
Research Article
Innovative Bipolar Fuzzy Sine Trigonometric Aggregation
Operators and SIR Method for Medical Tourism Supply Chain

Muhammad Riaz ,1 Dragan Pamucar ,2 Anam Habib,1 and Nimra Jamil1

1Department of Mathematics, University of the Punjab, Lahore, Pakistan
2Department of Logistics, Military Academy, University of Defence in Belgarde, Belgarde 11000, Serbia

Correspondence should be addressed to Dragan Pamucar; dragan.pamucar@va.mod.gov.rs

Received 13 February 2022; Revised 4 April 2022; Accepted 15 April 2022; Published 20 June 2022

Academic Editor: Ardashir Mohammadzadeh

Copyright © 2022 Muhammad Riaz et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Bipolar fuzzy sets (BFSs) are e�ective tool for dealing with bipolarity and fuzziness. �e sine trigonometric functions having two
signi�cant features, namely, periodicity and symmetry about the origin, are helping in decision analysis and information analysis.
Taking the advantage of sine trigonometric functions and signi�cance of BFSs, innovative sine trigonometric operational laws
(STOLs) are proposed. New aggregation operators (AOs) are developed based on proposed operational laws to aggregate bipolar
fuzzy information. Certain characteristics of these operators are also discussed, such as boundedness, monotonicity, and
idempotency. Moreover, a modi�ed superiority and inferiority ranking (SIR) method is proposed to cope with multicriteria group
decision-making (MCGDM) with bipolar fuzzy (BF) information. To exhibit the relevance and feasibility of this methodology, a
robust application of best medical tourism supply chain is presented. Finally, a comprehensive comparative and sensitivity
analysis is evaluated to validate the e�ciency of suggested methodology.

1. Introduction

Multicriteria group decision-making (MCGDM) is a process
to seek an optimal alternative and ranking of feasible al-
ternatives by a group of decision-experts under several stages
and several criteria. However, this process is desperate with
uncertainty due to data imprecision and vague perception.
As a result, crisp theory is insu�cient for dealing with
MCGDM problems. To deal with these matters, Zadeh [1]
initiated the conception of fuzzy set (FS) and membership
function. Later on, di�erent researchers presented di�erent
extensions of FSs including, intuitionistic fuzzy sets (IFSs)
[2], Pythagorean fuzzy sets (PyFSs) [3, 4], q-rung orthopair
fuzzy sets (q-ROFSs) [5], hesitant fuzzy sets (HFSs) [6],
neutrosophic sets (NSs) [7], single-valued NSs [8], picture
fuzzy sets (PFSs) [9], and spherical fuzzy sets (SFSs) [10–12].

�e fuzzy models are extremely useful in dealing with
uncertain MCGDM problems, and they have been widely
used by decision makers. Nevertheless, they all have one ¤aw
in common: they can only deal with one property and its

not-property at a time. �ey are unable to cope with any
property’s counter property. It is quite common in decision
analysis to have to consider both the positive and negative
aspects of a speci�c object. Some well-known contradictory
features in decision analysis include e�ects and side e�ects,
pro�t and loss, health and sickness, and so on. Zhang [13, 14]
propounded the abstraction of bipolar fuzzy sets (BFSs)
which deal with both a property and its counter property.
Lee [15] studied operations on bipolar-valued fuzzy sets.
Tehrim and Riaz [16] introduced connection numbers of
SPA theory for the decision support system by using the
IVBF linguistic VIKOR method. Jana and Pal [17] proposed
the BF-EDAS method for MCGDM problems. Liu et al. [18]
suggested an integrated bipolar fuzzy SWARA-MABAC
technique and utilized it for the safety risk and occupational
health diagnosis. Jana et al. [19] introduced BF-Dombi AOs
and Wei et al. [20] developed bipolar fuzzy Hamacher AOs.

Han et al. [21] proposed the TOPSIS method for
YinYang bipolar fuzzy cognitive TOPSIS. Wei et al. [22]
established MADM with IVBF information. Hamid et al.
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[23] initiated weighted aggregation operators for q-rung
orthopair m-polar fuzzy set. Akram et al. [24] proposed the
notion of complex fermatean fuzzy N-soft sets. AOs are
crucial in information aggregation and are subject to a
variety of operational laws. Based on algebraic operational
laws, Xu [25] and Xu and Yager [26] propounded weighted
averaging and geometric AOs for IFSs. Garg [27] introduced
interactive operators for IFSs. Huang [28] proposed intui-
tionistic fuzzy Hamacher aggregation operators. Gou and Xu
[29] suggested exponential operational laws (EOLs) for IFSs.

Li and Wei [30] proposed logarithmic operational laws
(LOLs) for IFSs. Peng et al. [31] proposed EOLs for q-ROFSs.
Similarly, the LOLs for PFSs [32] are also defined. Aside
from the exponential and logarithmic functions, sine trig-
onometric function is another suitable choice for infor-
mation fusion. (e two main characteristics are periodicity
and symmetry about the origin which aid in meeting the
decision makers’ expectations during object evaluation.
Abdullah et al. [33] developed STOLs for PFSs. Kabani [34]
studied Pakistan as a medical tourism destination. Muzaffar
and Hussain [35] investigated medical tourism to discuss the
challenge: are we ready to take the challenge. Zhang and Xu
[36] proposed TOPSIS for PFSs and PFNs with MCDM.

Mahmood et al. [37] proposed an innovative MCDM
method with spherical fuzzy soft rough (SFSR) average
aggregation operators. Ihsan et al. [38] presented the
MADM support model based on bijective hypersoft expert
set. Karaaslan and Karamaz [39] introduced an innovative
decision-making approach with HFPHFS. Alcantud [40]
introduced the novel concepts of soft topologies and fuzzy
soft topologies and investigated their relationships. Liu et al.
[41] introduced the idea of mining temporal association
rules based on temporal soft sets. Riaz et al. [42] introduced a
novel TOPSIS approach based on cosine similarity measures
and CBF-information. Zararsiz and Riaz [43] introduced the
notion of bipolar fuzzy metric spaces with application. Riaz
et al. [44] proposed distance and similarity measures for
bipolar fuzzy soft sets with application to pharmaceutical
logistics and supply chain management.

In 2021, Gergin et al. [45] modified the TOPSIS method
to deal the supplier selection for automotive industry.
Karamasa et al. [46] introduced the weighting factors which
affect the logistics out-sourcing decision-making problem.
Ali et al. [47] introduced Einstein geometric AO to deal
complex IVPFS, and its novel principles and its operational
laws are defined.Muhammad et al. [48] and Biswas et al. [49]
propounded multicriteria decision-making techniques to
deal real world problems. Milovanovic et al. [50] developed
uncertainty modeling using intuitionistic fuzzy numbers.

In 2021, Garg [51] introduced some robust STOLs, its
operational laws for PFSs, and AOs and algorithms to in-
terpret MCDM. In 2021, Mahmood et al. [52] interpreted
BCFHWA, BCFHOWA, BCFHHA, BCFHWG,
BCFHOWG, and BCFHHG operators. Palanikumar et al.
[53] proposed some new methods to solve MCDM based on
PNSNIVS. A notion of PNSNIVWA, PNSNIVWG,
GPNSNIVWA, and GPNSNIVWG is also discussed in the
article. In 2021, Jana et al. [54] applied IFDHWA and

IFDHWG AO to evaluate enterprise financial performance.
In 2021, Jana et al. [55] extended Dombi operations towards
single-valued trapezoidal neutrosophic numbers
(SVTrNNs). (ey also presented Dombi operation on
SVTrNNs, and they proposed some new averaging and
geometric averaging operators named as SVTrN Domi
weighted averaging (SVTrNDWA) operator, SVTrN Dombi
ordered weighted averaging (SVTrNDOWA) operator,
SVTrN Dombi hybrid weighted averaging (SVTrNDHWA)
operator, SVTrN Dombi weighted geometric
(SVTrNDWGA) operator, SVTrN Dombi ordered weighted
geometric (SVTrNDOWGA) operator, and SVTrN Dombi
hybrid weighted geometric (SVTrNDHWGA) operator. In
2022, Ajay et al. [56] extended the STOLs for NSs and CNSs
and defined the operational laws and their functionality.
(ey also defined distance measures and ST-AOs. In 2022,
Qiyas et al. [57] defined some reliable STOLs for SFNs and
defined ST-OAs to deal real world problems.

(e superiority and inferiority ranking (SIR) technique
is a generalization of the eminent PROMETHEE method.
(is technique employs superiority and inferiority infor-
mation to represent decision makers’ behavior toward each
criterion and to determine the degrees of domination and
subordination of each alternative, from which superiority
and inferiority flows are derived. It was introduced by Xu
[58]. Chai and Liu [59] proposed the IF-SIR method to deal
with MCGDM problems. Peng and Yang [60] extended the
SIR technique to pythagorean fuzzy data. Zhu et al. [61]
proposed the SIR approach for q-ROFSs.

Keeping in mind the importance of sine trigonometric
function and SIR method, the aims and perks of this
manuscript are as follows:

(1) To address bipolarity and uncertainty, innovative
sine trigonometric operational laws (STOLs) are
proposed for bipolar fuzzy sets (BFSs).

(2) Averaging AOs are developed named as sine trigo-
nometric bipolar fuzzy weighted averaging (ST-
BFWA) operator, sine trigonometric bipolar fuzzy
ordered weighted averaging (ST-BFOWA) operator,
and sine trigonometric bipolar fuzzy hybrid
weighted averaging (ST-BFHWA) operator.

(3) Geometric AOs are proposed including sine trigo-
nometric bipolar fuzzy weighted geometric (ST-
BFWG) operator, sine trigonometric bipolar fuzzy
ordered weighted geometric (ST-BFOWG) operator,
and sine trigonometric bipolar fuzzy hybrid
weighted geometric (ST-BFHWG) operator.

(4) Certain aspects of proposed operators are also dis-
cussed, such as idempotency, boundedness, and
monotonicity.

(5) A modified SIR method by using features of pro-
posed operators is proposed to cope with MCGDM
problems.

(6) A robust application of best medical tourism supply
chain is presented by using a modified SIR technique
involving sine trigonometric AOs.
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(e layout of the remaining manuscript is as follows. In
Section 2, some fundamental concepts about BFSs are
reviewed. In Section 3, we define STOLs for BFSs and discuss
their properties. In Sections 4 and 5, we introduce novel AOs
based on BF-STOLs and explore their characteristics. Sec-
tion 6 provides an extended version of the SIR technique for
dealing with MCGDM problems using bipolar fuzzy data. A
numerical illustration and a comparative analysis are also
proffered to validate the efficaciousness of the propounded
technique. Finally, in Section 7, there are some closing
remarks.

2. Preliminaries

(is section includes some rudimentary abstractions related
to BFSs. (roughout this manuscript, we consider Y as
universe of discourse.

Definition 1 (see [13]). A BFS B on Y can be described as

B � 〈y,ℵ+
B(y),ℵ−

B(y)〉: y ∈ Y􏼈 􏼉, (1)

where ℵ+
B(y) ∈ [0, 1] denotes positive membership degree

and ℵ−
B(y) ∈ [− 1, 0] denotes negative membership degree

of an element y ∈ Y . A bipolar fuzzy number (BFN) can be
expressed as B � 〈ℵ+

B,ℵ−
B〉.

In 2015, Gul proposed operational laws of BFNs in his
M.Phil (esis.

Definition 2 [62]. Let B1 � 〈ℵ+
B1

,ℵ−
B1

〉 and
B2 � 〈ℵ+

B2
,ℵ−

B2
〉 be two BFNs and σ ∈ (0,∞), then op-

erational laws between them can be defined as

(i) B1 ⊕B2 � 〈ℵ+
B1

+ ℵ+
B2

− ℵ+
B1
ℵ+

B2
, − ℵ−

B1
ℵ−

B2
〉

(ii)
B1 ⊗B2 � 〈ℵ+

B1
ℵ+

B2
, − ((− ℵ−

B1
) + (− ℵ−

B2
) − ℵ−

B1
ℵ−

B2
)〉

(iii) σB1 � 〈1 − (1 − ℵ+
B1

)σ , − (− ℵ−
B1

)σ〉

(iv) Bσ
1 � 〈(ℵ+

B1
)σ , − (1 − (1 − (− ℵ−

B1
))σ)〉

(v) Bc
1 � 〈1 − ℵ+

B1
, − 1 − ℵ−

B1
〉

(vi) B1 ≺B2 if ℵ+
B1
≤ℵ+

B2
and ℵ−

B1
≥ℵ−

B2

(vii) B1 � B2 if B1 ≺B2 and B2 ≺B1

Definition 3 (see [20]). For a BFNB � 〈ℵ+
B,ℵ−

B〉, score and
accuracy functions can be expressed as

Scr(B) �
1 + ℵ+

B + ℵ−
B

2
, (2)

Acr(B) �
ℵ+

B − ℵ−
B

2
. (3)

(e values of score and accuracy functions are used to
compare two BFNs. For two BFNs B1 and B2,

(i) If Scr(B1)< Scr(B2), then B1 <B2

(ii) If Scr(B1)> Scr(B2), then B1 >B2

(iii) If Scr(B1) � Scr(B2), then B1 <B2 if
Acr(B1)<Acr(B2)

(iv) If Scr(B1) � Scr(B2), then B1 >B2 if
Acr(B1)>Acr(B2)

(v) If Scr(B1) � Scr(B2), then B1 � B2 if
Acr(B1) � Acr(B2)

Definition 4 (see [21]). If B1 and B2 are two BFSs on
Y � y1, y2, . . . , yn􏼈 􏼉, then the normalized Hamming dis-
tance between them is calculated as

d B1,B2( 􏼁 �
1
2n

􏽘

n

i�1
ℵ+

B1
yi( 􏼁 − ℵ+

B2
yi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ℵ−
B1

yi( 􏼁 − ℵ−
B2

yi( 􏼁
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓.

(4)

3. Sine Trigonometric Operational
Laws for BFSs

In this section, we suggest sine trigonometric operational
laws (STOLs) for BFNs and investigate some useful results.

Definition 5. LetB � 〈y,ℵ+
B(y),ℵ−

B(y)〉: y ∈ Y􏼈 􏼉 be a BFS
on Y . A sine trigonometric operator on B can be defined as

sinB � 􏼪y, sin
π
2
ℵ+

B(y)􏼒 􏼓, sin
π
2

1 + ℵ−
B(y)( 􏼁􏼒 􏼓 − 1􏼫: y ∈ Y

⎧⎨

⎩

⎫⎬

⎭.

(5)

Clearly, sinB is again a BFS on Y because
sin((π/2)ℵ+

B(y)) ∈ [0, 1] and sin((π/2)(1 + ℵ−
B(y))) − 1 ∈

[− 1, 0] serve as positive and negative membership degrees,
respectively, for every element y ∈ Y . (e set sinB is called
sine trigonometric-BFS (ST-BFS).

Definition 6. Let B � 〈ℵ+
B,ℵ−

B〉 be a BFN, then

sinB � 􏼪sin
π
2
ℵ+

B􏼒 􏼓, sin
π
2

1 +ℵ−
B( 􏼁􏼒 􏼓 − 1􏼫, (6)

is called ST-BFN.

Definition 7 For two BFNs B1 � 〈ℵ+
B1

,ℵ−
B1

〉 and
B2 � 〈ℵ+

B2
,ℵ−

B2
〉, we propose STOLs as follows:

(i) sin B1 ⊕ sin B2 � 1 − (1 − sin((π/2)ℵ+
B1

))(1 −

sin ((π/2)ℵ+
B1

)), − (sin((π/2)(1 + ℵ−
B1

)) − 1) 〉

〈 (sin((π/2)(1 +ℵ−
B2

)) − 1)

(ii) sin B1 ⊗ sin B2 � 〈sin((π/2)ℵ+
B1

)sin((π/2)ℵ+
B1

),

− (1 − sin((π/2)(1 +ℵ−
B1

))sin((π/2)(1 +ℵ−
B2

)))〉

(iii) σ sin B1 � 〈1 − (1 − sin((π/2)ℵ+
B1

))σ ,

− (− (sin((π/2)(1 + ℵ−
B1

))) − 1)σ〉; σ > 0
(iv) (sin B1)

σ � 〈(sin((π/2)ℵ+
B1

))σ ,

− (1 − (sin((π/2)(1+ ℵ−
B1

)))σ)〉; σ > 0

Theorem 1. LetB1 � 〈ℵ+
B1

,ℵ−
B1

〉 andB2 � 〈ℵ+
B2

,ℵ−
B2

〉 be
two BFNs and σ > 0, σ1 > 0, σ2 > 0 be three real numbers, then

(i) σ(sin B1 ⊕ sin B2) � σ sin B1 ⊕ σ sin B2

(ii) (sin B1 ⊗ sin B2)
σ � (sin B1)

σ ⊗ (sin B2)
σ

(iii) σ1 sin B1 ⊕ σ2 sin B1 � (σ1 + σ2)sin B1

Mathematical Problems in Engineering 3



(iv) (sin B1)
σ1 ⊗ (sin B1)

σ2 � (sin B1)
σ1+σ2 Proof. We substantiate (i) and (iv), and others can be

substantiated similarly.

(i) For σ > 0,

σ sin B1 ⊕ sin B2( 􏼁 � 􏼪1 − 1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ
1 − sin

π
2
ℵ+

B2
􏼒 􏼓􏼒 􏼓

σ
,

− − sin
π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
σ

− sin
π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
σ
􏼫

� 􏼪1 − 1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ
, − − sin

π
2

1 +ℵ−
B1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
σ
􏼫

⊕􏼪1 − 1 − sin
π
2
ℵ+

B2
􏼒 􏼓􏼒 􏼓

σ
, − − sin

π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
σ
􏼫 � σ sin B1 ⊕ σ sin B2.

(7)

(iv ) For σ1, σ2 > 0,

sin B1( 􏼁
σ1 ⊗ sin B1( 􏼁

σ2 �〈 sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ1
, − 1 − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ1

􏼒 􏼓〉

⊗ 〈 sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ2
, − 1 − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ2

􏼒 􏼓〉

� sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ1
sin

π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ2
, 〉

〈 − 1 − sin
π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ1

sin
π
2

1 +ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ2

􏼒 􏼓〉

�〈 sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ1+σ2
, − 1 − sin

π
2

1 +ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ1+σ2

􏼒 􏼓〉

� sin B1( 􏼁
σ1+σ2 .

(8)

□
Definition 8. Let B � 〈ℵ+

B,ℵ−
B〉 be a BFN and sinB be the

corresponding ST-BFN, then

(sinB)
c

�〈1 − sin
π
2
ℵ+

B􏼒 􏼓, − sin
π
2

1 + ℵ−
B( 􏼁􏼒 􏼓〉, (9)

is called complement of sinB.

Theorem 2. LetB1 � 〈ℵ+
B1

,ℵ−
B1

〉 andB2 � 〈ℵ+
B2

,ℵ−
B2

〉 be
two BFNs and σ > 0, then

(i )σ(sin B1)
c � ((sin B1)

σ)c

(ii) ((sin B1)
c)σ � (σ sin B1)

c

(iii) (sin B1 ⊕ sin B2)
c � (sin B1)

c ⊗ (sin B2)
c

(iv) (sin B1 ⊗ sin B2)
c � (sin B1)

c ⊕ (sin B2)
c

Proof. We substantiate (i) and (iv), and others can be
substantiated similarly.

(i)

sin B1( 􏼁
c

� 􏼪1 − sin
π
2
ℵ+

B1
􏼒 􏼓, − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼫,

σ sin B1( 􏼁
c

� 􏼪1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ
, − − − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓􏼒 􏼓
σ
􏼫.

(10)
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Now,

sin B1( 􏼁
σ

� 􏼪 sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ
, − 1 − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ

􏼒 􏼓􏼫,

sin B1( 􏼁
σ

( 􏼁
c

� 􏼪1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

σ
, − sin

π
2

1 +ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
σ
􏼫

� σ sin B1( 􏼁
c
.

(11)

(iv)

sin B1 ⊗ sin B2( 􏼁
c

� 􏼪1 − sin
π
2
ℵ+

B1
􏼒 􏼓sin

π
2
ℵ+

B2
􏼒 􏼓, − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓sin
π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓􏼫,

sin B1( 􏼁
c ⊕ sin B2( 􏼁

c
� 􏼪1 − sin

π
2
ℵ+

B1
􏼒 􏼓, − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼫⊕􏼪1 − sin
π
2
ℵ+

B2
􏼒 􏼓, − sin

π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓􏼫

� 􏼪1 − sin
π
2
ℵ+

B1
􏼒 􏼓sin

π
2
ℵ+

B2
􏼒 􏼓, − − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓 − sin
π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓􏼒 􏼓􏼫

� sin B1 ⊗ sin B2( 􏼁
c
.

(12)

□
Theorem 3. . LetB1 andB2 be two BFNs withB1 ≺B2, i.e.,
ℵ+

B1
≤ℵ+

B2
and ℵ−

B1
≥ℵ−

B2
, then sin B1 ≺ sin B2.

Proof. Since sine is an increasing function on the interval
[0, (π/2)] so for ℵ+

B1
≤ℵ+

B2
, we have

sin((π/2)ℵ+
B1

)≤ sin((π/2)ℵ+
B2

). Likewise, for ℵ−
B1
≥ℵ−

B2
,

we obtain 1 + ℵ−
B1
≥ 1 +ℵ−

B2
. (is implicates that

sin((π/2)(1 + ℵ−
B1

))≥ sin((π/2)(1 +ℵ−
B2

)) which further
implicates that sin((π/2)(1 + ℵ−

B1
)) − 1≥ sin((π/2)

(1 + ℵ−
B2

)) − 1. Hence, by Definition 2 (part (vi)), we have
sin B1 � 〈sin((π/2)ℵ+

B1
), sin((π/2)(1 + ℵ−

B1
)) − 1〉

≺ 〈sin((π/2)ℵ+
B2

), sin((π/2)(1 +ℵ−
B2

)) − 1〉 � sin B2. □

4. Bipolar Fuzzy Sine Trigonometric Averaging
Aggregation Operators

In this section, some new averaging AOs have been proposed
on the basis of STOLs of BFNs. (ese aggregation operators

include (i) ST-BFWA operator, (ii) ST-BFOWA operator,
and (iii) ST-BFHWA operator.

4.1. ST-BFWA Operator

Definition 9. . Let Bi, i � 1, 2, . . . , n, be a compendium of
BFNs and φ � (φ1,φ2, . . . ,φn) be the weights of Bi,
i � 1, 2, . . . , n, with φi > 0 and 􏽐

n
i�1 φi � 1. (en, ST-BFWA

operator is described as

ST − BFWA B1,B2, . . . ,Bn( 􏼁 � φ1 sin B1 ⊕φ2 sin B2 ⊕ · · · ⊕φn sin Bn.

(13)

Theorem 4. . Let Bi � 〈ℵ+
Bi

,ℵ−
Bi

〉 be n BFNs, then their
cumulative value acquired by using (13) is again a BFN and is
given by

ST − BFWA B1,B2, . . . ,Bn( 􏼁 � 􏼪1 − 􏽙
n

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

, − 􏽙
n

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫. (14)
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Proof. To prove the theorem, we employ mathematical
induction on n. For n � 2, we have

ST − BFWA B1,B2( 􏼁 � φ1 sin B1 ⊕φ2 sin B2

� 􏼪1 − 1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

φ1
, − − sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ1

􏼫

⊕􏼪1 − 1 − sin
π
2
ℵ+

B2
􏼒 􏼓􏼒 􏼓

φ2
, − − sin

π
2

1 +ℵ−
B2

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ2

􏼫

� 􏼪1 − 􏽙
2

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

, − 􏽙
2

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫.

(15)

(is shows that our assertion is correct for n � 2. As-
sume that the result holds true for n � k, i.e.,

ST − BFWA B1,B2, . . . ,Bk( 􏼁 � φ1 sin B1 ⊕φ2 sin B2 ⊕ · · · ⊕φk sin Bk

� 􏼪1 − 􏽙
k

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

, − 􏽙
k

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫.

(16)

Now, for n � k + 1, we have

ST − BFWA B1,B2, . . . ,Bk+1( 􏼁 � φ1 sin B1 ⊕φ2 sin B2 ⊕ · · · ⊕φk sin Bk ⊕φk+1 sin Bk+1

� 􏼪1 − 􏽙
k

i�1
1 − sin

π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

φi

, − 􏽙
k

i�1
− sin

π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫

⊕􏼪1 − 1 − sin
π
2
ℵ+

Bk+1
􏼒 􏼓􏼒 􏼓

φk+1
, − − sin

π
2

1 +ℵ−
Bk+1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φk+1

􏼫

� 􏼪1 − 􏽙
k+1

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

, − 􏽙
k+1

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫.

(17)
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Hence, the result holds ∀n. □

Example 1. . Let B1 � (0.41, − 0.39), B2 � (0.66, − 0.21),
B3 � (0.59, − 0.46), and B4 � (0.72, − 0.56) be four BFNs
and φ � (0.23, 0.31, 0.27, 0.19) be the corresponding weight
vector, then

􏽙

4

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

� 1 − sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

φ1
× 1 − sin

π
2
ℵ+

B2
􏼒 􏼓􏼒 􏼓

φ2
× 1 − sin

π
2
ℵ+

B3
􏼒 􏼓􏼒 􏼓

φ3
× 1 − sin

π
2
ℵ+

B4
􏼒 􏼓􏼒 􏼓

φ4

� 1 − sin
π
2

(0.41)􏼒 􏼓􏼒 􏼓
0.23

× 1 − sin
π
2

(0.66)􏼒 􏼓􏼒 􏼓
0.31

× 1 − sin
π
2

(0.59)􏼒 􏼓􏼒 􏼓
0.27

× 1 − sin
π
2

(0.72)􏼒 􏼓􏼒 􏼓
0.19

� 0.1821,

􏽙

4

i�1
− sin

π
2

1 +ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

� − sin
π
2

1 +ℵ−
B1

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ1

× − sin
π
2

1 +ℵ−
B2

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ2

× − sin
π
2

1 +ℵ−
B3

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ3

× − sin
π
2

1 +ℵ−
B4

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φ4

� − sin
π
2

(1 − 0.39)􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
0.23

× − sin
π
2

(1 − 0.21)􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
0.31

× − sin
π
2

(1 − 0.46)􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
0.27

× − sin
π
2

(1 − 0.56)􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
0.19

� 0.1550.

(18)

Now,

ST − BFWA B1,B2,B3,B4( 􏼁 � 􏼪1 − 􏽙
4

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

,

− 􏽙
4

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫

� 〈1 − 0.1821, − 0.1550〉

� 〈0.8179, − 0.1550〉.

(19)

Theorem 5. . Let Bi � 〈ℵ+
Bi

,ℵ−
Bi

〉, i � 1, 2, . . . , n, be a
compendium of BFNs and φ � (φ1,φ2, . . . ,φn) be the weight
vector with φi > 0 and 􏽐

n
i�1 φi � 1, then ST-BFWA operator

holds the properties listed as follows:

(i )Idempotency. If all BFNs are equal, i.e.,
Bi � B � 〈ℵ+

B,ℵ−
B〉, then

ST − BFWA B1,B2, . . . ,Bn( 􏼁 � sinB. (20)

(ii) Monotonicity. Let B∗i � 〈ℵ+
B∗i

,ℵ−
B∗i

〉, i � 1, 2, . . . , n,
be another collection of BFNs such that Bi ≺B

∗
i ,

∀i � 1, 2, . . . , n, then

ST − BFWA B1,B2, . . . ,Bn( 􏼁

≺ ST − BFWA B
∗
1 ,B
∗
2 , . . . ,B

∗
n( 􏼁.

(21)

(iii) Boundedness. LetB � 〈min
i

(ℵ+
Bi

),max
i

(ℵ−
Bi

)〉 and
B � 〈max

i
(ℵ+

Bi
),min

i
(ℵ−

Bi
)〉, then

sinB ≺ ST − BFWA B1,B2, . . . ,Bn( 􏼁≺ sinB. (22)
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Proof
(i) Let Bi � B∀i � 1, 2, . . . , n. (en, by using (13), we

have

ST − BFWA B1,B2, . . . ,Bn( 􏼁 � 􏼪1 − 􏽙
n

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

− 􏽙
n

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫

� 􏼪1 − 1 − sin
π
2
ℵ+

B􏼒 􏼓􏼒 􏼓
􏽐

n

i�1φi

− − sin
π
2

1 +ℵ−
B( 􏼁􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓

􏽐
n

i�1φi

􏼫

� 􏼪1 − 1 − sin
π
2
ℵ+

B􏼒 􏼓􏼒 􏼓 − − sin
π
2

1 + ℵ−
B( 􏼁􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓􏼫

� 􏼪sin
π
2
ℵ+

B􏼒 􏼓, sin
π
2

1 + ℵ−
B( 􏼁􏼒 􏼓 − 1􏼫

� sinB.

(23)

(ii) Since Bi ≺B
∗
i , this implies that ℵ+

Bi
≤ℵ+

B∗i
and

ℵ−
Bi
≥ℵ−

B∗i
, ∀i � 1, 2, . . . , n. Suppose that

ST − BFWA(B1,B2, . . . ,Bn) � 〈 􏽥ℵ+
, 􏽥ℵ−

〉 and

ST − BFWA(B∗1 ,B∗2 , . . . ,B∗n ) � 〈 􏽥ℵ∗
+

, 􏽥ℵ∗
−

〉. Due
to the monotonicity of sine function, we get

sin
π
2
ℵ+

Bi
􏼒 􏼓≤ sin

π
2
ℵ+

B∗i
􏼒 􏼓,

⟹1 − sin
π
2
ℵ+

Bi
􏼒 􏼓≥ 1 − sin

π
2
ℵ+

B∗i
􏼒 􏼓,

⟹ 1 − sin
π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

≥ 1 − sin
π
2
ℵ+

B∗i
􏼒 􏼓􏼒 􏼓

φi

,

⟹􏽙
n

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

≥􏽙
n

i�1
1 − sin

π
2
ℵ+

B∗i
􏼒 􏼓􏼒 􏼓

φi

,

⟹􏽥ℵ+
� 1 − 􏽙

n

i�1
1 − sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

≤ 1 − 􏽙
n

i�1
1 − sin

π
2
ℵ+

B∗i
􏼒 􏼓􏼒 􏼓

φi

� 􏽥ℵ∗
+

.

(24)

Similarly,

sin
π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓≥ sin
π
2

1 +ℵ−
B∗i

􏼒 􏼓􏼒 􏼓,

⟹ sin
π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1≥ sin
π
2

1 + ℵ−
B∗i

􏼒 􏼓􏼒 􏼓 − 1,

⟹ − sin
π
2

1 +ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

≤ − sin
π
2

1 + ℵ−
B∗i

􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

,

⟹􏽥ℵ−
� − 􏽙

n

i�1
− sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

≥ − 􏽙

n

i�1
− sin

π
2

1 + ℵ−
B∗i

􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

� 􏽥ℵ∗
−

.

(25)
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Since 􏽥ℵ+ ≤ 􏽥ℵ∗
+

and 􏽥ℵ− ≥ 􏽥ℵ∗
−

, we have

ST − BFWA B1,B2, . . . ,Bn( 􏼁⪯ ST − BFWA B
∗
1 ,B
∗
2 , . . . ,B

∗
n( 􏼁.

(26)

(iii) It is similar to the preceding proof, so we exclude
it. □

4.2. ST-BFOWA Operator

Definition 10. Let Bi, i � 1, 2, . . . , n, be a compendium of
BFNs, then ST-BFOWA operator is explicated as

ST − BFOWA B1,B2, . . . ,Bn( 􏼁

� φ1 sin Bη(1) ⊕φ2 sin Bη(2) ⊕ · · · ⊕φn sin Bη(n),
(27)

where (η(1), η(2), . . . , η(n)) is an arrangement of
(1, 2, . . . , n) with the constraint that
Bη(i− 1) ≥Bη(i) ∀i � 2, 3, . . . , n. It is noteworthy that the
weights φi with φi > 0 and 􏽐

n
i�1 φi � 1 are associated with the

ordered positions of BFNs Bi.

Theorem 6. ?e cumulative value of n BFNs
Bi � 〈ℵ+

Bi
,ℵ−

Bi
〉 acquired by utilizing ST-BFOWA operator

is still a BFN and is given by

ST − BFOWA B1,B2, . . . ,Bn( 􏼁

� 􏼪1 − 􏽙
n

i�1
1 − sin

π
2
ℵ+

Bη(i)
􏼒 􏼓􏼒 􏼓

φi

,

− 􏽙

n

i�1
− sin

π
2

1 + ℵ−
Bη(i)

􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
φi

􏼫.

(28)

Proof. Straightforward. □

Theorem 7. Let Bi � 〈ℵ+
Bi

,ℵ−
Bi

〉, i � 1, 2, . . . , n, be a
compendium of BFNs and φ � (φ1,φ2, . . . ,φn) be the weight
vector with φi > 0 and 􏽐

n
i�1 φi � 1, then ST-BFOWA operator

satisfies the following properties:

(i) Idempotency. If Bi � B � 〈ℵ+
B,ℵ−

B〉,
∀i � 1, 2, . . . , n, then

ST − BFOWA B1,B2, . . . ,Bn( 􏼁 � sinB. (29)

(ii) Monotonicity. Let B∗i � 〈ℵ+
B∗i

,ℵ−
B∗i

〉, i � 1, 2, . . . , n,
be another collection of BFNs such that Bi ≺B

∗
i ,

∀i � 1, 2, . . . , n, then

ST − BFOWA B1,B2, . . . ,Bn( 􏼁⪯ ST − BFOWA B
∗
1 ,B
∗
2 , . . . ,B

∗
n( 􏼁.

(30)

(iii) Boundedness. If fi � 〈min
i

(ℵ+
Bi

),max
i

(ℵ−
Bi

)〉 and
B � 〈max

i
(ℵ+

Bi
),min

i
(ℵ−

Bi
)〉, then

sin B ≺ ST − BFOWA B1,B2, . . . ,Bn( 􏼁⪯ sinB. (31)

Proof. It is obvious. □

4.3. ST-BFHWA Operator

Definition 11. Let Bi, i � 1, 2, . . . , n, be a compendium of
BFNs and φ � (φ1,φ2, . . . ,φn) be the weight vector of Bi

with φi > 0 and 􏽐
n
i�1 φi � 1. A ST-BFHWA operator with

associated weight vector c � (c1, c2, . . . , cn) with ci > 0 and
􏽐

n
i�1 ci � 1 can be described as

ST − BFHWA B1,B2, . . . ,Bn( 􏼁

� c1 sin _Bη(1) ⊕ c2 sin _Bη(2) ⊕ · · · ⊕ cn sin _Bη(n),
(32)

where _Bi � nφiBi and (η(1), η(2), . . . , η(n)) is an ar-
rangement of (1, 2, . . . , n) with the stipulation that
_Bη(i− 1) ≥ _Bη(i) ∀i � 2, 3, . . . , n.

Theorem 8. ?e cumulative value of n BFNs
Bi � 〈ℵ+

Bi
,ℵ−

Bi
〉 acquired by utilizing ST-BFHWA operator

is still a BFN and is given by

ST − BFHWA B1,B2, . . . ,Bn( 􏼁

� 􏼪1 − 􏽙
n

i�1
1 − sin

π
2
ℵ+

_Bη(i)
􏼒 􏼓􏼒 􏼓

ci

,

− 􏽙
n

i�1
− sin

π
2

1 + ℵ−
_Bη(i)

􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓
ci

􏼫.

(33)

Proof. Straightforward. □

5. Bipolar Fuzzy Sine Trigonometric Geometric
Aggregation Operators

In this section, we propose geometric aggregation operators
including (i) ST-BFWG operator, (ii) ST-BFOWG operator,
and (iii) ST-BFHWG operator.

5.1. ST-BFWG Operator

Definition 12. For n BFNs Bi, a ST-BFWG operator is
explicated as

ST − BFWG B1,B2, . . . ,Bn( 􏼁 � sin B1( 􏼁
φ1

⊗ sin B2( 􏼁
φ2 ⊗ · · · ⊗ sin Bn( 􏼁

φn .
(34)

Theorem 9. Let Bi � 〈ℵ+
Bi

,ℵ−
Bi

〉 be n BFNs, then their
cumulative value obtained by utilizing ST-BFWG operator is
expressed as
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ST − BFWG B1,B2, . . . ,Bn( 􏼁

� 􏼪 􏽙

n

i�1
sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

,

− 1 − 􏽙
n

i�1
sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φi

⎛⎝ ⎞⎠􏼫.

(35)

Proof. It is obvious. □

Example 2. Let B1 � (0.41, − 0.39), B2 � (0.66, − 0.21),
B3 � (0.59, − 0.46), and B4 � (0.72, − 0.56) be four BFNs
and φ � (0.23, 0.31, 0.27, 0.19) be the corresponding weight
vector, then

􏽙

4

i�1
sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

� sin
π
2
ℵ+

B1
􏼒 􏼓􏼒 􏼓

φ1
× sin

π
2
ℵ+

B2
􏼒 􏼓􏼒 􏼓

φ2
× sin

π
2
ℵ+

B3
􏼒 􏼓􏼒 􏼓

φ3
× sin

π
2
ℵ+

B4
􏼒 􏼓􏼒 􏼓

φ4

� sin
π
2

(0.41)􏼒 􏼓􏼒 􏼓
0.23

× sin
π
2

(0.66)􏼒 􏼓􏼒 􏼓
0.31

× sin
π
2

(0.59)􏼒 􏼓􏼒 􏼓
0.27

× sin
π
2

(0.72)􏼒 􏼓􏼒 􏼓
0.19

� 0.7841

􏽙

4

i�1
sin

π
2

1 +ℵ−
Bi

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φi

� sin
π
2

1 + ℵ−
B1

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φ1

× sin
π
2

1 + ℵ−
B2

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φ2

× sin
π
2

1 +ℵ−
B3

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φ3

× sin
π
2

1 +ℵ−
B4

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φ4

� sin
π
2

(1 − 0.39)􏼒 􏼓􏼒 􏼓
0.23

× sin
π
2

(1 − 0.21)􏼒 􏼓􏼒 􏼓
0.31

􏼠

× sin
π
2

(1 − 0.46)􏼒 􏼓􏼒 􏼓
0.27

× sin
π
2

(1 − 0.56)􏼒 􏼓􏼒 􏼓
0.19

􏼠 � 0.7973.

(36)

Now,

ST − BFWG B1,B2,B3,B4( 􏼁 � 􏼪 􏽙

4

i�1
sin

π
2
ℵ+

Bi
􏼒 􏼓􏼒 􏼓

φi

, − 1 − 􏽙
4

i�1
sin

π
2

1 + ℵ−
Bi

􏼐 􏼑􏼒 􏼓􏼒 􏼓
φi

⎛⎝ ⎞⎠〉

� 〈0.7841, − (1 − 0.7973)〉

� 〈0.7841, − 0.2027􏼫.

(37)

(e properties mentioned in (eorem 5, namely,
idempotency, monotonicity, and boundedness, also apply to
the ST-BFWG operator.

5.2. ST-BFOWG Operator

Definition 13. A ST-BFOWG operator is defined as
ST − BFOWG B1,B2, . . . ,Bn( 􏼁

� sin Bη(1)􏼐 􏼑
φ1 ⊗ sin Bη(2)􏼐 􏼑

φ2 ⊗ · · · ⊗ sin Bη(n)􏼐 􏼑
φn

,

(38)

where (η(1), η(2), . . . , η(n)) is an arrangement of
(1, 2, . . . , n) such that Bη(i− 1) ≥Bη(i) ∀i � 2, 3, . . . , n.

Theorem 10. ?e cumulative value of n BFNs
Bi � 〈ℵ+

Bi
,ℵ−

Bi
〉 acquired by utilizing ST-BFOWG operator

is expressed as

ST − BFOWG B1,B2, . . . ,Bn( 􏼁

� 􏼪 􏽙

n

i�1
sin

π
2
ℵ+

Bη(i)
􏼒 􏼓􏼒 􏼓

φi

,

− 1 − 􏽙
n

i�1
sin

π
2

1 + ℵ−
Bη(i)

􏼒 􏼓􏼒 􏼓􏼒 􏼓
φi

⎛⎝ ⎞⎠􏼫.

(39)

Proof. It is obvious.
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Idempotency, monotonicity, and boundedness are all
satisfied by the ST-BFOWG operator. □

5.3. ST-BFHWG Operator

Definition 14. A ST-BFHWG operator with associated
weight vector c � (c1, c2, . . . , cn) with ci > 0 and 􏽐

n
i�1 ci � 1

can be described as

ST − BFHWG B1,B2, . . . ,Bn( 􏼁

� sin _Bη(1)􏼐 􏼑
c1 ⊗ sin _Bη(2)􏼐 􏼑

c2 ⊗ · · · ⊗ sin _Bη(n)􏼐 􏼑
cn

.

(40)

where _Bi � (Bi)
nφi and (η(1), η(2), . . . , η(n)) is an ar-

rangement of (1, 2, . . . , n) such that
_Bη(i− 1) ≥ _Bη(i) ∀i � 2, 3, . . . , n.

Theorem 11. ?e cumulative value of n BFNs
Bi � 〈ℵ+

Bi
,ℵ−

Bi
〉 obtained by utilizing ST-BFHWG operator

is expressed as

ST − BFHWG B1,B2, . . . ,Bn( 􏼁

� 􏼪 􏽙

n

i�1
sin

π
2
ℵ+

_Bη(i)
􏼒 􏼓􏼒 􏼓

ci

,

− 1 − 􏽙
n

i�1
sin

π
2

1 + ℵ−
_Bη(i)

􏼒 􏼓􏼒 􏼓􏼒 􏼓
ci

⎛⎝ ⎞⎠􏼫.

(41)

Proof. Straightforward. □

6. Bipolar Fuzzy SIR Method

An MCGDM problem is made up of a finite number of
alternatives, a set of criteria, and a set of decision makers. To

solve an MCGDM problem, the most apposite alternative
must be chosen among those available. Let
A � 􏽢a1, 􏽢a2, . . . , 􏽢am􏼈 􏼉 be a set of alternatives and
C � 􏽢c1, 􏽢c2, . . . , 􏽢cn􏼈 􏼉 be a set of criteria. Suppose that the set of
decisionmakers isE � 􏽢e1, 􏽢e2, . . . , 􏽢el􏼈 􏼉 and their weight vector
is ϑ � ϑ1, ϑ2, . . . , ϑl􏼈 􏼉 where all the weights are BFNs.
Construct the individual decision matrices Hk � (hk

ij)m×n in
which hk

ij denotes the evaluation information of the alter-
native 􏽢ai w.r.t the criterion 􏽢cj provided by the decisionmaker
􏽢ek in the form of BFNs. Assume that φ � (φk

j)l×n is the
criterion weight matrix in which φk

j is the weight of criterion
􏽢cj assigned by the decision maker 􏽢ek in the form of BFNs. In
this section, we set up the BF-SIR technique to address this
MCGDM problem. (e steps in this technique are outlined
as follows:

Step 1. Compute the relative propinquity coefficient of
each ϑk, k � 1, 2, . . . , l, by the equation

δk �
d ϑk, ϑ( 􏼁

d ϑk, ϑ( 􏼁 + d ϑk, ϑ􏼐 􏼑
. (42)

where ϑ � 〈min
k

(ℵ+
ϑk

),max
k

(ℵ−
ϑk

)〉 and
ϑ � 〈max

k
(ℵ+

ϑk
),min

k
(ℵ−

ϑk
)〉. It is evident that if

ϑk⟶ ϑ, then δk⟶ 0, and if ϑk⟶ ϑ, then
δk⟶ 1.
Step 2. Normalize δk, k � 1, 2, . . . , l, by the equation

ζk �
δk

􏽐
l
k�1 δk

. (43)

In this way, we get a normalized vector
ζ � ζ1, ζ2, . . . , ζ l􏼈 􏼉 of relative propinquity coefficients.
Step 3. Acquire the accumulated bipolar fuzzy decision
matrix and the criterion weight vector by utilizing ST-
BFWA operator as follows:

􏽥hij � ST − BFWAζk
h
1
ij, h

2
ij, . . . , h

l
ij􏼐 􏼑

� 􏼪1 − 􏽙
l

k�1
1 − sin

π
2
ℵ+

hk
ij

􏼒 􏼓􏼒 􏼓
ζk

, − 􏽙
l

k�1
− sin

π
2

1 +ℵ−
hk

ij
􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓

ζk

􏼫.

(44)

􏽥φj � ST − BFWAζk
φ1

j ,φ2
j , . . . ,φl

j􏼐 􏼑

� 􏼪1 − 􏽙
l

k�1
1 − sin

π
2
ℵ+

φk
j

􏼒 􏼓􏼒 􏼓
ζk

, − 􏽙
l

k�1
− sin

π
2

1 +ℵ−
φk

j
􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓

ζk

􏼫.
(45)

Step 4. Obtain the relative efficiency function fij as
follows:

fij �
d 􏽥hij,

􏽥h􏼐 􏼑

d 􏽥hij,
􏽥h􏼐 􏼑 + d 􏽥hij,

􏽥h􏼒 􏼓

, (46)

where 􏽥h � 〈min
i

(ℵ+

􏽥hij

),max
i

(ℵ−

􏽥hij

)〉 and
􏽥h � 〈max

i
(ℵ+

􏽥hij

), min
i

(ℵ−

􏽥hij

)〉. It follows that if

􏽥hij⟶ 􏽥h , then fij⟶ 0, and if 􏽥hij⟶ 􏽥h, then
fij⟶ 1.
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Step 5. Compute the preference intensity PIj(􏽢ai, 􏽢at)

(i, t � 1, 2, . . . , m, i≠ t) which provides the degree of
preference of alternative 􏽢ai over alternative 􏽢at w.r.t the
criterion 􏽢cj and it can be defined as follows:

PIj 􏽢ai, 􏽢at( 􏼁 � λj fij − ftj􏼐 􏼑, (47)

where λj is a threshold function given by

λj(x) �
0.01, x> 0,

0, x≤ 0.
􏼨 (48)

Step 6. Construct the superiority matrix S � (Sij)m×n

and inferiority matrix I � (Iij)m×n by utilizing the
following equations:

(S − index) Sij � 􏽘

m

t�1
PIj 􏽢ai, 􏽢at( 􏼁

� 􏽘
m

t�1
λj fij − ftj􏼐 􏼑,

(49)

(I − index) Iij � 􏽘
m

t�1
PIj 􏽢at, 􏽢ai( 􏼁

� 􏽘
m

t�1
λj ftj − fij􏼐 􏼑.

(50)

Step 7. Calculate the superiority flow (S-flow) and
inferiority flow (I-flow) as follows:

λ> 􏽢ai( 􏼁 � ST − BFWASij
􏽥φ1, 􏽥φ2, . . . , 􏽥φn( 􏼁

�〈1 − 􏽙
n

j�1
1 − sin

π
2
ℵ+

􏽥φj
􏼒 􏼓􏼒 􏼓

Sij

,

− 􏽙
n

j�1
− sin

π
2

1 + ℵ−

􏽥φj
􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓

Sij

〉.

(51)

λ< 􏽢ai( 􏼁 � ST − BFWAIij
􏽥φ1, 􏽥φ2, . . . , 􏽥φn( 􏼁

� 􏼪1 − 􏽙
n

j�1
1 − sin

π
2
ℵ+

􏽥φj
􏼒 􏼓􏼒 􏼓

Iij

,

− 􏽙

n

j�1
− sin

π
2

1 + ℵ−

􏽥φj
􏼒 􏼓􏼒 􏼓 − 1􏼒 􏼓􏼒 􏼓

Iij

〉.

(52)

Step 8. Compute the score functions of λ>(􏽢ai) and
λ<(􏽢ai), i � 1, 2, . . . , m, by using (2).
Step 9. Apply the superiority ranking laws (SR-laws)
and inferiority ranking laws (IR-laws) as follows:

SR-Law 1. If λ>(􏽢ai)≻ λ
>(􏽢at) and λ<(􏽢ai)≺λ

<(􏽢at), then
􏽢ai ≻ 􏽢at

SR-Law 2. If λ>(􏽢ai)≻ λ
>(􏽢at) and λ

<(􏽢ai) � λ<(􏽢at), then
􏽢ai ≻ 􏽢at

SR-Law 3. If λ>(􏽢ai) � λ>(􏽢at) and λ<(􏽢ai)≺λ
<(􏽢at), then

􏽢ai ≻ 􏽢at

IR-Law 1. If λ>(􏽢ai)≺λ
>(􏽢at) and λ<(􏽢ai)≻ λ

<(􏽢at), then
􏽢ai≺􏽢at

IR-Law 2. If λ>(􏽢ai)≺λ
>(􏽢at) and λ<(􏽢ai) � λ<(􏽢at), then

􏽢ai≺􏽢at

IR-Law 3. If λ>(􏽢ai) � λ>(􏽢at) and λ
<(􏽢ai)≻ λ

<(􏽢at), then
􏽢ai≺􏽢at

Step 10. Integrate the SR-laws with the IR-laws to
determine the optimal alternative.

6.1. Case Study. (e process of seeking medical treatment
supply chain from a foreign country is known as medical
tourism. In the past, patients from underdeveloped parts of the
world used to travel to Europe andAmerica for diagnostics and
treatment. However, in recent years, this trend has flipped as
medical tourism, in which individuals from developed coun-
tries travel to developing countries for medical treatment.
(ere are a variety of reasons why people from developed
countries prefer less developed countries. (e low cost of
treatment is the main factor. Healthcare prices are dependent
on a country’s per capita gross domestic product (GDP), which
serves as a procurator for income levels. (e low cost of off-
shore medical care is indebted to low medicolegal and ad-
ministrative costs. Second, people seek medical guidance from
outside the country for the procedures for which health in-
surance is not provided, such as cosmetic surgery, fertility
therapy, dental reconstruction, gender reassignment surgeries,
and so on. Patients in countries where access to healthcare is
regulated by the government, such as Canada and the United
Kingdom, desire to avoid the delays that come with extensive
waiting lists. Another factor could be the lack of availability of a
certain operation in their home country, such as stem cell
therapy, which may be inaccessible or limited in developed
countries but widely available in emerging markets. Some
patients believe that their privacy will be better protected in a
remote location. Another motive for offshore treatment is the
recreational aspect. As a result of these factors, medical tourism
is expanding globally. Medical tourism was worth 54.4 billion
US dollars in 2020, and by 2027, it was expected to be worth
more than 200 billion US dollars (https://www.statista.com/
statistics/1084720/medical-tourism-market-size-worldwide/).
Figure 1 depicts the gradual expansion of the medical tourism
industry from 2016 to 2020, with projections for 2027.

(e medical tourism market in Asia-Pacific has a lot of
room for expansion. Due to economic development, this
region is expected to see rapid market expansion. Singapore,
Japan, India, (ailand, and the Philippines are among the
most popular medical tourism destinations. Singapore and
India are well-known for their cardiac and orthopaedic
surgery. (ailand is well-known for its dental procedures
and gender reassignment surgeries. Japan has one of the best
oncology treatment facilities in the world. (e Philippines is
famous for its cosmetic surgery, dentistry, and fertility
treatment. (e Medical Tourism Index (MTI) evaluates a
country’s suitability as a medical tourism destination by
taking into account its overall environment, healthcare costs,
tourist attractions, and the standard of medical amenities
and services. (e higher the MTI, the better the destination.
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Figure 2 depicts the medical tourism index for the afore-
mentioned Asian countries (https://www.medicaltourism.
com/mti/2020-2021/region/asia).

Medical tourism is seen as an unexplored sector in
Pakistan that might be transformed into a lucrative potential
if the government addresses some critical issues such as
security, brain drain, and service quality. According to
Pakistani medical professionals, Pakistan has “huge po-
tential” to become a competitive medical tourism hub in
Asia. In what follows, we will use the BF-SIR method to
determine the best medical tourism destination in Pakistan.

6.2. Numerical Illustration. Suppose that ministry of health
of a Pakistan needs to assess some true potential of medical
tourism supply chain. For this purpose, the ministry hires
three decision makers 􏽢e1, 􏽢e2, and 􏽢e3 and assigns them weights
which are given in Table 1. Let A � 􏽢a1, 􏽢a2, 􏽢a3, 􏽢a4􏼈 􏼉 be the set
of alternatives where 􏽢a1 � Islamabad, 􏽢a2 �Karachi,
􏽢a3 � Lahore, and 􏽢a4 �Peshawar. Table 2 lists the criteria for
determining the best alternative. (e weights of criteria 􏽢cj

given by the decision makers 􏽢ek are given in Table 3. (e
decision makers evaluate each alternative 􏽢ai w.r.t each cri-
terion 􏽢cj and give their assessment via BFNs. (ree decision
matrices are given in Tables 4–6.

Step 1. (e relative propinquity coefficients δk

(k � 1, 2, 3) are computed using (42) as follows:

δ � 0.12, 0.72, 0.52{ }. (53)

Step 2. (e normalized vector is obtained using (43)as
follows:

ζ � 0.0882, 0.5294, 0.3824{ }. (54)

Step 3. (e accumulated bipolar fuzzy decision matrix
is acquired using (44), which is given in Table 7.
Equation (45) is used to determine accumulated
weights of criteria, which are as follows:

􏽥φ1 � 〈0.9357, − 0.1744〉,

􏽥φ2 � 〈0.9423, − 0.0799〉,

􏽥φ3 � 〈0.9183, − 0.0632〉.

(55)

Step 4. (e relative efficiency function is calculated
using (46)as follows:

fij �

0.3427 0.2234 0.4693

0.4320 0.4241 0.5963

1 0.8834 0.4820

0.7463 0.2807 0.0246

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (56)

Step 5, 6. (e superiority and inferiority matrices are
constructed using (49) and (50) as follows:

S �

0 0 0.01

0.01 0.02 0.03

0.03 0.03 0.02

0.02 0.01 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

I �

0.03 0.03 0.02

0.02 0.01 0

0 0 0.01

0.01 0.02 0.03

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(57)

Step 7, 8.(e S-flow and I-flow are computed using (51)
and (52), which are given in Table 8.
Step 9. Applying SR-laws to Table 8 yields the following
ranking order:

􏽢a3 ≻ 􏽢a2 ≻ 􏽢a4 ≻ 􏽢a1. (58)

Applying IR-laws to Table 8 yields the following
ranking order:

􏽢a3 ≻ 􏽢a2 ≻ 􏽢a4 ≻ 􏽢a1. (59)

Step 10.According to both SR and IR-laws, 􏽢a3 is the best
alternative.
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Table 1: Bipolar fuzzy weights of decision makers.

Decision makers Weights
􏽢e1 ϑ1 � 〈0.79, − 0.28〉

􏽢e2 ϑ2 � 〈0.85, − 0.37〉

􏽢e3 ϑ3 � 〈0.92, − 0.25〉
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Table 2: Criteria for the selection of the best medical tourism destination.

Criteria Description
(i) Service quality (􏽢c1) (is includes modern equipment, qualified staff, and variety of medical treatments.
(ii) Security (􏽢c2) (is includes life and fiscal security of the tourists.
(iii) Infrastructure facilities (􏽢c3) (is includes transportation and maintenance of hospitals and equipment.

Table 3: Bipolar fuzzy weights of criteria.

􏽢c1 􏽢c2 􏽢c3

􏽢e1 〈0.73, − 0.26〉 〈0.65, − 0.36〉 〈0.81, − 0.29〉

􏽢e2 〈0.82, − 0.38〉 〈0.76, − 0.19〉 〈0.78, − 0.27〉

􏽢e3 〈0.69, − 0.42〉 〈0.83, − 0.36〉 〈0.65, − 0.17〉

Table 4: BF decision matrix H1.

􏽢c1 􏽢c2 􏽢c3

􏽢a1 〈0.82, − 0.21〉 〈0.92, − 0.23〉 〈0.78, − 0.26〉

􏽢a2 〈0.76, − 0.19〉 〈0.52, − 0.41〉 〈0.66, − 0.24〉

􏽢a3 〈0.86, − 0.17〉 〈0.87, − 0.18〉 〈0.79, − 0.34〉

􏽢a4 〈0.67, − 0.31〉 〈0.42, − 0.38〉 〈0.76, − 0.12〉

Table 5: BF decision matrix H2.

􏽢c1 􏽢c2 􏽢c3

􏽢a1 〈0.69, − 0.33〉 〈0.82, − 0.19〉 〈0.89, − 0.17〉

􏽢a2 〈0.82, − 0.21〉 〈0.66, − 0.29〉 〈0.77, − 0.32〉

􏽢a3 〈0.91, − 0.36〉 〈0.79, − 0.26〉 〈0.87, − 0.29〉

􏽢a4 〈0.79, − 0.29〉 〈0.56, − 0.21〉 〈0.82, − 0.26〉

Table 6: BF decision matrix H3.

􏽢c1 􏽢c2 􏽢c3

􏽢a1 〈0.76, − 0.22〉 〈0.88, − 0.13〉 〈0.96, − 0.41〉

􏽢a2 〈0.89, − 0.16〉 〈0.62, − 0.24〉 〈0.69, − 0.56〉

􏽢a3 〈0.73, − 0.29〉 〈0.92, − 0.26〉 〈0.71, − 0.31〉

􏽢a4 〈0.81, − 0.32〉 〈0.63, − 0.46〉 〈0.56, − 0.21〉

Table 7: Accumulated BF decision matrix.

􏽢c1 􏽢c2 􏽢c3

􏽢a1 〈0.9128, − 0.0895〉 〈0.9747, − 0.0342〉 〈0.9922, − 0.0740〉

􏽢a2 〈0.9713, − 0.0431〉 〈0.8396, − 0.0938〉 〈0.9135, − 0.1775〉

􏽢a3 〈0.9751, − 0.1162〉 〈0.9762, − 0.0771〉 〈0.9585, − 0.1102〉

􏽢a4 〈0.9459, − 0.1111〉 〈0.7886, − 0.1074〉 〈0.9183, − 0.0611〉

Table 8: (e BF-SIR flows.

Alternatives λ>(􏽢ai) Scr(λ>(􏽢ai)) λ<(􏽢ai) Scr(λ<(􏽢ai))

􏽢a1 〈0.0469, − 0.9482〉 0.0494 〈0.3425, − 0.7045〉 0.319
􏽢a2 〈0.2641, − 0.7488〉 0.2576 〈0.1483, − 0.8920〉 0.1282
􏽢a3 〈0.3425, − 0.7045〉 0.319 〈0.0469, − 0.9482〉 0.0494
􏽢a4 〈0.1483, − 0.8920〉 0.1282 〈0.2641, − 0.7488〉 0.2576
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6.3. Comparative and Sensitivity Analysis. In this section, we
compare our suggested BF-SIR technique to some existing
approaches in order to evaluate its validity. Table 9 sum-
marizes the comparative study of various techniques. It can
be seen from Table 9 that our suggested approach is com-
patible with the existing techniques.

7. Conclusion

In daily life, we encounter many situations where we must
deal with uncertainty as well as bipolarity when making a
decision. Taking this into consideration, the bipolar fuzzy set
(BFS) is a sophisticated model that can handle bipolarity and
fuzziness at the same time. (e main contributions of this
manuscript are listed as follows:

(1) Since the sine trigonometric function is periodic and
symmetric about the origin, it can accommodate the
decision expert’s choices during object appraisal.
(erefore, we proposed sine trigonometric opera-
tional laws (STOLs) for BFSs. We explored some of
their properties as well.

(2) Based on BF-STOLs, we suggested the following
averaging AOs: bipolar fuzzy sine trigonometric
weighted averaging (BF-STWA) operator; bipolar
fuzzy sine trigonometric ordered weighted averaging
(BF-STOWA) operator; and bipolar fuzzy sine
trigonometric hybrid weighted averaging (BF-
STHWA) operator.

(3) Based on BF-STOLs, we suggested the following
geometric AOs: bipolar fuzzy sine trigonometric
weighted geometric (BF-STWG) operator; bipolar
fuzzy sine trigonometric ordered weighted geometric
(BF-STOWG) operator; and bipolar fuzzy sine
trigonometric hybrid weighted geometric (BF-
STHWG) operator.

(4) We investigated some important characteristics of
these operators, such as idempotency, monotonicity,
and boundedness.

(5) We established an extended superiority and inferi-
ority ranking (SIR) method to handle MCGDM
problems in a bipolar fuzzy environment. We ap-
plied this technique to the selection of the best
medical tourism supply chain.

(6) We compared our suggested model with some
existing ones to exhibit its validity and efficiency.

In the future, we will develop bipolar fuzzy sine trigo-
nometric power aggregation operators, bipolar fuzzy sine
trigonometric Hamy mean operators, bipolar fuzzy sine
trigonometric Bonferroni mean operators, bipolar fuzzy sine
trigonometric prioritized operators, and bipolar fuzzy sine
trigonometric Dombi operators.
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