mesoscale phenomenon  
embedded within winter storms (e.g., snowbands, lake effect snow, gravity waves,  
orographic precipitation processes) has improved. Field campaigns such as PLOWS  
(Profiling of Winter Storms; Rauber et al. 2014), OLYMPEX (Olympic Mountains Experiment; 
Houze et al. 2017), OWLeS (Ontario Winter Lake-effect Systems; Kristovich et al. 2017), and 
IMPACTS (Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening 
Snowstorms; McMurdie et al. 2022) have provided new insight into thermodynamic and 
microphysical processes occurring within winter storms. This improved physical under-
standing is guiding the formulation of new model physics parameterizations, conceptual 
models, and forecaster tools.

Substantial improvements in operational observations have further advanced  
winter storm forecasting. Dual-polarization radar now provides the capability to detect 
the minute-by-minute evolution of the rain–snow line to the kilometer (e.g., Picca et al. 
2014; Griffin et al. 2014). The fielding of new operational GOES satellite technology has 
enabled 1-min-interval rapid-scan imagery, lightning detection, improved vector winds, 

Table 1. Definition of key terms used in this paper.

Term Definition

Winter storm An atmospheric disturbance causing hazards included in official NWS Winter Storm Warnings, 
including heavy snow, sleet, freezing rain, and blowing snow. For the purposes of this paper, other 
hazards such as coastal flooding and extreme cold are not included.

Risk Possibility that an undesirable state (adverse effects or consequences) may occur as a result of a 
hazard event (Renn 2008; SRA 2022).

Hazard A risk source where potential adverse consequences can cause harm (SRA 2022). For winter storms, 
the hazard risk source is a meteorological phenomenon (e.g., heavy snow, sleet, freezing rain,  
blowing snow).

Impact The effects of adverse consequences on something of value (SRA 2022). Impacts of winter hazards 
may be, for instance, power outages, travel disruption, injuries, fatalities). Impacts of winter  
hazards can be affected by other societal factors (e.g., time of day, time of year).

Forecasting General term inclusive of the prediction of meteorological variables, communication, and 
impact-based decision support.

Impact-based 
Decision Support 
Services (IDSS)

The provision of relevant information and interpretative services to enable core partners’ decisions 
when weather, water, or climate has a direct impact on the protection of lives and livelihoods.

User General term inclusive of all audiences of a service.

Decision-maker Subset of users who have authority to make decisions that relate to public safety, protection of 
property, and economic well-being.

Core partner Subset of decision-makers who are directly involved in the preparation, dissemination, and  
discussions involving weather-, water-, or climate-related NWS information that supports 
decision-making for routine or episodic high-impact events (NWS 2019).
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and airmass products, among other advances (Goodman et al. 2012). The United States has 
also benefited from an increase in the number of mesonet observations (Mahmood et al. 
2017). For example, the New York State mesonet, located in some of the snowiest regions 
of the United States, is helping reveal winter weather conditions on time and space scales 
not traditionally observed (Brotzge et al. 2020). Snowfall is notoriously difficult to measure 
(Hurwitz et al. 2020), but through a multiyear development effort, the NWS has established 
the first operational gridded snowfall analysis over the CONUS (NWS 2022a). The national 
gridded snowfall analysis is a combination of a model first-guess field and radar-derived 
quantitative precipitation estimates augmented by available in situ point observations.  
This analysis fosters an improved rigor of snowfall verification, which is essential for  
measuring forecast improvements and aiding model development.

Perhaps most dramatically, the ongoing revolution of numerical weather prediction  
(Bauer et al. 2015; Benjamin et al. 2019), improved data assimilation, and advent of en-
sembles (Bougeault et al. 2010; Palmer 2017) has fueled improvement of winter storm 
forecasts. For example, the average global model low track error of extratropical cyclones 
over the East Coast of the United States has decreased ~10% over the 2007–14 period  
(Korfe and Colle 2018, Fig. 9). Failures in prediction have inspired the establishment of 
operational ensemble systems. The “Surprise Snowstorm” of 2000 spurred advancement 
of the NCEP Short Range Ensemble Forecast (SREF) system (Tracton 2008). Winter storm 
forecasting is increasingly dependent on ensemble forecasts, including convection-allowing 
ensembles (e.g., Roberts et al. 2019; Schwartz et al. 2019). Displays of winter storm elements 
derived from model output, such as precipitation type, snowfall, and ice accumulation 
amount are now ubiquitous.

Despite these advances, forecasting winter storms remains challenging due to the sensitiv-
ity of snow and ice accumulations to storm track, precipitation type, precipitation rate, and 
snow-to-liquid ratios. Small model errors can have a disproportionate effect on the forecast 
and anticipated impacts. Figure 2 shows the soundings and associated news headlines and 
social media memes for two snowstorms. In these examples, just a 1°C cold error in the fore-
cast temperature near 850 hPa resulted in an overforecast of snowfall in New York City in 
2017, whereas just a 1°C warm error in the forecast temperature near 850 hPa resulted in an 
underforecast of snowfall in New York City in 2018. Further, the mesoscale nature of precipita-
tion embedded within winter storms results in extreme gradients in winter precipitation type, 
intensity, and amounts that are difficult to predict even at short lead times (e.g., Kocin and  
Uccellini 2004a, 177–206; Market and Cissell 2002; Novak et al. 2006; Kenyon et al. 2020),  
and in some cases can elude model prediction altogether. In such cases, accurate nowcasts 
rely on forecaster experience and the monitoring of observational trends to anticipate and 
react to such features as the event is unfolding. The research community in general recognizes 
the need for better data assimilation, model physics, and ensemble system design (NOAA 
Science Advisory Board 2021; Magnusson et al. 2022), and specifically for winter storms, the 
need for better simulation of mesoscale extremes, better estimating mesoscale predictability, 
improving model microphysics, and improving prediction of precipitation type.

Another key challenge is that the predictability of winter storms varies from event to 
event and by scale. For example, the historic 22–24 January 2016 East Coast blizzard was 
anticipated days in advance, with forecasts of 1–2 ft (30–61 cm) of snow from Washington,  
D.C., to New York City verifying with stunning accuracy. In contrast, forecasts for the  
17 November 2018 New York City snow storm predicted 1–2 in. (2.5–5 cm) as the snow 
began to fall, but ultimately over 6 in. (15.2 cm) was recorded (the heaviest November daily 
snowfall for New York City), immobilizing the city (Fig. 2). Such variation in predictability 
from event to event can influence public expectations and preparedness. A nor’easter 
successfully forecast days in advance can foster the expectation that all nor’easters can 
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be forecast days in advance. Experimental research in the context of drought suggests 
that probabilistic forecast information attenuates the recency bias effect on participants’ 
decision-making (Demnitz and Joslyn 2019), but it is unknown whether this extends to 
the real-world context for winter storms.

Finally, emerging research suggests that users weigh myriad factors—including different 
forecast elements—in assessing the risks posed by winter storms when making decisions  
(Barjenbruch et al. 2016; NWS 2018; Hosterman et al. 2019; Lazo et al. 2020; Morss et al. 2022). 
Figure 3 shows one representation of the various weather factors considered. Moreover,  
such factors can vary by users and by the risk scenario. Research by Morss et al. (2022)  
showed that, even when users have codified winter storm criteria for decision-making, they 
deviate from criteria as necessary based on other factors that influence situational risk. The 
intersection of users’ varying complex risk management and decision-making contexts with 
inherent predictability limitations of winter weather is where probabilistic forecast and 
impact-based information has tremendous potential utility.

Evolving toward a probabilistic framework
Recommendations by Rothfusz et al. (2018), the National Research Council (NRC 2006), 
the American Meteorological Society (Hirschberg et al. 2011), the National Institute of  
Standards and Technology (NIST 2013), and the Priorities for Weather Research Report  
(NOAA Science Advisory Board 2021) encourage the expanded evaluation and use of 

Fig. 2. Temperature soundings (below 500 hPa) at Brookhaven, NY (OKX), during (top) the overforecast 
14 Mar 2017 snowstorm and (bottom) the underforecast 15 Nov 2018 snowstorm. Associated news media 
headlines (New York Post) and social media meme (courtesy Peter Mullinax) are shown for each event.
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probabilistic information to con-
vey weather forecast uncertainty. 
Forecasting a Continuum of En-
vironmental Threats (FACETs) 
is a proposed framework to use 
probabilistic hazard information 
(PHI) for high-impact weather 
and water events (Rothfusz et al. 
2018). The NWS recently commis-
sioned researchers to review over 
300 papers pertaining to forecast 
communication. A key finding  
is that, assuming appropriate  
presentation, probability infor-
mation generally improves de-
cision quality (Ripberger et al. 
2022). Demnitz and Joslyn (2019)  
found that probabilistic predic-
tions inspired greater trust and  
allowed participants to make 
better economic decisions (mea-
sured as expected value) overall 
than did deterministic predic-
tions. In a survey of nearly 500 
businesses regarding tornado 
warnings, Howard et al. (2021) 
found that a probabilistic infor-
mation system would produce 
an annual cost avoidance of  
$2.3–$7.6 billion compared to 
the current deterministic warning paradigm—largely due to reductions of false alarms. There  
has been less research about application of a probabilistic framework specifically for  
winter weather as compared to other hazardous weather (e.g., tornadoes, hurricanes), and 
accordingly, the Priorities for Weather Research report calls for the prioritization of research 
on development, communication, and use of uncertainty information for many hazards, 
including winter storms.

Probabilistic framework.
IdealIzed descrIptIon. In recognition that winter storms are inherently uncertain, the NWS 
Winter Weather Program has embraced the expansion of PHI to aid user decisions. Funda-
mentally, the Winter Weather Program is working toward a consistent probabilistic frame-
work. Consider Fig. 4, which is adapted from Rothfusz et  al. (2018) for winter weather  
hazards. The figure depicts an idealized scenario where certainty increases as the event 
comes closer in time. As the certainty increases, the urgency and specificity of the forecast 
increases. Importantly, the foundational PHI is frequently updated. In this idealized frame-
work, probabilistic thresholds can be used to consistently trigger and inform products and 
messaging. For example, NWS Policy cites a 50% probability of an event as the trigger for  
a Winter Storm Watch and 80% probability of an event as the trigger for a Winter Storm 
Warning (NWS 2022b). For storms with greater predictability, these thresholds may be 
met with long lead time (days), while in storms with less predictability these thresholds 

Fig. 3. A representation of the various weather factors used in 
winter storm decision-making (adapted from NWS 2018).
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may be met just hours prior to the onset of the storm. Consistently anchoring decisions at a  
probabilistic threshold (e.g., warnings at 80% probability) helps guard against over- and 
underwarning. As long as the probabilities are calibrated, this threshold approach can build 
partner trust and confidence as the partner knows what the expected hit and miss ratio will 
be for a given product (for a Winter Storm Warning, ideally 80% POD and 20% FAR). This is 
also an example of how yes–no deterministic products (a warning) can be supported by the 
underlying frequently updating PHI.

IDSS underpins this framework, with meteorologists assisting decision-makers in the 
interpretation of the forecast, including frequent updates as the PHI and associated situa-
tion evolve. The probabilistic framework offers multiple ways of supporting IDSS for core 
partners. A partner could have a probabilistic threshold of occurrence as the primary factor 
that influences their decision-making. Or, because probability and lead time tend to be in-
versely correlated, a partner might have a lead time when they need to make a decision, in 
which case the probability at that lead time is provided to support decisions. The probabilistic 
framework also includes forecasts conveyed through ranges, scenarios, and categories based 
on underlying probabilities (e.g., Novak et al. 2014; Demuth et al. 2020), such as the lowest 
and highest amounts of snowfall expected or the earliest and latest times of snowfall onset. 
Finally, the probabilistic framework could improve partners’ awareness of and preparatory 
responses for low-probability, high-impact threats.

practIcal realItIes of the framework. In practice, strict adherence to probabilistic thresh-
olds for Winter Storm Watches, Warnings, and messaging remains challenging. An essential 
assumption of the framework is that the PHI is calibrated (i.e., when an 80% chance of an 
event is predicted, it occurs 80% of the time). Modern-day ensemble systems are typically 
underdispersive, with observed events occurring outside the envelope of solutions more than 
should be expected (e.g., Buizza et al. 2005; Buizza 2018; Romine et al. 2014; Zheng et al. 
2019). Underdispersive ensemble forecasts can lead users to underestimate the probability 
of extreme events. In essence these are “surprise” storms, when heavy snow occurs and 
there was no ensemble prediction of the event. Underdispersive ensembles also erode trust 

Fig. 4. Idealized depiction of the winter storm probabilistic framework based on the 23–26 Jan 2016  
snowstorm. Uncertainty is represented by the colored envelope, which narrows as the event approaches.  
Frequently updated probabilistic hazard information informs the issuance of Winter Storm Outlooks,  
Watches, and Warnings as uncertainty decreases (or alternatively, as certainty increases). Impact-based 
decision support services occur in advance and during the event. [Adapted from H. Lazrus, NCAR, and 
from Fig. SB1 in Rothfusz et al. (2018).]
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in ensembles among forecasters (Novak et al. 2008). However, improvements in model phys-
ics, ensemble design, and resolution have improved the calibration of operational ensemble 
output over the past decade (Swinbank et al. 2016), and forecasters are gradually becom-
ing more comfortable using ensemble information (Demuth et al. 2020; Tripp et al. 2023). 
Importantly, statistical postprocessing can further improve the calibration of ensemble pre-
cipitation forecasts (e.g., Voisin et al. 2010; Hamill et al. 2017; Buizza 2018; Scheuerer and  
Hamill 2019) and is an area ripe for machine learning (ML) approaches (McGovern et al. 
2019, 2022; Handler et al. 2020). The NWS has embraced statistical postprocessing through 
the National Blend of Models (Craven et al. 2020; Hamill et al. 2017), including numerous 
statistically postprocessed probabilistic winter weather variables.

Another assumption and associated challenge is that uncertainty monotonically decreases 
(certainty increases) as the event draws near. However, uncertainty can actually increase for 
some winter storm events at shorter lead times. For example, nonlinear shifts in the possibility 
of a strong nor’easter can suddenly increase the threat of mesoscale snowbands (that were 
less likely when a strong nor’easter was unlikely). In this situation, the ensemble spread of 
snowfall amounts might increase due to the greater possibility of mesoscale snowfall bands 
either hitting or missing a location. Nevertheless, probabilistic guidance is useful for char-
acterizing this possibility and associated messaging. Research into the causes of increased 
uncertainty at short lead times and how decision-makers interpret and respond to increased 
uncertainty at short lead times is encouraged.

Another key assumption is that there even is a probabilistic threshold that aligns  
with user decisions and that users solely adhere to thresholds (Morss et al. 2022). Users have 
a wide variety of needs and risk tolerances, and there likely is no single threshold sufficient 
to address them all (Morss et al. 2010; Senkbeil et al. 2013). For example, a warning may 
be appropriate for a high probability of a minor snowfall event near rush hour, even if prob-
abilities of warning criteria do not meet an established threshold (Demuth et al. 2020). Being 
able to skillfully derive and provide information to meet this array of needs and decision 
contexts is an important part of the subjective aspect of IDSS, and is a uniquely human role 
(Stuart et al. 2022). Nevertheless, a probabilistic framework can be used to root decisions in 
skillful, objective information. Ultimately, more sophisticated multiparameter PHI aligned 
with impact thresholds to derive the explicit probability of impacts is desired.

One of the most challenging cases is the occurrence of a low-probability, high-impact 
event with short lead time. Consider the occurrence of an ice storm. The framework as-
sumes that as the event draws close in time, the objective probabilities will eventually 
increase to a critical user threshold. For example, 36 h in advance there may be a 10% 
chance of damaging ice, but 12 h in advance the probabilities will increase to 50%. The 
framework assumes users will tolerate shorter lead time for sufficient certainty in these 
cases. Regardless of if a specific trigger is met, the framework supports frequent updates 
of probabilistic information that may be especially critical in these rapidly changing 
situations for forecasters and users alike. The use of probabilistic tools to alert users to 
low-probability, high-impact events may be necessary in these cases, and work to improve 
short-range predictions is encouraged.

In recognition of the need to root decisions in objective probabilistic information while 
having flexibility to address ensemble shortcomings and complex user decisions, the Winter 
Weather Program is framing probabilistic thresholds and criteria as a “first guess,” with  
flexibility to use other tools to address subjective factors and anticipated impacts.

real-world example. An example of the framework applied to the 10–11 December 2021 
snowstorm is shown in Fig. 5. The experimental Winter Storm Outlook is used to illustrate 
one example of winter PHI. The WSO uses a multimodel ensemble to quantify the probability 
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of exceeding local Winter Storm Warning criteria (NWS 2022c). Snowfall warning criteria 
across the north-central United States is 6 in. (12 h)−1 [15.2 cm (12 h)−1]. Thus, in this case 
the WSO is showing the probability of exceeding 6 in. (12 h)−1 [15.2 cm (12 h)−1].

Four days in advance of the event the WSO exhibits a stripe of probabilities exceeding 10% 
from eastern Wyoming toward the Twin Cities of Minneapolis and Saint Paul, Minnesota, 
and into northern Wisconsin. Three days in advance of the event, probabilities increased, 
with over a 50% chance of exceeding local snowfall criteria in southeast Wyoming and the  
Nebraska panhandle, and embedded areas exceeding 30% in northeast Nebraska and  
southeast Minnesota. Consistent with this increase, Winter Storm Watches were issued  
from eastern Wyoming into Wisconsin. Two days in advance of the event, the probabilities 
increased to over 50% in many areas and shifted north. Warnings were issued in parts of  
southeast Wyoming, southwest South Dakota, and the Nebraska panhandle where prob-
abilities approached 80%. Farther east, Winter Storm Watches were expanded northward, 
consistent with the northward shift in probabilities. The Twin Cities now had probabilities 
exceeding 30%. One day in advance, probabilities further increased to over 80% in  
southern Minnesota, including the southern Twin Cities metro area. Winter Storm 
Warnings now stretched continuously from eastern Wyoming into central Wisconsin.  
Warning criteria snowfall was observed in a majority of the warning area. For example,  
the Minneapolis–Saint Paul International Airport (MSP) observed 11.7 in. (29.7 cm). In  
response to the warnings, more than 190 flights were proactively canceled at MSP, and there 
were numerous school closures and early dismissals across the region.

Probabilistic tools. In recognition that users have a wide variety of needs and risk tolerances, 
tools to sample and extract information from the full probability distribution are necessary, 
including ranges, scenarios, and feature-based displays. An experimental tool to succinctly 

Fig. 5. Example application of a probabilistic framework to the 10–11 Dec 2021 snowstorm. (top) Probability of exceeding snow-
fall accumulation warning criteria from 4 days in advance (1200 UTC 7 Dec) to 1 day in advance (1200 UTC 10 Dec) of the event. 
(bottom) NWS Winter Storm Watch (blue), Warning (pink), and Advisory (purple) at corresponding times.
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communicate the range of possibilities calculates and displays the 10th- and 90th-percentile 
values of the snowfall distribution (Novak et  al. 2014; Waldstreicher and Radell 2018;  
Demuth et al. 2020). This helps provide quantitative information on low-probability, high- 
impact events. Guided by research interviews with core partners, the graphical depiction 
provides the official “expected” snowfall forecast, the 10th percentile as the “low end” amount 
and the 90th percentile as the “high end” amount. In practice, the 90th-percentile value has 
become a proxy for communicating a reasonable worst-case scenario to decision-makers (NWS  
2018). By definition, the 90th-percentile value has a 10% chance of being exceeded. This 
approach has similarities with other hazards, such as storm surge, where the 10% chance  
of exceeding ~1 m of inundation is used in Storm Surge Watch and Warning decisions.

An example of this information for the 10–11 December 2021 snowstorm across the Twin 
Cities, Minnesota, metro area is shown in Fig. 6. In this example, the expected forecast 
for MSP was 10.4 in. (26.4 cm). However, given uncertainty in the location of an expected 
snowband, the forecast low-end amount was 6 in. (15.2 cm) and the high-end amount was 
13.7 in. (34.8 cm). The observed snowfall was 11.7 in. (29.7 cm). A mesoscale snowband 
indeed formed in this event, creating a sharp snowfall gradient of 3–20 in. (7.6–50.8 cm) 
across the metro area. The 10th- and 90th-percentile forecasts largely captured this range 
(Fig. 6).

Active work continues on refining the derivation, communication, and verification of 
percentile information. For example, verification of the snowfall percentiles across the  
CONUS during the 2021/22 season showed that the forecast 90th percentile was within  
5% to the observed 90th percentile; however, the forecast 10th percentile was not well 
calibrated to the observed 10th percentile at higher snowfall values. Regular verification 
helps drive further development and adjustments to improve statistical reliability.

Another emerging tool to sample and extract information from ensembles is cluster  
analysis. Cluster analysis quickly and objectively groups ensemble members with similar 
forecasts together, thereby reducing a large set of ensemble forecasts down into the most 
prevalent forecast scenarios (Brill et al. 2015; Zheng et al. 2017, 2019). Forecasters can  
then quickly view these ensemble clusters to better understand and communicate forecast 
uncertainty and the range of possible forecast outcomes (Lamberson et al. 2023).

Tools extracting information from ensembles on mesoscale features are also being  
developed. Building on the recommendations from Novak et al. (2012), the Weather  
Prediction Center hosts a tool that displays the evolution of snowbands from the High Reso-
lution Ensemble Forecast (HREF; Roberts et al. 2020). This approach uses the Method for 
Object-Based Diagnostic Evaluation Time-Domain (MODE-TD) which is part of the Model 

Fig. 6. Forecasted snowfall range (in.) over the Twin Cities, Minnesota, metro area issued 0700 UTC 10 Dec 2021 showing 
the forecast (a) low-end amount, (b) expected amount, and (c) high-end amount. The MSP station location is shown by 
black dot.
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Evaluation Tools (MET; Brown et al. 2021), to identify and track ensemble member QPF 
objects. Only objects that have 1-h accumulated precipitation exceeding 0.10 in. (2.5 mm) 
and that are snow (identified by the ensemble member categorical snow precipitation type 
grid) are displayed. The outline (i.e., object area) and intensity of the object are displayed. 
The intensity is calculated as the 90th percentile of hourly QPF within each object (colored 
outline). Tools such as these allow forecasters to quickly synthesize the forecast probability 
of occurrence, timing, and location of mesoscale snowbands. Application of this tool during 
the historic 17 December 2020 snowstorm shows that the occurrence and timing of an 
intense mesoscale snowband was predicted by the HREF 20 h in advance [most members 
with at least 0.15 in. h−1 (3.8 mm h−1) liquid equivalent; Fig. 7a]; however, the observed 
location was on the northwest edge of the ensemble envelope (Figs. 7a,b).

Envisioning the future: Probabilistic impact information
Foundational PHI and associated tools are necessary, but not sufficient, for the most effective 
IDSS. Rather, the next step is aligning PHI with user impact thresholds, ultimately provid-
ing decision-makers quantitative information on the probability of impacts relevant to their 
decisions.

An example of this concept comes from the aviation sector, which has identified specific 
decision thresholds that affect safety and business efficiency. The NWS/NCEP’s Aviation 
Weather Center (AWC) developed the Aviation Winter Weather Dashboard (AWWD) (Steiner 
et al. 2015). The AWWD was designed to provide automated guidance on winter weather 
impacts at major U.S. airports. Specific winter weather hazard thresholds were developed 
for each of the 29 major airports in collaboration with the Federal Aviation Administration 
(FAA) and industry partners. The dashboard displays the potential impact on each airport 
based on the chance of snowfall, freezing rain, or visibility thresholds being exceeded,  
as predicted by the NCEP SREF system. The dashboard uses a multicolored matrix to  
display the likelihood of the predicted impact, including nominal (green), slight (yellow), 
moderate (orange), and high (red) impact. This translation from a probabilistic forecast to 
a categorical impact takes into account relevant operational thresholds and other consider-
ations for terminal operations. In general, threat levels are triggered at the 40% probability 
of exceedance of the critical threshold for that threat level. Figure 8 shows the AWWD  
outlook issued Friday, 20 February 2015, for the Denver area with moderate operational 

Fig. 7. (a) 20-h forecast of snowband objects from the NCEP HREF valid 0800 UTC 17 Dec 2020. Forecast objects are outlined in 
color corresponding to the 90th percentile of intensity according to color bar (liquid equivalent, in. h−1). An ellipse representing 
the approximate observed band position is outlined in black. (b) Observed radar composite at 0800 UTC 17 Dec 2020, showing 
observed snowband (black ellipse) verifying along the northwest side of the envelope of solutions.

Unauthenticated | Downloaded 09/28/23 06:52 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M A R C H  2 0 2 3 E727

impacts from a greater than 40% chance of snowfall rates exceeding 0.5 in. h−1 (1.3 cm h−1)  
(“S” in the table) and a greater than 40% chance of visibility < 1 n mi (<1.85 km) (“V” in 
the table) expected on Sunday. This dashboard provides a decision support tool to alert 
operational meteorologists and air traffic managers to potential winter weather impacts at 
major airports. Beyond the aviation sector, one can imagine similar impact assessments 
and dashboards for other sectors of the economy.

Although sophisticated and quantitative winter hazard impact models are likely to be  
developed through time, it remains a nascent field (Merz et al. 2020). To communicate win-
ter impacts more generally across a range of decision contexts, various scales have been 
developed to qualitatively estimate the severity of winter storms. For example, the Northeast 
Snowfall Impact Scale (NESIS) (Kocin and Uccellini 2004b) is presented as a poststorm mea-
sure of the impact of heavy snowfall in the Northeast urban corridor and is based upon the 
geographical area of snowfall—weighted by population. The Regional Snowfall Index (RSI; 
Squires et al. 2014) is an evolution of the NESIS which applies the technique to other portions 
of the country. The NESIS and RSI do not take into account impacts from ice, wind, and blow-
ing snow, and importantly, these indices are calculated after a storm. The Local Winter Storm 
Scale (LWSS; Cerruti and Decker 2011) is created using observed conditions of winds, snow, 
ice, and visibility and applying a score and weighting function for each element depending 
upon the specific value. The result is a numerical score from 0 to 6 depicting the “severity” of 
the storm over the user defined time frame. The LWSS can further be correlated to a Rooney 
Disruption Index (RDI) (Rooney 1967) relating societal impacts by using historical weather 
observations and storm impact accounts from newspapers.

Building on the foundation of the above indices, the NWS has recently developed the Winter 
Storm Severity Index (WSSI; NWS 2021). The WSSI is a predictive tool designed to enhance 
communication of the expected winter storm severity (potential societal impacts) to users. 
The WSSI is comprised of subcomponent algorithms that use official NWS National Digital 
Forecast Database forecast values, climatology, and nonmeteorological data (land cover, tree 

Fig. 8. Example of Aviation Winter Weather Dashboard for forecasts for Colorado airports valid 20 Feb 2015 (from Steiner 
et al. 2015).
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type, population, etc.) to determine the level of potential societal impact based upon specific 
characteristics of winter storms. The subcomponents are

• Snow Amount Index: potential of impacts due to the total amount of snow or accumula-
tion rate.

• Snow Load Index: potential of impacts due to the weight of the snow.
• Ice Accumulation: potential of impacts due to combined effects of ice and wind.
• Blowing Snow Index: potential of impacts due to blowing snow.
• Flash Freeze Index: potential of impacts due to quick-forming ice from rapid temperature 

drops during or after precipitation.

Each of the components produces a value that equates to the potential impact. The final 
WSSI value is the maximum value from all the subcomponents. The five levels are labeled 
Winter Weather Area, Minor, Moderate, Major, and Extreme, which are mapped to provide a 
graphical depiction of anticipated overall impacts to society due to winter weather. A retro-
spective example of the summary forecast output from the WSSI is shown in Fig. 9a for the 
historic High Plains Blizzard of 12–14 April 2022. This storm immobilized the region, with 
drifts to 15 ft (4.6 m)—stopping snowplows in their tracks Fig. 9b (insert).

The next frontier of such impact scales is to highlight the probability of categories (and 
associated specific impacts)—ultimately contributing to the vision of providing community 
decision-makers quantitative information on the likelihood of impacts from winter storms. 
For example, one can calculate a WSSI value from each member of a meteorological ensemble 
to derive the probability of an impact category. Figure 9b shows the result of this process for 
the 12–14 April 2022 blizzard. This probabilistic WSSI is formally experimental during the 
2022/23 winter season. One can envision incorporating more sophisticated factors, such as 
the time of day and the day of the week.

Importantly, a rigorous and consistent database of observed impacts is needed to verify 
impact forecasts. Current impact datasets, such as the NOAA Storm Events Database, are a 
general starting point, but consistent, official, and timely information on power outages, road 
closures, traffic accidents, airport delays, hospital admissions, and insurance claims, among 
other information is needed within a common platform. This more detailed and complete 
impact data are essential to calibrating impact predictions and building decision-makers’ 
trust in the predictions.

Integrating social science for improved winter storm information
The evolution toward a probabilistic framework for winter storm forecasting is envisioned 
to help users better understand winter weather risks and improve their decision-making. 
Although some empirical research has been conducted pertaining to different users’ access, 
interpretation, and use of winter weather forecast information (Rice and Spence 2016; NWS 
2018; Burgeno and Joslyn 2020; Call and Flynt 2021; Demuth et al. 2020; Su et al. 2021; 
Morss et al. 2022; Tripp et al. 2023), additional research is needed in several critical areas to 
guide development and operationalization of probabilistic winter storm forecast information 
that is user-oriented and actionable. Several topics are outlined below, all of which are sup-
ported by recent reports that provide guidance to NOAA and the broader Weather Enterprise 
(NASEM 2018; NOAA Science Advisory Board 2021).

There are a variety of users of probabilistic winter forecast information. NWS forecast-
ers themselves are critical, first-order users of probabilistic guidance. Recent research with 
forecasters, including interviews (Demuth et al. 2020) and surveys (Tripp et al. 2023), have 
found that forecasters want new tools, including probabilistic information, and training that 
help them understand challenging and high-impact forecast situations, but that these tools 
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need to be guided by their forecast and IDSS needs. More research is needed to understand 
how forecasters interrogate and interpret probabilistic guidance, integrate it into their assess-
ment of risks of different winter hazards, and translate it into forecast and IDSS for partners.  
As discussed above, there are predictability challenges (e.g., of heavy snowfall rates,  
uncertainty increasing as an event nears, flatter versus sharper probability distributions). How 
forecasters assess and use probabilistic guidance in these different situations must also be 
considered. Among the most important users, NWS’s core partners make mitigating and 
protective decisions when a winter storm threatens. It is critical to understand how far in ad-
vance these users must make decisions, and how different winter storm forecast parameters 
(e.g., timing, amount, intensity) influence decisions. It is further critical to explore these  
users’ interpretations of, and preferences for, probabilistic information conveyed in different 
ways (e.g., probability of exceedance, ranges, scenarios) and how these different forms of 

Fig. 9. Example of the summary forecast output from the Winter Storm Severity Index for the historic High Plains Cyclone of 
12–14 Apr 2022 showing (a) the most likely impact category and (b) the probability of exceeding major impacts. (insert) Picture 
of a stranded plow on Interstate 94.
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information intersect with their decision-making. Last, but not least, members of the public 
are a broad, diverse user group that the NWS serves, and thus it is also essential to build on 
the research referenced above to further develop robust knowledge about how they interpret 
and use probabilistic information conveyed in different ways and for different winter storm 
risk scenarios.

Importantly, winter storms and the risks posed by them evolve in space and time, and 
associated forecast and impact probabilities evolve as well. The December 2021 real-world 
case described above provides an excellent example of the evolving risk as the probabilities 
changed through time (Fig. 5). Yet, most SBES research with users conducted during an event 
is collected at only one point in time, which cannot capture whether, when, and how people’s 
interpretations and responses are changing with changing probabilistic forecast informa-
tion. It therefore is important to investigate risk communication and decision-making as 
dynamic and to collect such social science observational data accordingly. Furthermore, it is 
important to collect data from users across events, to understand how different winter storm 
scenarios and associated differences in predictability influence users’ interpretations and 
decision-making. For instance, how do users interpret and use the aforementioned low-end 
and high-end amounts based on the 10th and 90th percentiles from an ensemble when that 
distribution is sharper (narrower range) versus flatter (wider range)? As the December 2021 
case shows, there are inherent spatial variations in probabilistic forecast and impact-based 
information (e.g., Fig. 6). Thus, it is important to study these spatial representations of prob-
ability and risk from users’ perspectives.

To better motivate action, consistent messaging has been a recent focus (Weyrich et al. 
2019; Burgeno and Joslyn 2020; Williams and Eosco 2021). Inspired by the success of the 
National Hurricane Center’s use of key messages for tropical cyclones, the Winter Weather 
Program implemented key messages in 2022 to galvanize core partners and media around 
a synthesized and consistent message. The key messages often highlight probabilistic 
information (Fig. 10). Measuring the influence of these consistent, key messages on user 
decisions is necessary.

Summary and next steps
Innovations in winter storm forecasting have occurred across the value chain over the 
past two decades, from physical understanding, to observations, to model forecasts, to 
postprocessing, to forecaster knowledge and interpretation, to products and services, 
and ultimately to decision support. These innovations enable more accurate and consis-
tent forecasts, which are increasingly being translated into actionable information for 
decision-makers. The NWS Winter Weather Program has embraced a probabilistic frame-
work, with PHI serving as a foundation for decision support, and has a vision of providing 
community decision-makers skillful and quantitative information on the likelihood of 
impacts from winter storms.

However, to achieve this vision, there are several gaps that must be addressed. We recom-
mend the following priority actions:

• Fundamentally improve model precipitation accuracy (occurrence, type, and amount) 
(NOAA Science Advisory Board 2021). This includes improved prediction of winter storm 
synoptic-scale patterns, mesoscale features, thermal profiles, and precipitation type.

• Improve ensemble underdispersion for winter storms. Minimize the number of events veri-
fying outside the envelope of ensemble predictions to further build trust among forecast-
ers and decision-makers. Beyond improved physical understanding and improved model 
systems, this action likely includes the use of ML and other postprocessing techniques to 
calibrate ensemble output.
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• Focus on improving short-lead-time forecast failures, diagnosing root causes, and 
ultimately reducing the occurrence of low-probability, high-impact events with short 
lead time.

• Redouble efforts on characterizing the mesoscale aspects of winter storm threats including 
probabilistic information on timing, snow and ice accumulation rates, and precipitation 
type transitions—especially at short lead times.

• Extend probabilistic services further out in time to enhance situational awareness and 
advance lead time for winter storms.

• Establish a rigorous and consistent database of observed impacts to support impact  
verification and the development of impact-based tools. Establish a database of critical 
impact thresholds for transportation, energy, and other sectors.

• Develop probabilistic impact information that links multiparameter PHI (e.g., probability 
of intense snowfall rates at rush hour) with decision-maker thresholds.

• Expand support for SBES research with a range of users (forecasters, core partners,  
members of the public) to guide the evolution of probabilistic products and decision sup-
port, including improving understanding of users’ risk assessment and decision-making 
contexts when winter storms threaten.

As the needs of decision-makers for accurate, consistent, timely, and actionable winter 
weather information increase, it is critical for the public, private, and academic sectors to 
work in partnership to make advances across the value chain. Burgeoning examples of 
this collaboration in the winter weather realm include the Pathfinder initiative, which 
facilitates collaboration between the NWS, the Federal Highway Administration (FHWA),  

Fig. 10. Example key messages 2 days prior to the 28–30 Jan 2022 winter storm. The key messages  
highlight the increasing potential for a storm, with the greatest hazards along the coast. The probability  
of more than 4 in. (10.2 cm) and 8 in. (20.3 cm) of snow is shown.
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state transportation departments, and private-sector companies to assess the impact of 
weather on transportation, and to develop consistent, concise messaging for motorists,  
including the use of variable-message signs along major roadways (FHWA 2018). The  
establishment of Earth Prediction Innovation Center (Jacobs 2021; Uccellini et al. 2022), 
the Unified Forecast System initiative (Jacobs 2021), and the Precipitation Prediction Grand 
Challenge (NOAA 2020) are promising collaborative R2O initiatives to improve winter storm 
accuracy and increase lead time for decision-makers. The Hydrometeorological Testbed 
(HMT) is a key forum fostering partnerships as it convenes forecasters, model developers, 
and academics to rigorously evaluate experimental model applications and new services 
through the lens of winter storm hazards and IDSS on a sustained basis (e.g., Ralph et al. 
2005). Further, increasing integration of SBES into products and services will ensure 
understandable and actionable information. Recent workshops involving meteorologists and 
representatives in emergency management, media, and transportation have focused on 
effective forecast communication of probabilistic information for high-impact weather (Colle 
et al. 2021), and such engagements are encouraged. Through these and other collaborative 
efforts, the vision of providing community decision-makers quantitative information on the 
likelihood of impacts from winter storms can become reality.
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