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ABSTRACT 

Gas sensing is a key technology with applications in various industrial, medical and environmental areas. Optical 
detection mechanisms allow for a highly selective, contactless and fast detection. For this purpose, rotational-vibrational 
absorption bands within the mid infrared (MIR) spectral region are exploited and probed with appropriate light sources. 
During the past years, the development of novel laser concepts such as interband cascade lasers (ICLs) and quantum 
cascade lasers (QCLs) has driven a continuous optimization of MIR laser sources. On the other hand side, there has been 
relatively little progress on detectors in this wavelength range. Here, we study two novel and promising GaSb-based 
detector concepts: Interband cascade detectors (ICD) and resonant tunneling diode (RTD) photodetectors. ICDs are a 
promising approach towards highly sensitive room temperature detection of MIR radiation. They make use of the 
cascading scheme that is enabled by the broken gap alignment of the two binaries GaSb and InAs. The interband 
transition in GaSb/InAs-superlattices (SL) allows for normal incidence detection. The cut-off wavelength, which 
determines the low energy detection limit, can be engineered via the SL period. RTD photodetectors act as low noise and 
high speed amplifiers of small optically generated electrical signals. In contrast to avalanche photodiodes, where the gain 
originates from multiplication due to impact ionization, in RTD photodetectors a large tunneling current is modulated via 
Coulomb interaction by the presence of photogenerated minority charge carriers. For both detector concepts, first devices 
operational at room temperature have been realized. 
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1. INTRODUCTION  

Just as interband cascade lasers (ICLs) the interband cascade detector (ICD)  [1] makes use of the broken gap alignment 
of the two binaries GaSb and InAs. The conduction band of InAs is situated below the valence band of GaSb which 
allows for interband tunneling and thus cascading. An ICD stage is composed of three main parts as shown in the band 
structure in Figure 1. The short period InAs/GaSb superlattice (SL) works as absorption region for MIR radiation. The 
fact that the effective bandgap in the SL and thus the cutoff wavelength can be tuned via the SL-period introduces great 
design flexibility while only binary compounds have to be grown. Additionally the interband transition enables normal 
incidence detection. The absorber region is surrounded by a barrier and an electron relaxation region. On one side 
electrons are hindered from tunneling back to a previous cascade by an AlSb/GaSb electron barrier. This is because the 
upper level energy level in the absorption region is situated in the bandgap of GaSb. On the other side the AlSb/InAs 
electron relaxation region enables the transport of electrons to the InAs/GaSb interface that is used to connect the 
cascades in series. Electrons are transferred to the next stage through an interband tunneling process. The cascading 
scheme helps to overcome the strong coupling between responsivity and diffusion length which plays a major role 
especially at high temperature operation  [2]. In a bulk material the diffusion length is typically shorter than the 
absorption depth which has a strong impact on the absorption efficiency. By cascading several absorption regions the 
total thickness of the structure can be designed longer than the diffusion length since the generated carriers only travel 
through one stage before entering the next one. This helps to improve the detectivity and the signal to noise ratio. 

 

Invited Paper

Infrared Remote Sensing and Instrumentation XXIV, edited by Marija Strojnik, Proc. of SPIE
Vol. 9973, 997306 · © 2016 SPIE · CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2237270

Proc. of SPIE Vol. 9973  997306-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



a

1

gion

120 140

4.5

4.0 -

3.5 -

3.0 -

Electron

AISb /GaS

2.5 -

2.0

1.5-

0 21

barrier

ìb

Absorbe

InAs /GaSI

[i

IO 40

Electr
AISbI

r
b T2-SL

60 80

Thickness 0

ron relaxation reç

/InAs

 

Figure 1:
superlattic

 

The second 
tunneling dio
5] Resonant t
electrical sign
impact ioniza
of photogene
thousand,  [1
realized on G
spectral regio
material syste
materials that
bandgap ener
GaSb substra
systems, and 
energies for M

First GaSb/A
for light sens
studied by me

 

 Band structur
ce absorber reg

detector conc
ode photodetec
tunneling diod
nals. [9–11] I

ation, in RTD 
erated minority
10,11] at con
GaAs or InP b
ons, where for
em is the sim
t provide narr
rgies and hete
ate growth. [1

move it to a 
MIR light dete

AlSb double ba
sing up to a w
eans of electri

re of one stag
ion, the AlSb/G

cept for nove
ctors. Besides
des (RTDs) [6
In contrast to
photodetector
y charge carr
siderably sma

based material
r example bot

milar nano-inje
rower bandgap
erostructure d
8] We therefo
GaSb-based s
ection. 

arrier resonan
wavelength of
ical transport a

 

ge of an interb
GaSb - electron 

el MIR-photo
s being exploit
6–8] can act a
o avalanche p
rs a large tunn
iers. [12–14]
all operation 
l systems, whi
th important t
ector design. [
ps need to be 
designs is the 
ore propose to
system. Thus 

nt tunneling di
f ߣ = 2.76 µm
and photolum

band cascade d
barrier and the 

detectors disc
ted as high-fre
as low-noise a
hotodiodes, w

neling current 
This allows f
voltages. [14

ich allows for
telecommunic
[16,17] Never
considered. S
so called ant

o take the RT
exploiting bot

iodes with a n
m have been r

minescence me

detector (ICD).
AlSb/InAs - el

cussed in this
equency oscil
and high-speed
where the gai
is modulated 

for very high 
,15] The maj
r excellent lig
cation wavelen
rtheless, when
Such a materia
timony or 6.1

TD principle a
th, high charg

nearby and lat
realized. Thei

easurements, r

 The main pa
lectron relaxatio

s work is tha
llators and em
d amplifiers o
in originates 
via Coulomb
amplification
jority of RTD

ght sensing in 
ngths are loca

n pushing for 
al system that
1 Å material 
as it is known
ge-carrier amp

tice-matched 
ir electrical o
respectively. 

 

arts are the InA
on region. 

at of GaSb-b
mitters in the T
of small optic
from multipli

b interaction by
n factors of se
D photodetec
the visible or

ated. Also bas
longer wavele
t provides a h
system, typic

n from GaAs a
plification and

GaInAsSb ab
ptical propert

As/GaSb - 

based resonan
THz range, [3–
ally generated
ication due to
y the presence

everal hundred
tors has been
r near infrared
sed on the InP
ength regions

huge variety o
cally based on
and InP based
d low bandgap

bsorption layer
ties have been

nt 
–
d 
o 
e 
d 
n 
d 
P 
s, 
f 
n 
d 
p 

r 
n 

Proc. of SPIE Vol. 9973  997306-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/23/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



10°

10 °, Os
104

10'-

10',

10',

10°.

10e

+ `

1

I+I I I III il, I IIÌ ill
-4000 -2000 0 2000 4000

40) (arcsec)

10°=

3.0 s
104

10'=

10',

10',
11 III'I

10° - 7 IÌI ÌI I 111111
-4000 -2000

10°

10°

4)

= 10'

10'

10°

2.1 s

100

10°

10°

100

10°

:::1I llI liluiil ¡hi lid 91

0 2000 4000 -4000 -2000 0 2000 4000

I IIII1IIIü
-4000 -2000 0

4w (arcsec)

Y Ì IIIII. hill
2000 4000

6.0 s

40) (arcsec) dw (artsec)

 

 

2. INTERBAND CASCADE DETECTORS 

 
Since the quality of the InAs/GaSb-SL is of major importance for the performance of the final device careful 
optimization was done regarding the MBE growth by growing a variety of test samples at different growth conditions. 
The structures were grown in an Eiko MBE reactor equipped with cracker cells for both As and Sb. The cracking regions 
of the cracking cells were operated at 950°C and 1000°C, respectively, to ensure efficient cracking of As and Sb. As the 
structure is grown on GaSb-substrates, the smaller lattice constant of InAs would introduce tensile strain which might 
result in defect formation or relaxation once the SL reaches a certain thickness. Thus the mean SL lattice constant should 
match the one of the substrate which was achieved by enforcing InSb interfaces. The 30 period SL test structures were 
grown at a substrate temperature of 430°C and had a nominal SL-period of 4.56 nm (2.12 nm InAs / 2.44 nm GaSb). 
After each GaSb layer a 2s soak time under Sb flux was applied while the duration of the Sb soak time after the InAs 
layer was varied between 0 and 6 s. In Figure 2: high resolution X-ray diffraction (HR-XRD) measurements of various 
samples with soak times of 0, 2.1, 3.0 and 6.0 s are shown. The high frequency Pendellösung fringes indicate high 
material quality for all samples. It can be seen that for the sample with no applied Sb soak time after the InAs layer the 
0th order SL-peak occurs at the right side of the substrate which is a result of tensile strain. With increased soak time the 
peak shifts further to the left till the SL overall strain becomes compressive due to the InSb – like interfaces. At a soak 
time of 2.1 s the mean lattice constant of the SL coincides with the one of the substrate. It should be mentioned that the 
shift of the SL-peak does not vary linearly with the soak time due to a saturation of the Sb for As exchange reaction [19].  

 

Figure 2: HR-XRD measurement of 30 period InAs/GaSb test samples. The Sb soak time after the InAs layers was varied 
between 0 s and 6 s. Strain compensation was achieved for a soak time of 2.1 s. 

Furthermore the influence of the growth temperature (380°C – 430°C) on the optical properties of the SL was 
investigated. Due to the temperature dependence of the Sb for As exchange reaction the 0th order peak of the SL shifted 
slightly towards smaller angles when the substrate temperature was decreased. No compensation by adjusting the soak 
time was done in this series of samples. In Figure 3 room temperature photoluminescence (PL) measurements are shown 
for all samples. The half maximum on the low energy side coincides with the calculated room temperature cutoff 
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When increasing the temperature up to ܶ = 77 K (green circles), the peak current density decreases down to ݆௣௘௔௞ =3.38 µA/µm2, whereas the valley current density increases to ݆௩௔௟ = 0.45 µA/µm2, with ܸܴܲ = 7.5. Decrease of peak 
and increase of valley current density with increasing temperature can be attributed to two different mechanisms. On the 
one hand side, at higher temperatures increased phonon scattering reduces the number of electrons that can tunnel 
resonantly, and increases the number of electrons contributing to non-coherent transport. On the other hand, increasing 
the temperature leads to a depopulation of electrons in the GaSb Γ-valley, while increasing the electron population of the 
L-valley states. Hence, less electrons can contribute to tunneling via the Γ-Γ tunneling path. [28] At room temperature, 
no region of negative differential conductance, and therefore no resonant tunneling can be observed. We are currently 
investigating different approaches on how to improve the electrical transport properties of GaSb-based resonant 
tunneling diodes at room temperature. [29] 

4. CONCLUSIONS  

Two promising, novel and alternative detector concepts for the MIR region are demonstrated. ICDs combine the 
advantages of conventional type-II SL-detectors with the cascading scheme of ICLs. By applying proper soak times 
during the InAs/GaSb-SL growth the mean lattice constant of the SL was matched to the GaSb substrate. Furthermore a 
series of samples under variation of the substrate temperature was grown. The highest room temperature PL intensity 
was observed for the sample grown at the lowest substrate temperature (380°C). Finally a full ICD structure was grown 
and processed into circular detector devices operational at room temperature. The cut off wavelength was around 4.5 µm. 
Additionally a resonant tunneling diode photodetector with cut-off wavelength at ߣ = 2.76 µm is presented. It is based 
on an AlSb/GaSb double barrier resonant tunneling structure with a nearby and lattice-matched GaInAsSb-absorption 
layer. First results are promising, but indicate that for room temperature operation further approaches to improve room 
temperature resonant tunneling need to be considered. 
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