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Abstract Current state-of-the-art diagnostic measures of Alzheimer’s disease (AD) are invasive (cerebro-

spinal fluid analysis), expensive (neuroimaging) and time-consuming (neuropsychological assess-

ment) and thus have limited accessibility as frontline screening and diagnostic tools for AD. Thus,

there is an increasing need for additional noninvasive and/or cost-effective tools, allowing identifica-

tion of subjects in the preclinical or early clinical stages of AD who could be suitable for further

cognitive evaluation and dementia diagnostics. Implementation of such tests may facilitate early

and potentially more effective therapeutic and preventative strategies for AD. Before applying

them in clinical practice, these tools should be examined in ongoing large clinical trials. This review

will summarize and highlight the most promising screening tools including neuropsychometric, clin-

ical, blood, and neurophysiological tests.
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1. Introduction

Alzheimer’s disease (AD) is the leading cause of demen-

tia in the elderly, affecting more than 35 million people

worldwide [1]. Aging populations in developed countries

ensure that AD will reach epidemic proportions unless ther-

apies are developed to cure or prevent it [2]. Unfortunately,

to date nearly all “disease-modifying” experimental inter-

ventions for AD have failed to demonstrate clinical benefits

in individuals with symptomatic AD. The most likely expla-

nation for these failures is that the drugs were administered

too late in the course of the AD neuropathological processes

[3]. It is plausible to assume that these therapies will be

more effective when applied before major brain damage
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has occurred which makes the identification of biomarkers

sensitive to preclinical or early clinical stages of AD crucial

[4]. Whether an earlier treatment start in the preclinical

stage of AD is associated with a better outcome is still un-

known and is actually examined in ongoing treatment trials

[3]. These trials include the Dominantly Inherited Alz-

heimer Network Trial (DIAN-TU; ClinicalTrials.gov num-

ber, NCT01760005), Alzheimer’s Prevention Initiative

(NCT01998841), and the Anti-Amyloid Treatment in

Asymptomatic Alzheimer’s Disease study (A4 Study;

NCT02008357). Early-stage identification may also help

to develop new treatments that are more effective at this

stage as it can facilitate monitoring of the response to the

intervention. In addition, a positive early diagnosis gives

the patients and their family the necessary time to under-

stand the disease, to decide on the life and financial burdens

of the disease, and to arrange for the future needs and care of

the patients.

The current state-of-the-art clinical diagnosis of AD re-

quires a specialty clinic and includes a medical examination,

neuropsychological testing, neuroimaging, cerebrospinal

fluid (CSF) analysis and blood examination. This process

is neither time nor cost-effective. Additionally, given the

rapidly aging global population with an expected dramatic

increase of AD cases, there are insufficient numbers of spe-

cialty clinics to meet the growing needs.While CSF and neu-

roimaging markers are gold standards for the in vivo

assessment of the patients, they are invasive and expensive

and, therefore, have limited utility as frontline screening

and diagnostic tools. In addition, prior work has shown

that nonspecialist clinicians are inaccurate at identifying

early AD and mild cognitive impairment (MCI) [5], which

is a major impetus to the search for clinically-useful

screening and diagnostic tools.

Thus, there is an increasing need for additional noninva-

sive and/or cost-effective tools, allowing frontline identifica-

tion of subjects in the preclinical or early clinical stages of

AD. Further examination of patients with conspicuous

noninvasive cognitive and noncognitive measures could be

performed in a next step by established clinical, CSF and/

or neuroimaging analyses in a specialty clinic. The identifi-

cation of methods to predict the risk for developing AD

would be of great value for healthcare systems. Identifica-

tion of AD risk markers could help to identify individuals

who might benefit from early intensive lifestyle consulta-

tions and pharmacological interventions. The relevance of

early diagnosis of AD is supported by recent neuropatholog-

ical, biochemical and neuroimaging findings showing that

biomarkers of AD can be detected in the brains and CSF

of approximately 20% to 30% of cognitively healthy elderly

individuals [6–8].

This review will summarize and highlight the most prom-

ising novel noninvasive and/or inexpensive screening and

diagnostic tools such as neuropsychometric, clinical, blood,

and neurophysiological tests for early detection of AD

beyond the established clinical, CSF and neuroimaging de-

mentia diagnostics.

2. Socioeconomic aspects of dementia diagnostics

While many have argued the need for screening methods

that are accessible and time- and cost-effective, few have

empirically demonstrated this point. To empirically illus-

trate the need for noninvasive and inexpensive screening/

diagnostic tools, we use the U.S. numbers of geriatrician,

neurology, and psychiatry physician providers and available

magnetic resonance imaging (MRI) machines below. In the

United States there were an estimated 7162 physicians certi-

fied in geriatrics in 2011 [9]. This translates to 5585 patients

aged 65 years old and above to be seen per specialist per year

based on 2009 census estimates if all geriatrics were to

receive an annual screening that included cognitive exami-

nation. This is particularly problematic when geriatric spe-

cialists are becoming less and less available [9]. Table 1

outlines the situation for the fields of neurology and psychi-

atry as well.

The situation is worse considering that not all geriatri-

cians, neurologists or psychiatrists are dementia specialists.

Furthermore, psychiatrists and neurologists are aging and

working fewer hours than in the past [10,11], therefore this

is likely a significant overestimation of capacity in that

field. If one considers MRI as frontline screening tool, the

situation does not improve. There are an estimated 11,000

MRI machines within the United States currently [12].

This would mean that each MRI machine should be used

for 3636 US elders with current estimates and for over

6000 US elders by the year 2030, based on projected age

estimates. These numbers assume that all MRI machines

Table 1

US estimates of population age 65 and above for 2009 and 2030 along with estimates of physician availability

Physicians by specialty and MRI

machines in the United States

Number of physicians by specialty

and of MRI machines

Population age .65 years in 2009,

n 5 40 million

Population age .65 years in 2030,

n 5 70 million

Patients per physician Patients per physician

Physicians certified in geriatrics [8] 7162 5585 9773

Neurologists [10] 10,154 3939 6893

Psychiatrists [9] 39,457 1014 1774

MRI machines in the United States [11] 10,000 3636 6364

Abbreviation: MRI, magnetic resonance imaging.
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would be exclusively used for dementia screening. If one

considers using positron emission tomography (PET) imag-

ing machines (e.g. Amyvid�, Elli Lilly), the situation be-

comes even more difficult given that there are only an

estimated 2000 PET/computed tomography scanners in the

United States. Again, this does not take into account other

indications for the use of these machines. With both clinical

and imaging modalities, the above estimates do not take into

account the need for repeated (i.e., annual) examinations or

cost burden. The high costs of MRI and PET machines

further limits their use as frontline screeners. Thus, there is

need for inexpensive and/or noninvasive diagnostic tools

that do not require a specialist. If, for example, a blood-

based assessment was available for $200 per person (costs

far above this limit the economic benefit), the cost savings

would be substantial. For example, if PET amyloid beta

(Ab) imaging were made available at $1000 per examination

and only 1 million elders were screened annually, the cost

would be US $1 billion annually, whereas the cost of a blood

test would be $200 million annually. If 15% screened posi-

tive, and went on to PET Ab imaging, the cost savings of

this screen–follow-up procedure would be $650 million dol-

lars annually. Given that there are approximately 40 million

Americans age 65 and older, then the examples listed above

substantially underestimate the current need and explain

why many have suggested that AD alone could bankrupt

many medical systems if nothing is done immediately con-

cerning the development of inexpensive and/or noninvasive

screening tools that do not require a specialist.

3. Neuropsychometric tests

A previous retrospective cohort study examining de-

scendants of carriers of the PSEN1 E280 A mutation iden-

tified three predementia clinical stages according to

neuropsychological assessment: (1) asymptomatic pre-

MCI, (2) symptomatic pre-MCI, and (3) MCI [13]. The first

identifiable clinical stage, called asymptomatic pre-MCI,

was detected 11 to 15 years before onset of dementia and

was characterized by neuropsychological test scores two

SD or more away from the mean normal value score for

noncarriers in at least one test on any cognitive domain

and the absence of memory complaints and no effect on ac-

tivities of daily living. The second clinical stage, called

symptomatic pre-MCI, was timed 5-11 years before de-

mentia and was characterized by additional subjective

memory complaints. The third clinical stage, called MCI,

was timed 1 to 5 years before reaching dementia and was

characterized by higher scores in subjective memory com-

plaints without or with minimal impairment in complex

instrumental functions. Thus, subtle cognitive changes

could be detected in these subjects even 15 years before

clinical manifestation of dementia. However, this staging

has been reported in PSEN1 E280 A mutation carriers.

The situation in familial AD may be different from that

in sporadic AD where other, age-related factors may

contribute to the preclinical and clinical outcome. There-

fore, results from this study may not be directly transfer-

able to those in sporadic AD.

3.1. Episodic memory tests

Episodic memory is the first and most severely affected

cognitive domain in AD and in prodromal stages including

amnestic MCI (aMCI) [14]. Several tests can be used to

assess episodic memory such as the Logical Memory sub-

test from the Wechsler Memory Scale [15], the California

Verbal Learning Test, now in its second revision (CVLT-

II) [16], and the Free and Cued Selective Reminding Test

(FCSRT) [17]. A comparison of CVLT and Consortium

to Establish a Registry for Alzheimer’s Disease-

Neuropsychological Assessment Battery has shown that

CVLT is more sensitive to preclinical changes in the

episodic memory [18]. The FCSRT free recall was more

predictive than the Wechsler Logical Memory immediate

recall for identifying individuals with memory complaints

who developed incident AD over 2 to 4 years [19]. Among a

standardized neuropsychological battery, the FCSRT was

also the most sensitive and specific test for diagnosis of pro-

dromal AD in another study [20]. In addition, the FCSRT

better predicted the likelihood of an AD-like CSF profile

among MCI subjects than the Wechsler Logical Memory

delayed recall [21].

A large study examining members of families with domi-

nantly inherited AD was called the DIAN study. In this

study, significant differences between mutation carriers

and noncarriers were detected in the Mini-Mental State Ex-

amination [22] and the Clinical Dementia Rating-Sum of

Boxes [23] scores at assessments performed five years

before expected symptom onset and thus in the preclinical

stage [24]. In the delayed-recall portion of the Logical Mem-

ory test [25], however, significant cognitive impairment was

found in mutation carriers, as compared with noncarriers,

even ten years before expected symptom onset. The Logical

Memory test has also been used in prospective studies for

sporadic AD and has predicted AD 10 years before its clin-

ical diagnosis [26]. Thus, use of an episodic memory test

such as the Wechsler Logical Memory test or the FCSRT al-

lows early detection of subtle cognitive deficits in both, fa-

milial AD and sporadic AD, favoring inclusion of one of

these tests in a screening battery for detection of preclinical

and early symptomatic AD.

4. Clinical tests

4.1. Assessment of subjective memory complaints

With regard to cognitive decline, objective deficits as

measurable with specific neuropsychological tests need to

be distinguished from subjective memory complaints

(SMC) as reported by the individual or an informant (family

members, care-givers, or clinician). Currently, there is

increasing interest in SMC and a debate as to whether they
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aremeaningful or not with respect to the diagnosis of preclin-

ical AD. Recent studies have demonstrated that SMCs are

associated with pathological brain amyloid burden in cogni-

tively normal older individuals and with increased risk for

development of late-onset AD even before any measurable

cognitive decline [27,28]. In addition, a study with carriers

of the PSEN1 E280 A mutation identified a pre-MCI stage

with already existing SMC [13]. A recent study demonstrated

that one-third of the adults aged�50 years attending primary

care centers with SMC were already affected by MCI [29].

Cognitive impairment as reported by informants (family

members) was associated with an even higher prevalence

of MCI. Thus, SMC may serve as an indicator of preclinical

and early symptomatic AD and information concerning

cognitive impairment in screening for AD and other demen-

tias should be obtained from both, the individuals and infor-

mants (familymembers or caregivers). Apart from the effects

of depression and personality factors, SMC report could be

potentially a very good time point to start any preventive trial.

Diagnostic tools to assess SMC such as the SubjectiveCogni-

tive Failures Questionnaire [30,31] or simple questions

concerning the presence of memory impairment and about

their concerns [27,28] are noninvasive and inexpensive and

might therefore be suitable as additional parameters for a

broader screening of putative amyloid positive but still

cognitively healthy individuals. The definition of SMC

continues to be a work in process, especially given the

current lack of a single standardized test.

4.2. Assessment of late-onset depression

Depression is common across the lifespan with one in five

individuals experiencing a depressive episode during their

lifetime [32]. Dementia is also very common in late life

with the risk doubling every 5 years after age 65, increasing

up to 50% among those greater than 90 years old [33].

Although studies have shown that depression and late onset

dementia frequently coexist [34], causality remains contro-

versial. Depression has been reported in women carrying

presenilin-1 mutation at preclinical phase of familial AD,

supporting the hypothesis that AD neuropathology may be

involved in depression occurrence at least in this group of

females [35]. Depression or depressive symptoms may

reflect (1) a risk factor for dementia, (2) a prodromal phase

of dementia or (3) a consequence of the dementia neurode-

generative processes.

A personal history of depression seems to be a risk factor

for later development of dementia [36–41]. The type of

dementia seems to depend on the time point when

depression occurs during life. In a longitudinal study,

Barnes and colleagues [42] compared the risk of AD or

vascular dementia (VaD) in those with depressive symptoms

at mid- and late-life and found that subjects with late-life

depressive symptoms had a twofold increase in AD risk,

whereas subjects with midlife and late-life symptoms had

more than a threefold increase in VaD risk.

Depression that presents for the first time in late life may

also reflect an early symptom of dementia, particularly of

AD. It is assumed that the combination of late-onset depres-

sion with currently elevated depressive symptoms may

represent an active neurodegenerative process (i.e., a prodro-

mal state of dementia), whereas an association between a

late-onset depression that remitted and currently shows no

elevation of depressive symptoms and subsequent dementia

may represent an indirect effect (i.e., a risk factor for subse-

quent dementia) [43]. In line with this, the vast majority of

longitudinal and cross-sectional studies proposed that late-

life depression seems to be a prodromal stage of AD

[34,43–47]. Further studies demonstrated that the number

[36] and severity [37] of depressive symptoms or even a clin-

ical diagnosis of depression at baseline in close temporal

proximity to dementia [40,44,48] or together with

apolipoprotein E (APOE) ε4 status [39] predicted develop-

ment of dementia during follow-up with increased risk

of AD.

In a recent longitudinal study, Heser and colleagues [43]

investigated whether late-onset depression is a risk factor

for a prodrome of AD or for dementia of other etiologies

in a cohort of elderly patients (n 5 2,663, mean

age 5 81.2 years). The authors showed that depression pa-

rameters and subjective memory impairment predicted AD

independently of objective cognition [43]. The authors

concluded that late-onset depression with currently elevated

depressive symptoms accompanied by worrisome subjective

memory impairment in the elderly best suggested an AD pa-

thology requiring close neuropsychological monitoring.

Thus, an assessment for depressive symptoms should

be included in a screening battery for the early diagnosis

of AD.

4.3. Speech testing

Verbal communication is a complex process, which

draws on a wide range of cognitive abilities including short

term memory, knowledge of phonological structure and

grammatical convention, and word meaning. Language is

produced spontaneously in large quantities by all humans

on a more or less daily basis, and its recordability (in spoken

or written format) makes it one of the easiest biological sam-

ples to collect. In addition, the multitude of dimensions

available for analysis means that recorded speech is poten-

tially one of the most informative biological samples to

assay. The deterioration of spoken language immediately af-

fects the patient’s ability to interact naturally with his or her

social environment, and is usually also accompanied by al-

terations in emotional responses. Both of these changes

appear early in the progress of AD and both can be measured

using automatic speech analysis techniques. These diag-

nostic procedures can (after proper training) be performed

by anyone in the patient’s habitual environment, without

altering or blocking the patient’s abilities [49,50]. These

methodologies also help to estimate the severity of AD in

C. Laske et al. / Alzheimer’s & Dementia- (2014) 1-184



the patient. AD produces a variety of communication deficits

in spoken language, including aphasia (difficulty speaking

and understanding) and anomia (difficulty recognizing and

naming things) [51,52]. The specific communication

problems a patient encounters depend on the stage of the

disease. A common symptom of incipient cognitive

problems (e.g., in MCI stage, which may indicate future

AD) is that the patient has trouble finding the right word

during spontaneous speech. Although this affects verbal

fluency, it often remains undetected. Another area that is

affected early is emotional responsiveness; one often

observes social and behavioral changes in the early stages

of the disease [53]. Altered perception and communication

skills may magnify some emotional responses; on the other

hand, memory loss may also reduce the ability to feel emo-

tions, which may in turn induce the appearance of apathy and

depression.

Automatic Speech Analysis and Recognition (ASR)

provide powerful tools to analyze fluency and semantic

relations and emotional responses. None of these speech

analysis based techniques require extensive infrastructure

or the availability of medical equipment; gathering

information using these techniques is easy, quick, and

inexpensive [49,54,55]. Moreover, the analysis of

spontaneous speech or task-restricted speech is not

perceived as a stressful test by the patients [55,56].

Indeed, the diagnosis and characterization of MCI using

these techniques only requires verbal tests and

interviews with the patient.

With regard to testing language abilities, a common test

used in AD detection is the test of Verbal Fluency by cate-

gories (VFc). This VFc test explores two underlying compo-

nents of verbal fluency tasks: clustering (the ability to

generate successivewords within a subcategory) and switch-

ing (the ability to shift from one subcategory to another).

This test is also useful for AD detection in the early clinical

stage [57,58]. Traditionally, medical specialists have

administered these tests manually, but in recent years ASR

based tools have been gaining ground in clinical practice

as well. For semantic measurements or indexes on

language features that measure VF quality, the new

automatic systems obtain results faster and with less effort

than their manual counterparts [59,60].

Beyond automating the analysis of specific tests, current

research has also made important advances in analyzing

spontaneous speech. Automatic Spontaneous Speech Anal-

ysis and Emotional Response Analysis [50,55] examine

such features as utterance duration, filler typology, and

analysis of voiced and voiceless segments, among others.

Figure 1 shows an example of signal and spectrogram of a

Fig. 1. Signal and spectrogram of a control subject (top) and a subject with Alzheimer’s disease (AD) (bottom) during spontaneous speech (pitch in blue, in-

tensity in yellow) [194].
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control subject and a subject with AD during spontaneous

speech. Use of spontaneous speech fluency test integrated

with a fractal dimension set allowed discrimination between

AD patients and healthy controls with a clinically relevant

accuracy of .80% [50]. The analysis of emotional re-

sponses includes classical features like pitch, intensity,

and variation of frequency components, and, most recently,

of Emotional Temperature. This last feature is based on the

analysis of a number of prosodic and paralinguistic features

[50]. Emotional response test including emotional tempera-

ture allowed discrimination between AD patients and

healthy controls with a high accuracy of .97.7% [50]. In

a similar vein, some researchers have recently proposed

that slight cognitive changes in the early and preclinical

stages could be detected using nonlinear speech parameters

such as fractals [50].

Differences in aspects of language production and

comprehension embody the distinctive neurodegenerative

syndromes of primary progressive aphasia (PPA), which

are normally underpinned by degenerative pathologies other

than AD. Three broad subtypes of PPA are recognized: pa-

tients with the fluent subtype (also referred to as semantic

dementia) produce well-formed speech dominated by

generic words such as “thing” or “bit”, resulting in minimal

informational content, and have difficulty understanding the

meanings of single words [61]; in the nonfluent variety (pro-

gressive nonfluent aphasia) there is phonologically and/or

grammatically distorted speech output and preserved

single-word comprehension [62]; the third variant (logo-

penic progressive aphasia) is marked by a slow rate of

speech production, marked word-finding pauses, occasional

phonological errors and difficulty with sentence (but not sin-

gle word) repetition [63].

Wilson et al. (2010) [64] have shown that the connected

speech of these three subtypes are associated with distinct

profiles using the quantitative production analysis (QPA)

scoring protocol [65]. Scoring of speech samples using

QPA relies on manual scoring and is therefore both labo-

rious and subject to variation between raters. Garrard

et al. (2013) [66] and Fraser et al. (2012) [67] have described

more rapid and reproducible automated approaches,

applying them to distinctions between individual syn-

dromes, and between patients and controls. A comparative

study of spontaneous speech in PPA and AD, however,

remains to be conducted.

4.4. Olfactory testing

A number of studies have reported olfactory impairments

in AD [68–70], MCI [71], and individuals positive for APOE

34 allele, the main genetic risk factor for AD [72]. Interest-

ingly, olfactory dysfunction in MCI patients may confer

poorer prognosis and greater risk of conversion to AD

[73]. Additionally, olfactory deficits have been reported in

subjective memory complaints [74] and presymptomatic

AD [75]. Olfactory impairment is a significant clinical pre-

dictor of memory decline [76]. In a previous study, a

100% classification rate of AD patients was achieved using

an olfactory identification score combined with olfactory

event-related potentials [77].

The neuropathological hallmarks of AD, i.e. neurofibril-

lary tangles (NFTs) and amyloid plaques (APs), can be seen

in the neocortex and associated brain regions such as ento-

rhinal and transentorhinal areas that are also closely

involved in olfactory processing. In fact, the olfactory sys-

tem has direct projections to the piriform lobe and hippo-

campal formation that are associated with a number of

cognitive and behavioral functions including emotions,

perception, and memory [78,79]. Furthermore, NFTs and

APs have been found in olfactory epithelium, olfactory

bulb, and olfactory cortex of AD patients [80,81]. It is

widely accepted that these neuropathological features

provide a specific and sensitive set of criteria for AD

diagnosis. For example, in one study, a 93% diagnostic

accuracy was achieved using the NFT counts per section

in the olfactory bulb of AD and control brains [82]. In a

transgenic mouse model, olfactory dysfunction was signifi-

cantly associated with increased Ab load in the olfactory

bulb, which preceded all other brain regions [83].

There are various psychophysical, psycho-physiological,

and electrophysiological methods available to measure odor

memory, threshold, identification, and discrimination

[84,85]. Currently, the University of Pennsylvania Smell

Identification Test, a scratch-and-sniff test using cards con-

taining odors to be identified, and Sniffin’ Sticks-

containing pen-like odor dispensing sticks measuring

threshold, identification and discrimination of odors are

well established olfactory tests available. Olfactory memory

refers to both the ability of memorizing odors, and the mem-

ories that are evoked by a specific odor [86].

Recently, the olfactory stress test was introduced as a new

way of assessing olfaction to detect individuals at higher risk

for AD [87]. In this line of research, intranasal atropine is

administered and the olfactory function is assessed. Test re-

sults have been significantly associated with memory perfor-

mance. This method still in its early stages may provide an

inexpensive way of screening those in the preclinical phase

of AD. However, Schofield et al. [87] findings should be

examined in longitudinal and cross-sectional studies to be

validated for further applications.

In spite of the high sensitivity for AD, olfactory assess-

ment has a disappointingly low specificity and is seen in

other neurological and psychiatric disorders [88–91].

Olfactory imperviousness to time [92,93] may dilute its

diagnostic utility in late onset AD diagnosis. However, in

early onset or familial AD cases (where the symptoms can

be detected at an earlier age and usually do not present

with age-related, comorbid conditions) olfactory tests may

become a useful screening measure. A better understanding

of olfactory impairment in AD will help to elucidate the un-

derlying mechanisms and the pathogenesis of the disease

and its progression and prognosis [94–96].
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4.5. Eye testing

Ocular imaging may provide a noninvasive method for

early detection and monitoring of neurodegenerative dis-

eases including AD. The retina is an extension of the brain

that is more accessible for imaging. Additionally, the

response of the pupil to light is largely driven by the cholin-

ergic system, which is impaired in the AD brain [97].

Furthermore, visual disturbance is often an early complaint

of AD patients [98,99] and studies have reported reduced

visual performance on tests of visual field [100], color vision

[101], contrast sensitivity [102], backward masking [103],

visual attention, motion perception, shape-from motion, vi-

suospatial construction, and also visual memory [104].

Both retinal morphology [105–107] and a suppressed pupil

light response [108–110] have previously been reported

in AD.

Retinal morphology reported in AD involves changes to

the vasculature [105] and optic nerve head [111], retinal

cell loss [112,113] and thinning of the retinal nerve fiber

layer (RNFL) [106]. A key study by Berisha et al. [105]

found that AD participants had a specific pattern of RNFL

thinning, narrower retinal blood column diameter and

decreased retinal blood flow. While this study was limited

by its small size, other studies have supported and expanded

on the existence of retinal vascular abnormalities in AD

[106,107,111]. The retinal vascular changes can be

summarized as vascular narrowing, reduced complexity of

the branching pattern, reduced optimality of the branching

geometry, and less tortuous venules [107]. A suppressed pu-

pil light response has also previously been reported in AD,

with the pupil responding to a bright flash of light with

slower velocity and acceleration and a reduced amplitude

of response [108,110,114].

Importantly, some retinal vascular and pupil response

changes were also found to be present in cognitively healthy

individuals with high brain amyloid plaque burden, suggest-

ing that eye testing may facilitate early detection of AD

neuropathology while in the prodromal stage [107,110].

The retinal changes also opposed those previously reported

in vascular dementia [115], indicating that these measures

have the potential to reduce the misdiagnosis rate for these

most common forms of dementia.

A recent study investigated both the retina and pupil in fa-

milial AD, demonstrating that cognitively healthy carriers of

the APPGlu693Gln mutation exhibit slower recovery from

pupil flash response, with 100% separation between muta-

tion carriers and noncarriers [116]. Despite the known cere-

bral vascular effects of the APPGlu693Gln mutation, no

retinal vascular abnormalities were observed in the mutation

carriers.

Amyloid plaques have also been reported in the postmor-

tem retinas of AD patients at early stages [117], and in the

ocular lens as an unusual form of cataract [118]. Studies in

animal AD models have also found Amyloid plaque burden

in retina and brain correlate [117].

4.6. Gait testing

Cognitive impairment due to AD is characterized not

only by memory loss, but also by functional impairment

[119]. Gait impairments are often associated with cognitive

impairments. Both slow and irregular gait during normal,

self-paced walking are risk factors for cognitive impairment

and dementia [120,121]. Verghese et al. [122] have intro-

duced the motor cognitive risk syndrome, proposing that

the presence of both MCI and slow gait in an individual is

a better predictor of developing dementia than either MCI

or slow gait alone [122,123].

There was a previously held view that gait difficulties

only occurred in advanced AD and that gait disturbances

early in the disease were considered an exclusion criterion

[124]. Yet quantitative gait analysis studies have shown

that many gait changes are present in the early stages of

AD [124,125]. Some gait changes may even appear before

AD is clinically symptomatic and before cognitive decline

can be detected by neuropsychological assessments [119].

Gait difficulties at such early stages of cognitive impair-

ment are often neither subjectively present nor visible to the

naked eye (even that of a trained specialist) yet can be

measured by quantitative gait analysis [126]. Compared

with the gait of healthy seniors, the gait of older individuals

with cognitive decline is slower with a shorter stride length,

lower cadence and an increased stride-to-stride variability

[124,125].

Gait has long been considered an automatic motor activ-

ity. It is, however, a complex activity, controlled by cortical

processes [126,127]. It is currently thought that the

neurodegenerative changes in AD affect common

pathways needed for both cognition and the neuromotor

control of walking [128–130]. Particularly affected are

executive functions, which are needed for planning and

allocating attention to simultaneously performed tasks

[124,126,130,131].

Gait analysis with dual task paradigms—walking while

simultaneously performing a second task (either cognitive

or motor)—challenge available attention reserves and exec-

utive functions. Dual task test paradigms assess the effects of

divided attention on motor performance and gait control.

Dual tasking permits detection of gait deficits, which, under

the single-task condition of walking alone, may otherwise

remain undetected [126,132]. Increased stride variability,

particularly under dual task conditions, is currently one of

the most sensitive markers for underlying gait deficits and

is associated with not only an increased fall risk but also

with cognitive deficits. Recent evidence from quantitative

gait analyses using dual task paradigms shows that gait

worsens (becomes slower and more variable from stride to

stride) as cognitive decline progresses [119] (Figure 2).

Quantitative gait analysis, particularly when dual task

paradigms are used, may be able to aid diagnosis of those

in the earliest stages of cognitive impairment. Early detec-

tion allows the timely implementation of interventions
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with the ultimate goal of improving or maintaining mobility

and functional independence for as long as possible. Early

detection of gait and cognitive impairments may also pro-

vide a better understanding of the pathophysiology and pro-

gression of dementia.

5. Blood tests

The molecular changes underlying the neurodegenerative

pathology in AD may take place up to 20 years before its

clinical appearance. In this context, the discovery of bio-

markers in biological fluids enabling an early diagnosis of

AD in the pre-clinical stage is eagerly awaited. Blood is a

potential source of biomarkers for neurodegenerative

changes in the brain, becausew500 ml of CSF is absorbed

into the blood every day. Moreover, the common finding of

blood-brain barrier damage in AD may facilitate movement

of proteins from brain to blood [133,134].

Blood-based biomarkers may have utility in predicting

risk for AD, which is an area requiring more investigation.

For example, Kivipelto and colleagues created a 20-year de-

mentia risk score that included total cholesterol, APOE ε4

genotype, blood pressure readings, smoking status, gender,

education, age, and physical activity level that was a signif-

icant predictor of future risk [135]. Graff-Radford et al. fol-

lowed 563 cognitively normal elders over an average of

3.7 years. Baseline plasma Ab42/Ab40 ratios in the lower

quartile indicated a greater risk of developing MCI or AD

over time [136]. More recently, Yaffe and colleagues found

that a low Ab42/Ab40 ratio significantly increased risk of

cognitive decline over nine years in individuals who were

dementia free at baseline [137]. When looking at C-reactive

protein (CRP), data from the Honolulu-Aging Study sug-

gests that midlife elevations are a significant risk for AD

in late life [138]. Van Oijen et al. [139] found increasing

levels of fibrinogen among cognitively normal elders to be

a significant risk for later development of dementia (AD

and Vascular dementia) in the Rotterdam Study. Tan et al.

(2007) [140] analyzed data from the Framingham Study

and found that increased expression of inflammatory cyto-

kines from peripheral blood mononuclear cells increased

risk for incident AD over a seven-year period. Van Exel

et al. [141] studied offspring with and without family his-

tories of AD to examine patterns of vascular factors and

inflammation. These authors found that offspring with

parental history of AD were more likely to carry the

APOE ε4 genotype, have higher systolic and diastolic blood

pressure, and express higher levels of proinflammatory cyto-

kines IL-1b, IL-1b/IL-1ra ratio, TNF-a, IL-6, and IFN-g.

Mielke et al. demonstrated in their population-based pro-

spective study a strong relationship between increased

serum levels of particular ceramide species at baseline and

the subsequent risk of developing all-cause dementia and

AD over a 9-year period [141]. In a recent study, a plasma

panel of ten phospholipids showed a high accuracy in pre-

dicting development of memory impairment (aMCI or

AD) within a 2- to 3-year timeframe in older adults [142].

However, the analysis was performed with mass spectrom-

etry not widely available in many labs and this biomarker

panel needs external validation in independent cohorts

before further development for clinical use. Taken together,

the above results suggest that those subjects at greatest risk

for AD show already in the preclinical stage characteristic

alterations of several biomarkers in blood. Thus, blood-

based biomarkers could play a key role in predicting future

AD risk. Additional work is now needed to determine if

blood markers can be combined with clinically-relevant in-

formation, to create risk profiles for later development of

AD similar to the work that has been done with cardiovascu-

lar risk scores (e.g., Framingham scores).

Several recent studies have demonstrated that blood-

based biomarker panels could be a useful diagnostic tool

for identification of AD patients. Ray and colleagues

(2007) [143] assessed 120 plasma proteins in an effort to

identify a profile of multiple biomarkers indicative of AD.

They identified a panel of 18 proteins that were effective

to distinguish AD patients from healthy controls with an

overall classification accuracy of 89%. The algorithm also

accurately identified 81% of MCI patients who progressed

to AD within a 2- to 6-year follow-up period. In the

following years, several research groups identified different

blood-based biomarker panels in serum and plasma able to

discriminate AD patients from healthy controls or MCI pa-

tients progressing to AD from stable MCI individuals with

a clinically relevant accuracy [144–148]. Table 2 gives an

overview of recent blood-based biomarker panels for diag-

nostic use in AD.

Taken together, these studies suggest that a blood-based

screening tool for AD is on the horizon. Although great

progress is being made in this research field, blood-based

biomarkers are not yet ready for clinical implementation

due to a lack of standardization concerning preanalytical,

analytical and postanalytical methods, which would be

necessary to foster cross-validation across cohorts and labo-

ratories.

Fig. 2. Task-related gait speed: The greater the cognitive impairment, the

slower the gait speed. For all cognitive groups, gait was slower during

dual tasks than during the single task of normal walking [119].
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6. Neurophysiological tests

6.1. Novel EEG biomarkers

Recent MRI studies have demonstrated that amyloid pa-

thology is linked to neural dysfunction including altered

resting state connectivity in a distributed network of brain re-

gions supporting memory function in subjects with preclin-

ical AD [149,150]. It is widely accepted that the cerebral

EEG rhythms reflect underlying brain network activity

[151]. As a consequence, modifications in EEG rhythms

could be an early sign of AD.

EEG biomarkers would provide a noninvasive and rela-

tively inexpensive screening tool for early diagnosis of AD

and could be automatically analyzed in just a few minutes.

However, traditional EEG biomarkers have not been consid-

ered accurate enough to be useful in clinical practice

[152,153]. The capability to extract useful information

from a rough EEG track, using only mathematical

algorithms, is a challenging but promising task. Novel

EEG biomarkers and their combination into a diagnostic

classification index may be able to discriminate AD

patients in different clinical stages from normal subjects

with an even higher accuracy.

In the last twenty years, many powerful learning ma-

chines and algorithms were proposed to face this hard

problem with different and interesting results [154].

Computerized EEG analysis in aged people has been en-

riched by a number of modern techniques capable of exploit-

ing the large amount of information on time-frequency

processes in single recording channels and on spatial local-

ization of these processes [155–158]. Recent studies have

convincingly demonstrated that several novel measures of

EEG analysis could be useful for predicting MCI

conversion to AD and for identification of early AD with a

clinically useful accuracy. These novel measures include

the use of high EEG upper/low alpha frequency power

ratio [159], the combination of multiple EEG biomarkers

mainly related to activity in the beta-frequency range (14–

30 Hz) into a diagnostic index in the eyes-closed resting state

[160], optimized EEG frequency bands [161] and the alpha

(8–13.9 Hz)/theta (4–7.9 Hz) ratio [162].

An alternative and promising attempt to make the EEG

analysis suitable for clinical applications in aging has been

accomplished through the use of neural networks, capable

of extracting specific and smooth characteristics from enor-

mous amounts of data. Some authors [163] developed a sys-

tem based on recurring neural nets processing spectral data

in EEG. They succeeded in classifying AD and non-AD pa-

tients with a sensitivity of 80% and a specificity of 100% in a

small study cohort. In other studies, classifiers based on arti-

ficial neural networks, wavelets, and blind source separation

achieved promising results [164–168]. In recent years, a

completely new approach to EEG analysis has emerged,

called I-FAST (Implicit Function as Squashing Time)

[169]. I-FAST is composed of three steps (see Figure 3):

(1) The transformation of the N EEG channels of each sub-

ject into a vector of features (Squashing Phase). (2) The dy-

namic elimination of the noisy features from the vector

representing each subject (Noise Elimination Phase). (3)

The intelligent classification, with the support of Machine

Learning, of the features of each subject (classification

phase). I-FASTapproach has shown to be able to distinguish

elderly AD, MCI, and control elderly subjects in a blind

manner with an accuracy of over 94% [169,170]. Recently,

I-FAST methodology was also applied to a consistent

sample of MCI subjects (n 5 143), where a subsample

(n 5 51) converted to AD within three to five years [171].

I-FAST succeed in predicting which subjects were MCI sta-

ble and which ones were MCI converted with an accuracy of

over 92%, using only data coming from EEG signal.

The next milestone of the EEG analysis using complex

artificial adaptive systems aims to be able to extract from

Table 2

Recent blood-based biomarker panels for diagnostic use in AD

Working groups Sample mediums Number of biomarkers in the panels Diagnostic accuracy training set/test set

Ray et al. [143] Plasma 18 Biomarkers alone: accuracy 5 89%/89%

O’Bryant et al. [144] Serum 108 Biomarkers alone: AUC 5 0.91

Biomarkers1 clinicalx1 demographic parametersy:

AUC 5 0.95

Laske et al. [145] Serum 3 (cortisol, vWF, OLAB) Biomarkers alone: accuracy 5 82%/87%

Soares et al. [146] Plasma 7 Test set:

Sensitivity 5 80% to 90%

Specificity 5 70% to 80%

Doecke et al. [147] Plasma 18 AIBL cohort:

AUC 5 0.87

ADNI cohort:

AUC 5 0.85%

Hu et al. [148] Plasma 4 (APOE, B-type natriuretic peptide,

C-reactive protein, pancreatic polypeptide)

No data provided

Abbreviations: AUC5 area under the receiver operating characteristic curve; x 5 i.e. cholesterol, triglycerides, high density lipoproteins, low density lipo-

proteins, lipoprotein-associated phospholipase, homocysteine, and C-peptide; y 5 i.e. age, gender, education, and APOE status; APOE, apolipoprotein; ADNI,

Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing.
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the EEG signal specific clinical information about single

subjects. In this way, EEG analysis could become an impor-

tant component of a more global analysis of the specific

brain of each single patient.

6.2. Novel MEG biomarkers

MEG, the assessment of the brain’s magnetic fields, is a

relatively new technique first introduced by David Cohen

in the late 1960s [172]. As dynamic electrochemical pro-

cesses in the brain result in changing magnetic fields that

pass conductive boundaries (e.g., the skull) undistorted

[173], placement of superconducting quantum interference

devices (SQUID) [174] in close proximity to the human

head allows for reliable assessment of these processes with

high temporal (millisecond) and, depending on the number

of SQUIDs used, spatial (millimeter) resolution [175,176].

Current state-of-the-art systems use up to 300 sensors that,

if combined with appropriate algorithms, provide an unprec-

edented information depth of task-free and task-related neu-

romagnetic brain activity. After Berendsen et al. showed for

the first time that individuals with AD exhibit a general slow-

ing of task-free brain oscillatory activity [177], subsequent

MEG studies identified delta (2–4 Hz) and beta (16–28 Hz)

oscillations as most significantly changed in AD [178,179].

Further analysis indicated an increase of frontal, central

delta and theta signal power, while posterior temporal and

occipital areas exhibited a decrease of signal power in

higher frequencies [177]. In line with a previously described

association between the level of cholinergic activity and

increased delta power [180], a correlation between cognitive

decline and an increase in magnetic dipole density (MDD) of

temporoparietal delta and theta activity in AD was found

[181]. MEG allowed discrimination of individuals with AD

from healthy controls with accuracies above 80% using, for

instance, spectral mean frequency [182]. Quantification of

MDD during a memory task resulted in sensitivity of 90%

and specificity of 100% when combined with MRI (myoino-

sitol/N-acetyl aspartate) spectroscopy [183]. To investigate

the value of whole-head MEG recordings to assess in vivo

biomarkers for AD, a recent study evaluated delta current

density (DCD) across the posterior parietal, occipital, prero-

landic, and precuneus cortices of individuals with MCI, AD

with different severity scores, and healthy controls [184]. The

transition fromMCI to mild dementia and frommild to more

severe dementia could be reliably indexed by an increase in

the right parietal cortex and precuneus DCD. Besides these

promising results, introducing other linear and nonlinear

measures to assess large-scale brain network activity (e.g.

spectral entropy measures [182]), or measures to quantify

functional connectivity (e.g. coherence analysis [185], phase

lag index (PLI) [186] or synchronization likelihood [187])

might further improve the reliability and robustness of de-

tecting and identify individuals who are at risk to develop

neurodegenerative disorders and progressive cognitive

decline at an early stage. Once identified, these neurophysio-

logical measures could be used as a specific target for neuro-

feedback training, using, for instance, brain–machine

interfaces and brain stimulation aimed at normalizing

disturbed neural network activity [188].

The combination ofMEGwithMRI spectroscopy is asso-

ciated with costs of a few hundred US dollars per examina-

tion and requires the availability of a MEG and MRI facility,

thus favoring their use not as a primary dementia screening

Fig. 3. I-FAST (Implicit Function as Squashing Time)structure: squashing phase, noise elimination phase, classification phase [169].

C. Laske et al. / Alzheimer’s & Dementia- (2014) 1-1810



instrument but rather as a promising alternative diagnostic

option to already established diagnostic measures. Recent

technical advances, e.g. development of ultra low-field mi-

croteslaMRI duringMEG recordings [189] and atomic mag-

netometers [190] operating at room temperature, suggest

that associated costs will significantly decrease and avail-

ability of such combined MEG/MRI recordings improve in

near future.

7. Conclusions

Current state-of-the-art diagnostic measures of AD are

invasive (CSF analysis), expensive (neuroimaging), and

time-consuming (neuropsychological assessment). Further-

more, these measures are limited to specialty clinics and

thus have limited accessibility as high-throughput, or front-

line, screening and diagnostic tools for AD. More impor-

tantly, nonspecialists are often inaccurate at identifying

early AD and MCI [5]. Thus, there is an increasing need

for additional noninvasive and/or cost-effective tools, allow-

ing frontline identification of subjects in the preclinical or

early clinical stages of AD who could be suitable for moni-

toring in specialty clinics and for early treatment. Implemen-

tation of effective screening instruments will allow diagnosis

earlier in the course of dementia, even at the point when

memory function is still essentially within the normal range.

This strategy would enable an earlier, and potentially more

effective, prevention and treatment of AD with a special

focus to preserve cognitive functions.

Early AD development is clinically characterized not only

by progressive memory loss presented in subjective cognitive

complaints [27,28] and objective psychometric testing [14],

but also by noncognitive symptoms such as late-onset depres-

sion [43] and progressive functional impairment of speech

(language use and emotional responses) [50,55], olfaction

[75], pupil light response [108,110], retinal vasculature

[105–107], and gait [124,125] with a gradual increase along

the continuum of AD from preclinical via MCI to the

dementia stage. The recognition that several noncognitive

symptoms, such as olfactory dysfunction [75] and gait impair-

ment [191,192], occur very early in the disease course and can

predict the subsequent development of AD suggests that

noncognitive functions may serve as phenotypic markers of

preclinical AD. Increasing knowledge of affected systems in

AD development furthers our understanding of the

pathophysiology of AD and allows us to identify novel

candidate biomarkers for diagnosis of AD.

Assessment of subjective cognitive complaints, late-onset

depression, speech (language use and emotional responses),

olfactory function, pupil light response, retinal vasculature,

and gait may have potential utility as clinical tools for detec-

tion of preclinical and early clinical AD. These measures are

noninvasive and inexpensive and thus suitable for a broader

screening of individuals with preclinical or early clinical

AD. In addition, use of measures such as EEG and MEG

and use of blood-based biomarkersmay enlarge the spectrum

of AD diagnostics. Several measures (e.g., speech, gait,

EEG, and MEG) can be automatically analyzed, allowing a

multidimensional, objective and reliable diagnostic proce-

dure. These novelmeasures will not replace a comprehensive

clinical and neuropsychological assessment and standard

tests with CSF analysis and neuroimaging, but rather will

enhance these modalities by offering primary care providers

a means for determining who needs referrals for comprehen-

sive assessment for diagnostic confirmation.

Given the complex nature of AD pathophysiology [1], it

is likely that the optimal prediction models for future devel-

opment of MCI and/or AD, and risk for progression from

MCI to AD, will come from algorithmic approaches that

combine multiple diagnostic methods. Actually, we do not

know which of the described tests in the present review

manuscript work best for screening of preclinical and early

symptomatic AD. As an example, one potential Screening

Approach could include a quick but reliable measure of sub-

jective cognitive complaints (either patient, informant or

both), a brief cognitive assessment (e.g., episodic memory)

and an assessment for depressive symptoms plus one or

more of the following measures chosen for their availability

including olfactory, speech, eye test, gait, blood biomarkers

(e.g. APOE, serum Ab load, etc.) and EEG (Figure 4). As

the average time spent in primary care settings with geriatric

patients is usually less than 20 minutes, it seems reasonable

to allocate these tests on two or more consecutive visits

(Figure 4). Inclusion of cognitive and noncognitive ap-

proaches may aid in discrimination across neurodegenera-

tive disease states to aid in appropriate referrals. A

potential diagnostic approach may utilize a comprehensive

battery, adding neuropsychological assessment plus brain

imaging, MEG or CSF analysis to the screening approach

battery (Figure 4). Future research may indicate the utility

of these two approaches or the need for revisions. Large pro-

spective cohort studies of patient performance and correla-

tion with brain imaging modalities and/or biochemical

markers of AD will, however, be required before the best

combination of selected biomarkers to optimize diagnostic

sensitivity and specificity is identified. Thus, before

applying them in clinical practice, these tools should be

further examined, as some are now, in ongoing large clinical

trials such as ADNI (Alzheimer’s Disease Neuroimaging

Initiative), AIBL (Australian Imaging, Biomarker & Life-

style Flagship Study of Ageing) or DIAN. Despite the dif-

ference in underlying cause and age of onset, familial AD

and the more common sporadic AD have similar neuropath-

ological hallmarks and clinical features [193]. Further

investigation of the reported novel candidate biomarkers

in familial AD, and utilization of familial AD cohorts in

future biomarker studies, provides a powerful opportunity

to investigate the temporal sequence of different AD

biomarker changes during disease progression. Studying

pre-symptomatic individuals with autosomal dominant in-

heritance alleviates many problems inherent in studies of

pre-symptomatic sporadic AD, including uncertainty about
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the age of onset and age-related co-morbidities such as hy-

pertension and cardiovascular disease and age-related

decline in cognition, olfaction, and motor abilities. Howev-

er, it is not clear if the results of studies in familial AD can

be directly extrapolated to sporadic AD.

A key need in the field is the inclusion of AD and non-

AD neurodegenerative dementias into studies of screening

tools and biomarkers. Some of the diagnostic tests presented

in this review are specific and sensitive for AD (e.g., amy-

loid detection during retinal examination), while others

are nonspecific for AD but sensitive for cognitive disorders

including AD (e.g., subjective cognitive complaints, late-

onset mood disorders, gait changes and blood markers

such as CRP). To date, most of the studies presented in

this review were obtained comparing AD patients vs.

normal controls, but not AD patients vs. other neurodegen-

erative diseases. Thus, while the available case-control

studies comparing AD patients vs. normal controls have

yielded extensive information, it remains still unclear, how

these methods and markers will function across different

neurodegenerative diseases. Given the pathological overlap

and comorbidities, this is an important area for future

studies and it is likely that the inclusion of biomarkers

will greatly aid in the differential diagnostic process.

To date, research has significantly contributed to our un-

derstanding of the AD neuropathology, its course and the

related dementia development. However, our progress in

terms of screening individuals at higher risk, diagnosing

those with the disease, and developing preventive and

ameliorative interventions has been modest and far from

clinical applicability. It should be noted that the measures

derived from studies on genetic mutation carriers should

be cautiously examined when their findings are going to be

utilized in sporadic and late onset research. However, the

time seems right to incorporate new measures and to

examine unexplored avenues that may shed further light

into what is going to be a catastrophic epidemic disease in

near future affecting not only the elderly, but also the

younger generations as care-givers, family members, or fa-

milial AD mutation carriers.

Fig. 4. Algorithm of a potential Screening Approach (two steps) and Diagnostic Approach (third step) for early detection of Alzheimer’s disease. The first two

screening steps can take place in the primary care setting and the third diagnostic step can take place in a specialty clinic. The Screening Approach is splitted in

two steps for economic reasons and limited available time per one visit in the primary care setting. The second step could be used to even tailor where the third

step (i.e. Diagnostic Approach) is best managed (i.e. if clinical depression then psychiatry/psychology needs to be included). Future research may indicate the

utility of this algorithm or the need for revisions. Thus, before applying them in clinical practice, these tools should be further examined, as some are now, in

ongoing large clinical trials.
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed the literature on

noninvasive and inexpensive cognitive and noncog-

nitive diagnostic measures for early detection of Alz-

heimer’s disease (AD) beyond established dementia

diagnostics with cerebrospinal fluid analysis, neuro-

imaging and neuropsychometric testing.

2. Interpretation: Assessment of subjective cognitive

complaints, late-onset depression, speech, olfactory

function, pupil light response, retinal vasculature and

gait may have potential utility as noninvasive and

inexpensive clinical tools for detection of preclinical

and early clinical AD. In addition, use of measures

such as electroencephalography and magnetoen-

cephalography and use of blood-based biomarkers

may enlarge the spectrum of AD diagnostics.

3. Future directions: Before applying the presented

tests in clinical practice, these tools should be exam-

ined now in ongoing large clinical trials.
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