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Abstract. In this paper, we propose two innovative and computationally efficient al-
gorithms for robust face recognition, which extend the previous Sparse Representation-
based Classification (SRC) algorithm proposed by Wright et al. (2009). The two new
algorithms, which are designed for both batch and online modes, operate on matrix rep-
resentation of images, as opposed to vector representation in SRC, to achieve efficiency
whilst maintaining the recognition performance. We first show that, by introducing a
matrix representation of images, the size of the ℓ1-norm problem in SRC is reduced from
O(whN) to O(rN), where r ≪ wh and thus higher computational efficiency can be ob-
tained. We then show that the computational efficiency can be even enhanced with an
online setting where the training images arrive incrementally by exploiting the interlacing
property of eigenvalues in the inner product matrix. Finally, we demonstrate the supe-
rior computational efficiency and robust performance of the proposed algorithms in both
batch and online modes, as compared with the original SRC algorithm through numerous
experimental studies.
Keywords: Sparse representation, Incremental learning, Robust face recognition

1. Introduction. In recent years, face recognition has been substantially studied both in
the academic community and industry with many significant results achieved [1, 2, 3, 4].
The target of face recognition is to build systems which can perform automatic person
identification or verification, when a digital image or a video frame sequence of that person
is provided. During the past two decades, a number of face recognition algorithms, as well
as their modifications, have been developed. These algorithms can be typically categorized
into two classes: appearance-based and model-based approaches.

In appearance-based methods, the features are the pixel intensities in a digital face
image. These pixel intensities are the quantized measurements of light radiance emitted
from a person along certain rays in space, and contain abundant information which can
be used to determine identity from appearance. These methods include: subspace-based
methods [5, 6, 7], Hidden Markov Model (HMM) methods [8], Bayesian methods [9],
Support Vector Machine (SVM) methods [10], Kernel methods [11, 12, 13, 14] and multi-
resolution method [15].
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For model-based approaches, general shape models of human faces are introduced,
such as Elastic Bunch Graph Matching (EBGM) [16], Active Appearance Model (AAM)
[17] and 3D Morphable Model method [18]. These methods employ general facial shape
models as representations of faces, like face bunch graph, or model with landmark points,
or model of 3D face shape and texture. The image pixels are treated as low level features
which need to be extracted into high level features before adapting to these models. A
face image of a person is assumed to be the output of the face model corresponding to
input parameters, and face recognition is transformed into a model matching problem.
In the literature of face recognition, the appearance-based methods have been exten-

sively studied, among which only the subspace-based algorithms are reviewed here. Some
of the subspace-based algorithms include: Eigenfaces and its variants [19, 20], Fisherfaces
and its numerous modifications [21, 22], Laplacianfaces and its extensions [23, 24], ICA-
based methods [25], NMF-based methods [26, 27], to name only a few. Most of these
techniques depend on a representation of images in a vector space structure. Algorithms
then adopt statistical techniques to analyze the distribution of the object image vectors,
and find effective representations in a transformed vector space (feature space) according
to various criteria. Once a test image is captured, the similarity between the test image
and the prototype training sets is then calculated in the feature space. Face recognition
in this category is in fact a learning process with optimization techniques.
So far, face recognition in controlled environments has reached its maturity with high

performance. However, face recognition in less controlled or uncontrolled environments
still requires further study in order to be usable in practice. Recent standardized vendor
face technology tests revealed that there are still major challenges in practical face recogni-
tion applications [28, 29, 30, 31]. The main challenges are the potential large intra-subject
variations in human face image appearance due to 3D head pose changes, illumination
variants (including indoor/outdoor conditions), facial expressions, occlusions with other
objects or accessories (e.g., sunglasses, scarfs), facial hair and aging. As these difficulties
exist in face recognition, more robust face recognition algorithms are still needed.
Recently, Wright et al. [32] have developed a new face recognition framework for the

robust face recognition problem. Their work is based on a newly developed compressed
sensing theory, and has shown its robust performance compared with traditional face
recognition techniques. Compressed sensing is a technique first developed in signal pro-
cessing community for reconstructing a sparse signal by utilizing the prior knowledge of
its sparsity structure [33, 34]. Classical signal reconstruction method is to minimize the
ℓ2 norm, which is equivalent to minimizing the amount of energy in the system. The com-
pressed sensing theory resolves to minimize the ℓ0 norm, which is equivalently relaxed to
minimizing the ℓ1 norm under certain conditions. It yields attractive solutions which show
their robust property against noises in many problems. Due to its mathematics founda-
tion and effective framework, compressed sensing has already drawn immense attention
in areas of mathematics, optimization, information theory, statistical signal processing,
high-dimensional data analysis [35, 36, 37]. A survey about compressed sensing and its
broad applications can be found in [38].
The idea of compressed sensing is adopted by Wright et al. in their new algorithm

for face recognition, namely Sparse Representation-based Classification (SRC) algorithm.
This algorithm is robust in a sense that the sparse representation is less sensitive to
outliers in the face images such as occlusion or random pixel corruptions. However, the
major disadvantage of the SRC algorithm is its very expensive computational cost, which
limits its current applicability. Due to its vector representation, the SRC needs to solve
an ℓ1-regularized optimization problem whose size is the total number of pixels of the
images, which can be extremely large when high resolution images are used.
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To overcome the computational issue, two approaches can be considered. First, di-
mensionality reduction can be performed on the input images and then extracted feature
vectors can be used instead of original pixel features. However, this approach might poten-
tially lose beneficial information in the original images. Second, equivalent reformulation
of the problem can be pursued to find the solution faster, and the optimization problem
can be solved with proper acceleration technique. In this paper, we follow the second al-
ternative and aim to reduce computational complexity of the SRC algorithm by working
directly on 2D representation of images. Our method is accomplished by reformulating
the 2D images sparse representation problem, and then solving it through the existing
ℓ1 optimization techniques. For convenience, hereinafter, we name the original SRC al-
gorithm as 1D-SRC, and our new algorithm as 2D-SRC. Further, we consider applying
the 2D-SRC algorithm in an incremental learning context, and propose an incremental
2D-SRC learning procedure which has proved to be more efficient.

This paper is organized as follows: in Section 2, we review the SRC algorithm and
propose our 2D extension algorithm and the incremental computing procedure, followed by
the complexity analysis; then, in Section 3, we compare the performance of 1D-SRC with
2D-SRC and the incremental algorithms on some benchmark datasets, and reveal that
the proposed algorithms can speed up without decreasing the recognition performance;
finally, we conclude the paper in Section 4.

2. SRC Algorithms and Their Computational Complexity. We first present the
original 1D-SRC algorithm and analyze its high computational cost problem, then we
propose an equivalent formulation and induce a 2D-SRC algorithm which can be solved
much faster. After that, we further extend the 2D-SRC algorithm into the incremental
learning context. At last, we discuss the computational complexity of the three algorithms.

2.1. The SRC algorithm. In this subsection, we briefly review the sparse representation
face model and the SRC algorithm.

In face recognition research, it is generally conceived that there exists a face subspace
which is formed by one person’s face images under different variations (e.g., pose, illumi-
nation, expression). As a result, linear models can be used to approximate these “face
subspaces”. The recently proposed sparse representation-based face model is developed
based on this hypothesis, and it uses all known training sample images to span a face
subspace. For a test face image whose class label is unknown, one tries to reconstruct the
test image sparsely from the training samples.

The motivation of this model is that if given sufficient training samples of one person,
then any new (test) sample for this person will approximately lie in the linear span of the
training samples associated with this person. To be more precise, let us say, a database
consists of k classes denoted as:

A = {A1,1, . . . ,A1,n1 , . . . ,Ak,1, . . . ,Ak,nk
}

where Ai,l is the l-th image belonging to class i, ni is number of samples for class i,
i = 1, . . . , k. By stacking pixels of each image Ai,l into a column vector vi,l, one can build
up a matrix A to represent the training samples

A = [v1,1, . . . ,v1,n1 , . . . ,vk,1, . . . ,vk,nk
] ∈ RL×N (1)

where L = hw is the number of pixels for a h× w image, N = n1 + . . . + nk is the total
number of samples for all classes.

For a new test image y, we then can represent it using linear combination of samples
from the database

y = Ax0. (2)
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Most ideally, if y is from person i, then based on the assumption that person i’s face
subspace is sufficient to represent itself, so the coefficients x0 should have a form of

x0 = [0, . . . , 0, αi,1, αi,2, . . . , αi,ni
, 0 . . . , 0] (3)

in other words, the solution x0 in linear Equation (2) should only have non-zero values
at positions corresponding to the same person as the test image, therefore, it should be
very sparse. Thus, one can use “sparsity” as a heuristic principle for solving the linear
Equation (2), even though not knowing the true identity of the test image. For this
purpose, one can set up an objective to measure the “sparsity” of the coefficients x. From
the compressed sensing theory one knows that a restriction of ℓ1-norm has an effect of
producing sparse solutions. So, this leads to the following least ℓ1-norm problems:

(ℓ1) :
x̂1 = arg min

x
∥x∥1

s.t. Ax = y.
(4)

and

(ℓs1) :
x̂1 = arg min

x
∥x∥1

s.t. ∥Ax− y∥2 ≤ ϵ.
(5)

The above two models are both used in the SRC algorithm, and they are different
because (4) is a noise-free model and (5) is a model in the existence of noises. However,
they can be solved using the same optimization technique.
Now the SRC algorithm can be summarized as in Algorithm 1:

Algorithm 1 Sparse Representation-based Classification (1D-SRC byWright et al. [32])
1: Input: a matrix of training samples for k classes

A = [v1,1, . . . ,v1,n1 , . . . ,vk,1, . . . ,vk,nk
] ∈ R(wh)×N

(each column of A is a vectorization of training sample image Ai,il); the class labels
class(p), p = 1, . . . , k; the corresponding class labels label(i) of each training sample
vector A(:, i); a test sample y ∈ R(wh)×1; an optional error tolerance parameter ϵ > 0.

2: Normalize the columns of A to have unit ℓ2-norm.
3: Solve the ℓ1-norm minimization problem

x̂ = arg min
x
∥x∥1 s.t. Ax = y.

or alternatively solve the ℓ1-norm minimization problem

x̂ = arg min
x
∥x∥1 s.t. ∥Ax− y∥2 ≤ ϵ.

4: Compute the per-class residuals

rp (y) = ∥y − Aδp (x) ∥2 for p = 1, . . . , k.

where δp (x), for p = 1, . . . , k is a new vector for the p-th class whose entries are
defined as:

for i = 1, . . . , N, δ(i)p (x) =

{
xi, if label(i) is class(p)
0, otherwise.

5: Output: identity(y) = class(p∗), p∗ = arg min
p

rp (y) .

Based on the experimental results reported in [32], the SRC algorithm demonstrates
robust performance for face datasets with noises and occlusions, and can attain high
recognition rates.
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2.2. The 2D-SRC algorithm. In this section, we are concerned with the computational
cost of the SRC algorithm. From Algorithm 1, we can find that the most time consuming
step of the SRC algorithm is Step 3, which needs to solve the ℓ1-norm minimization
problem (4) or (5). Further, the problem size of the ℓ1-norm minimization is determined
by the size of matrix A. More precisely, it is proportionally increasing to size(A) = L×N ,
where L is the image dimensionality, i.e., the total pixel counts L = wh, and N is the
training sample size. So, if either the image dimensionality or the training sample size
is very large, then the computation of solving the ℓ1-norm minimization problem will
become very slow, or even failed. For example, a typical face database usually contains
images whose facial area can easily take up 90× 90 = 8100 pixels, which is an extremely
high dimensionality and can cause great computational costs. In this case, the SRC
algorithm does not work well because it cannot find the least ℓ1-norm solution effectively.
To overcome this problem, the authors in [32] proposed to downsize the original images
into smaller images which can make the computation possible, and all their computations
there are executed upon these smaller images. Although such downsampling of the images
can reduce the problem size and enable to compute attractable solutions, it also leads to
loss of discriminant information which are important for classification. Though there
exist other dimensionality reduction methods which can reduce the problem size of ℓ1-
norm minimization, it is better to preserve the discriminant information by using the
original images directly. Next, we devote to developing a 2D-SRC algorithm for this
purpose.

We first analyze the 1D-SRC model before investigation of a 2D-SRC model. According
to Fuchs [39, 40] and Boyd [41], the linear programming problem (4) and the quadratic
programming problem (5) can be equivalently transformed into the following ℓ1-norm
regularization problem

x̂1 = arg min
x

λ∥x∥1 + ∥Ax− y∥22 for some λ. (6)

This transformation is equivalent provided the parameter λ is adequately chosen. Thus
this transformation can unify problems (4) and (5) with an aim of simplifying the pro-
cess of the SRC algorithm. We start inducing a 2D-SRC model on basis of this new
transformation.

We notice that in (6) the matrix A is formed by stacking each h × w image Ai into a
long vector vi and then putting it to be a column of the matrix, thus A is a large matrix
since its row number is equal to the dimensionality of images. In order to overcome the
dimensionality curse problem, we represent each image as a matrix instead of a vector, to
derive a 2D sparse representation model that is similar to (6). For convenience, hereafter
we use the bold symbols Ai and A to denote the matrices of the training images and
the test image respectively. For a test image A, we suppose it can be represented by the
whole training images with a linear combination as follows:

A =
N∑
i=1

xiAi (7)

where xi (i = 1, . . . , N) are the coefficients need to be determined. Further, we can
formulate the following ℓ1-norm regularization problem under the sparse representation
assumption

x̂1 = arg min
x

λ∥x∥1 +
∥∥∥∥A− N∑

i=1

xiAi

∥∥∥∥2

F

(8)
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where A is an h×w image matrix whose label is to be determined, Ai (i = 1, . . . , N) is a
set of training image matrices whose class labels are already known, ∥·∥F is the Frobenius

matrix norm, x = [x1, . . . , xN ]
T is the sparse coefficients, and λ is a regularization pa-

rameter that needs to be adequately chosen. Denote Kh×w the vector space containing all
real matrices with h rows and w columns, we can introduce the Frobenius inner product
as follows:

⟨A,B⟩F =
∑
i

∑
j

AijBij. (9)

The Frobenius inner product is related to the Frobenius matrix norm by the following
equation

⟨A,A⟩F =
∑
i

∑
j

A2
ij = ∥A∥2F . (10)

Accordingly, we can rewrite the reconstruction error term in 2D-SRC model (8) as:

∥A−
∑
i

xiAi∥2F (11)

=

⟨
A−

∑
i

xiAi,A−
∑
i

xiAi

⟩
F

(12)

=
∑
i

∑
j

xixj ⟨Ai,Aj⟩F − 2
∑
i

xi ⟨Ai,A⟩F + ∥A∥2F

= xTQx− 2bTx+ c (13)

where

Q =

 ⟨A1,A1⟩F . . . ⟨A1,AN⟩F
...

. . .
...

⟨AN ,A1⟩F · · · ⟨AN ,AN⟩F

 ∈ ℜN×N , (14)

b =


⟨A1,A⟩F
⟨A2,A⟩F

...
⟨AN ,A⟩F

 ∈ ℜN×1, (15)

c = ∥A∥2F . (16)

As we can see from (13) that the 2D-SRC model objective function is actually a qua-
dratic form, and the problem size is only proportional to the number of input samples
N . As Q is symmetric and positive semidefinite, we can always find a matrix with full
column rank P = [p1, . . . ,pr] such that

Q = PTP. (17)

Then we can rewrite the quadratic form (13) as:

(13) = (Px)T (Px)− 2bTx+ c (18)

if further we can find a vector z such that

PTz = b (19)
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then (18) becomes

(18) = (Px)T (Px)− 2
(
PTz

)T
x+ c (20)

= (Px)T (Px)− 2zT (Px) + zTz− zTz+ c (21)

= ∥Px− z∥2 − zTz+ c. (22)

And finally, we are able to transform the original 2D-SRC problem equivalently to

x̂1 = arg min
x

λ∥x∥1 + ∥A−
∑
i

xiAi∥2F for some λ, (23)

⇔ x̂1 = arg min
x

λ∥x∥1 +
(
∥Px− z∥2 − zTz+ c

)
for some λ, (24)

⇔ x̂1 = arg min
x

λ∥x∥1 + ∥Px− z∥2 for some λ. (25)

Thus, the 2D-SRC model (8) can lead to a smaller size ℓ1-minimization problem (25).
The problem size now becomes size(P) = r ×N , and is smaller than the problem size of
the 1D-SRC model, which is L × N . We can prove r ≤ min(L,N) (see Lemma 1 in the
Appendix).

The only question left is how to find feasible P and z that satisfy (17) and (19). In
order to find a P , let the compact Singular Value Decomposition (SVD) of Q be

Q = USUT =
(
US1/2

) (
US1/2

)T
(26)

where S is a nonsingular diagonal matrix and U is a orthnormal matrix with full column
rank. By simply letting

P =
(
US1/2

)T
(27)

one can obtain a desirable solution for P . Further, since the columns of U are orthogonal,
one can easily solve PTz = b by

PTz = b (28)

⇒ PPTz = Pb (29)

⇒
(
US1/2

)T (
US1/2

)
z = Pb (30)

⇒ z = S−1Pb. (31)

Once P and z are obtained as above, the 2D-SRC model is established. This model can
still be solved by the optimization technique used in [32], but the size of the problem is
much smaller.

Based on the original 1D-SRC algorithm, we can now describe the 2D-SRC algorithm
as Algorithm 2.

2.3. The incremental 2D-SRC algorithm. In this section, we further extend the pro-
posed 2D-SRC algorithm to an incremental learning context. Consider scenarios when
training data samples are coming incrementally, it is beneficial to reuse previous compu-
tational results rather than to compute each time from scratch. For the 2D-SRC problem,
when the training image samples are coming incrementally, we devote to derive an incre-
mental learning algorithm for classifier design. In this paper, we only consider adding one
image into the training image set each time for simplicity.

Assume that the current training images set is An = {A1,A2, . . . ,An}, and a new
image An+1 is labeled and added to form An+1 = An ∪ {An+1}. For this new images set
An+1, the 2D-SRC algorithm can be readily applied. However, this implies that we need
to do SVD on the new inner product matrix Qn+1 =

[
⟨Ai,Aj⟩F

]
i,j=1,...,n+1

. In this way,

we have dropped all our previous computed results, especially the SVD results on the
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previous inner product matrix Qn =
[
⟨Ai,Aj⟩F

]
i,j=1,...,n

. As we can observe that in the

2D-SRC algorithm, computing SVD of the Frobenius inner product matrix Q is a critical
step. If we can reduce the cost of each SVD computation, then we can further improve
the 2D-SRC efficiency with incremental learning.

Algorithm 2 2D Sparse Representation-based Classification (2D-SRC)
1: Input: a set of training sample images for k classes

{A1,1, . . . ,A1,n1 , . . . ,Ak,1, . . . ,Ak,nk
} ⊂ ℜh×w

the corresponding class labels label(i) of each training sample image Ai, a test sample
A ∈ ℜh×w and a regularization parameter λ > 0.

2: Compute the Frobenius inner product matrix Q and vector b by (15).
3: Apply SVD on Q to find the matrix P and vector z by (27) and (28).
4: Solve the reduced ℓ1-minimization (1D-SRC) problem

x̂1 = arg min
x

λ∥x∥1 + ∥Px− z∥22 for some λ. (32)

5: Compute the per-class residuals

rp (A) = ∥A−
∑
i

δ(i)p (x)Ai∥F for p = 1, . . . , k. (33)

where δp (x) , for p = 1, . . . , k is a vector for the p-th class whose entries are defined as:

for i = 1, . . . , N, δ(i)p (x) =

{
xi, if label(i) is class(p)
0, otherwise.

(34)

6: Output: identity(y) = class(p∗), p∗ = arg min
p

rp (y).

First, we notice that for any n, Qn is an inner product matrix, so it is symmetric and
positive semidefinite. Therefore, computing the SVD of Qn is equivalent to computing
the Eigenvalue Decomposition (EVD) of Qn. What’s more favorable, all eigenvalues of
Qn are non-negative (see Lemma 2 in Appendix). Consequently, we can focus on how to
compute the EVD of Qn+1 from the EVD of Qn. Mathematically, the problem can be
stated as if given the EVD

Qn = UnΛnU
T
n (35)

and when a new sample An+1 is added, how can we compute the EVD

Qn+1 ≡
[
Qn b
bT c

]
= Un+1Λn+1U

T
n+1 (36)

efficiently, where b = [b1, b2, . . . , bn]
T , bi = ⟨Ai,An+1⟩F (i = 1, . . . , n) and c =

⟨
An+1,

An+1

⟩
F
are the incremental inner products formed with the new sample.

This is actually a mathematical problem, and the following theorem provides us the
relation between the eigenvalues and eigenvectors of Qn, Qn+1.

Theorem 2.1. (An Interlacing property of Eigenvalues [42]) Assume that the eigenvalue
decomposition (EVD) of Qn+1 is given by

Qn+1 ≡
[
Qn b
bT c

]
=

[
UnΛnU

T
n b

bT c

]
=

[
Un 0
0 1

]
Rn+1

[
UT

n 0
0 1

]
(37)
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where

Rn+1 ≡
[

Λn UT
nb

bTUn c

]
≡


λ1 z1

. . .
...

λn zn
z1 · · · zn c

 (38)

has the property that its eigenvalues are exactly n+1 roots of the following equation w.r.t.
variable d

z21
d− λ1

+ · · ·+ z2n
d− λn

= d− c. (39)

Moreover, if we let λ1 < λ2 < · · · < λn be sorted, and d1 < d2 · · · < dn < dn+1 be all
n+ 1 sorted roots of (39), then the following interlacing relation holds

d1 < λ1 < d2 < λ2 < · · · < dn < λn < dn+1, (40)

and the eigenvector vi corresponding to its eigenvalue di can be obtained by solving the
eigen-equation directly, which gives

vi =
1
Ti

[
z1

di−λ1
, · · · , zn

di−λn
, 1
]
, for i = 1, . . . , n+ 1 (41)

(Ti is a factor normalizing vi to be unit norm).

Finally, we have the EVDs

Vn+1 = [v1, . . . ,vn+1], Dn+1 = diag ([d1, . . . , dn+1]) (42)

Rn+1 = Vn+1Dn+1V
T
n+1 (43)

Un+1 =

([
Un 0
0 1

]
Vn+1

)
, Λn+1 = Dn+1 (44)

Qn+1 = Un+1Λn+1U
T
n+1. (45)

This gives the SVD of Qn+1.

In the above theorem, without losing generality we can assume all eigenvalues are
distinct and all zi ̸= 0, and we leave intensive discussion about repeated eigenvalues or
any zi = 0 for Lemma 3 in the Appendix. The properties of the matrix Rn+1 in Theorem
2.1 are well studied in mathematics community [43, 44, 45, 46]. Based on the result in
Theorem 2.1, we can design a binary search algorithm to find all n+1 eigenvalues of Qn+1

from (34) which is presented in Algorithm 3. Then we can compute the corresponding
eigenvectors through (41)-(44). This makes the incrementally computing of the SVD
possible. Eventually, we can summarize the incremental learning procedure for the 2D-
SRC algorithm in Algorithm 4.

Algorithm 3 Binary search for roots of Equation (39)
1: Input: the current n eigenvalues λ1,. . . , λn, the values z1,. . . , zi and c, M = norm(Qn),
convergent tolerance ϵ > 0.

2: For i = 1, . . . , n+ 1, binary search di in interval [λi−1, λi] (let λ0 = −M , λn+1 = M):
let low = λi−1, high = λi

do
di = (λi−1 + λi);
fval = (di − c)−

∑n
i=1 z

2
i / (di − λi);

if fval > 0 then low = mid, else high = di;
while fabs(high− low) > ϵ

3: Output: the new n+ 1 eigenvalues d1, . . . , dn+1.
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Algorithm 4 Incremental procedure for 2D-SRC
1: Assume that we have established a 2D-SRC model (by Algorithm 2) for n training
images, and now a new (n+ 1)-th training image is added.

2: Given current training sample image set {A1, . . . ,An} ⊂ ℜh×w with their label set,
a saved copy of SVD decomposition on current Frobenius inner product matrix Qn

= UnΣnU
T
n , a new labeled training sample image An+1 ∈ ℜh×w.

3: Compute the new formed Frobenius inner product matrix entries b = [b1, b2, . . . , bn]
where bi = ⟨Ai,An+1⟩F (i = 1, . . . , n) and c = ⟨An+1,An+1⟩F .

4: Compute all eigenvalues Σn+1 = diag (d1, . . . , dn+1) by Algorithm 3.
5: Compute all eigenvectors Un+1 by (41) – (44).
6: This establishes a 2D-SRC model (Algorithm 2) with training image set
{A1, . . . ,An,An+1}.

7: n← n+ 1, and turn to Step 2.

2.4. Complexity analysis. One can see from the Algorithm 2 that the complexity of
establishing a 2D-SRC model consists of two parts, the transformation step for finding
parameters P and z and then solving the reduced ℓ1-minimization problem. In fact, the
main computational cost in recognition is in the optimization process for solving the ℓ1-
minimization problem. One can observe that problem size of the ℓ1-minimization problem
in 1D-SRC is L × N and the one for the 2D-SRC is r × N . In most of applications, we
have L ≫ N and r < N , and this indicates that the 2D-SRC algorithm can speed up
significantly.
It is noted importantly that our analysis is based on an assumption that the smaller

the input size of ℓ1-norm solver, the faster it runs. Under this assumption, we can reduce
the computational complexity from O(LN) to O(rN). Our experimental shows that on
average the 2D-SRC algorithm is 2 ∼ 3 times faster than 1D-SRC, more details can be
seen in our experimental results.
As for the incremental SVD based version, its complexity also consists of two parts: let

n = size(Qn), then the binary searching steps for eigenvalues are at most C × n loops,
where C is the maximum possible searching steps, and each loop contains O(n) float-point
operations (flops); and the eigenvector computing step takes up O(n2) flops on computing
all eigenvectors and it also needs an extra O(n2+δ) step for matrix-to-matrix multiplication
(herein 0 ≤ δ ≤ 1 has not been well determined in computational complexity theory, but
a δ ≈ 0.807 . . . algorithm has been presented in [47]; however, a naive implementation of
multiplying two matrices will take n3 operations for δ = 1). Thus, totally it takes O(n2+δ)
flops and can be more efficient than an independent SVD which generally needs O(n3)
flops. We summarize the complexity comparisons in Table 1.

Table 1. Complexity of algorithms

SVD flops ℓ1-norm problem size
1D-SRC – O(LN)
2D-SRC O(N3) O(rN)

2D-SRC-incremental O(N2+δ)∗ O(rN)
∗ here 0 ≤ δ ≤ 1 is still not determined in theory.

3. Experiments. To evaluate the efficiency of the proposed algorithms in this paper,
we compare their computational costs and recognition rates with the 1D-SRC algorithm
on several face recognition tasks. By using several benchmark face databases, we show
that the proposed two algorithms (2D-SRC and 2D-SRC-incremental) are faster than
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the 1D-SRC algorithm, and recognition accuracy is maintained. Next, we present our
experimental results in detail.

3.1. Datasets and configurations. We have performed experiments on three face data-
bases: ORL [48], Yale B plus Extended [49, 50] and AR face database [51]. For each
database, alignments (e.g., fixing positions for the two eyes, cropping) are performed.

For the ORL face database, it contains 40 individuals, each with 10 face images, so
totally 400 face images are available; the original image size of the database is 92× 112,
and we have cropped it into the size of 90× 90.

For the Yale B plus Extended face database, it contains 38 individuals, each with many
variants of poses and illuminations, but in our experiments we only adopted these images
with pose of frontal view (corresponding to those with filenames as ‘∗ P00∗’) and all
illuminations in subset 1 and 2. We crop and resize them into 90× 90.

For the AR face database, we choose 120 individuals, each with 26 images available.
We also crop and resize them into 90× 90.

An important advantage claimed for 1D-SRC model is its robust performance, so we
design our experiments containing two parts: one part uses image datasets without cor-
ruptions both for training and testing, the other part uses corrupted image datasets for
testing but not in training.

Although many ℓ1-optimization solvers are publicly available (e.g., [52, 53, 54]), ℓ1-
magic [52] is chosen in [32]. More than that, in our experiments we also choose another
ℓ1-optimization solver l1 ls to solve the ℓ1-norm minimization problem. The purpose is to
make broad comparisons and investigate the performance in diversity when the proposed
algorithms are collaborating with different ℓ1-optimization solvers.

All the results are obtained using MATLAB on a machine with Intel(R) Xeon(R) CPU
2.33GHz, 16GB of RAM, Windows Server 2003 Standard x64 Edition.

3.2. 1D-SRC vs. 2D-SRC accuracy and speed. In this part, we compare two algo-
rithms: the original 1D-SRC algorithm and the proposed 2D-SRC algorithm. We focus
on two performance: the recognition accuracy R and the average computational time T ,
and they are defined as

R =
nc

n
, (46)

T =

∑n
i=1 ti
n

(47)

where n is the total number of testing samples, nc is the number of correctly recognized
testing samples, ti is the computational time used for recognizing the ith test sample.

The experiments are performed as follows: given a database, we split it using a half-half
training:testing ratio (i.e., 50% : 50%), and for each split, we choose 5 random repeats of
the training/testing set and record the performance of these two algorithms, then average
the 5 rounds performance as a final performance. To test the performance of 1D-SRC
and 2D-SRC under different image sizes, we also repeat resizing the same split sets with
varying sizes, and we have chosen the image size sequence as 20×20, 30×30, . . . , 80×80.

The experimental results are obtained on the ORL, the Yale B plus Extended (sub-
set1+subset2), the AR face databases respectively. Figures 1-3 show the results when
the databases are original and noise free. Figures 4-6 show the results when the testing
samples are corrupted by adding small block noises randomly. The purpose of showing
these two different type of results is to demonstrate both the 1D-SRC algorithm and the
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image sizes 1D-SRC 2D-SRC
20× 20 88.40 92.10
30× 30 88.60 91.60
40× 40 88.80 91.60
50× 50 88.70 91.00
60× 60 89.30 90.40
70× 70 87.90 90.30
80× 80 88.40 90.30

(a) Recognition rates
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Figure 1. Comparison of 1D-SRC and 2D-SRC on the ORL database

image sizes 1D-SRC 2D-SRC
20× 20 100.00 100.00
30× 30 100.00 100.00
40× 40 100.00 100.00
50× 50 100.00 100.00
60× 60 100.00 100.00
70× 70 100.00 100.00
80× 80 100.00 100.00

(a) Recognition rates
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Figure 2. Comparison of 1D-SRC and 2D-SRC on the Yale B and Ex-
tended database

proposed 2D-SRC are robust when the testing data are corrupted by noises. In each fig-
ure, we show different recognition rates in a table, and draw the curve of computational
time for different image dimensionality in a figure.
From these figures and tables, we conclude that: (1) The 2D-SRC algorithm can

get a recognition rates close to the original 1D-SRC algorithm, in both cases (without
noise/with noise). (2) The computational cost of the 2D-SRC algorithm is generally
lower than that of 1D-SRC algorithm. More precisely, for small scale databases like the
ORL and the Yale B plus Extended (subset1+subset2), the computational time costs
of the original 1D-SRC algorithm are increasing as a linear function of the data dimen-
sionality L, which is consistent with the O(LN) complexity we have analyzed. But the
computational time for the 2D-SRC algorithm is nearly constant because its complexity
is O(rN) and r is small in these experiments. For large-scale database like AR, the com-
putational time for the original 1D-SRC algorithm is increasing similarly, but the time
for the 2D-SRC algorithm is firstly increasing and then becomes flat. (3) The recognition
rates of the 2D-SRC algorithmon is slightly higher than that of the 1D-SRC algorithm
on the ORL database, the same on the Yale B plus Extended database and lower on
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image sizes 1D-SRC 2D-SRC
20× 20 86.50 86.12
30× 30 86.40 86.08
40× 40 86.90 86.40
50× 50 86.86 86.50
60× 60 89.90 86.60
70× 70 87.10 86.90
80× 80 87.50 87.20

(a) Recognition rates
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Figure 3. Comparison of 1D-SRC and 2D-SRC on the AR database

image sizes 1D-SRC 2D-SRC
20× 20 91.00 93.00
30× 30 91.00 91.50
40× 40 84.50 93.50
50× 50 89.00 92.50
60× 60 87.00 91.50
70× 70 85.50 90.50
80× 80 87.00 91.50

(a) Recognition rates
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Figure 4. Comparison of 1D-SRC and 2D-SRC on the ORL database
(with corruptions)

the AR database. Overall the recognition rates of the two algorithms are very close.
Therefore, the 2D-SRC algorithm has competitive advantage in terms of of reducing the
computational costs whilst maintaining a similar recognition performance.

3.3. Performance and efficiency for incremental 2D-SRC. In this part, we evaluate
the performance of three algorithms (i.e., 1D-SRC, 2D-SRC, 2D-SRC-incremental) in the
context of incremental learning. Also, the average recognition accuracy and computational
time are adopted for evaluation.

The experiment is set up as follows. Given a database, we firstly divide it into a training
set and a testing set using a ratio of training : testing = 70% : 30%; here we do not use the
whole training set at once, but start from using a small set of them (e.g., 30% or so), and
add the other training samples one by one to simulate a process with increasing number
of training images; the testing set is kept unchanged all the time. For each intermediate
training set, we apply the 1D-SRC, the 2D-SRC and the 2D-SRC-incremental algorithms
respectively to do recognition and record their accuracy R and the average recognition
time T for each sample.
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image sizes 1D-SRC 2D-SRC
20× 20 100.00 100.00
30× 30 100.00 100.00
40× 40 100.00 100.00
50× 50 100.00 100.00
60× 60 100.00 100.00
70× 70 100.00 100.00
80× 80 100.00 100.00

(a) Recognition rates

  20x20     30x30     40x40     50x50     60x60     70x70     80x80   
0

50

100

150

200

250

size of image

av
er

ag
e 

re
co

gn
iti

on
 s

pe
ed

 fo
r 

on
e 

im
ag

e 
(in

 s
ec

on
ds

)

 

 
1D−SRC
2D−SRC

(b) Speed vs. dimensionality

Figure 5. Comparison of 1D-SRC and 2D-SRC on the Yale B and Ex-
tended database (with corruption)

image sizes 1D-SRC 2D-SRC
20× 20 75.26 74.17
30× 30 75.17 74.73
40× 40 75.65 75.03
50× 50 76.10 75.13
60× 60 76.20 75.70
70× 70 76.45 75.90
80× 80 76.51 76.10

(a) Recognition rates
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(b) Speed vs. dimensionality

Figure 6. Comparison of 1D-SRC and 2D-SRC on the AR database (with corruptions)

The experimental results on the ORL database, the Yale B plus Extended (subset1+sub-
set2) database and the AR database are shown in Figures 7-9 respectively. In each figure,
on the left we show the recognition accuracy difference of the three algorithms, when
the number of training samples increases, and on the right we show their corresponding
average computational time trends as the number of training samples varies.
From the figures, we can see consistently that for all three databases, the 1D-SRC

algorithm always uses the most computational time, the 2D-SRC algorithm use less time
than the 1D-SRC algorithm, and the 2D-SRC-incremental algorithm use the least time
among three algorithms. The time consuming gap between the 1D-SRC algorithm and
the 2D-SRC algorithm is much bigger that the gap between the 2D-SRC algorithm and
the 2D-SRC-incremental algorithm.
Also, the recognition rates of the three algorithms are very close, mostly the 1D-SRC

algorithm is slightly higher than the 2D-SRC algorithm and the 2D-SRC-incremental al-
gorithm, but sometimes the contrary is the case. It can be seen that there is nearly no dif-
ference of recognition rates between the 2D-SRC algorithm and the 2D-SRC-incremental
algorithm. This can be expected since the incremental SVD procedure employed in the
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(a) Recognition rates vs. number
of training samples
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(b) Computational time vs. num-
ber of training samples

Figure 7. Incremental learning results on the ORL face database
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(a) Recognition rates vs. number
of training samples
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(b) Computational time vs. num-
ber of training samples

Figure 8. Incremental learning results on the Yale B and Extended face database

2D-SRC-incremental algorithm is a pure computational acceleration with careful design
for not losing accuracy.

As a result, we conclude that applying incremental procedure on 2D-SRC is helpful
in reducing the computational time further, but not as much as the cost reduction from
1D-SRC to 2D-SRC, and the performance for the three algorithms are similar.

3.4. Comparisons of two ℓ1-solvers. In this section, we use two different ℓ1-solvers
for comparison. In fact, the performance of the proposed algorithms is relying on the
performance of the ℓ1-solver used. In order to demonstrate the effectiveness of the pro-
posed algorithms in using different ℓ1-solvers, we choose two ℓ1-solvers (i.e., ℓ1-magic and
l1 ls), then execute 1D-SRC and 2D-SRC separately to record their performance. The
experiment setup is the same as in previous Section 3.2.

The results on three databases, i.e., the ORL database, the Yale B plus Extended
(subset1+subset2) database and the AR database, are shown in Figures 10-12, when all
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(a) Recognition rates vs. number
of training samples
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(b) Computational time vs. num-
ber of training samples

Figure 9. Incremental learning results on the AR face database

image sizes ℓ1-magic l1 ls
1D-SRC 2D-SRC 1D-SRC 2D-SRC

20× 20 88.40 92.10 90.40 91.80
30× 30 88.60 91.60 89.10 91.80
40× 40 88.80 91.60 89.60 91.70
50× 50 88.70 91.00 89.50 90.80
60× 60 89.30 90.40 89.30 90.70
70× 70 87.90 90.30 89.00 90.40
80× 80 88.40 90.30 89.10 90.50

(a) Recognition rates
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(b) Speeds vs. dimensionality

Figure 10. Comparison of different ℓ1-solvers on the ORL database

the training and testing images data are noise free. In Figures 13-15, the results are
shown when the testing images data are corrupted with noise and the training images
data remain the same. In each figure, we show on the left the recognition accuracy of
four combinations: two of them are from the 1D-SRC algorithm using ℓ1-magic and l1ls
as solvers respectively, the other two are from the 2D-SRC algorithm also using ℓ1-magic
and l1ls as solvers respectively. Different image sizes of the same database have been
extensively tested. On the right, we show their average computational time trend when
the image size varies.
From the experimental results, we conclude that: (1) the performance (recognition

rate and computation time) is different between two different solvers, and the l1 ls solver
is generally performs better than the ℓ1-magic solver. (2) For small scale databases,
like the ORL and the Yale B plus Extended (subset1+subset2), the 2D-SRC algorithm
has consistent computational improvement for both ℓ1-solvers, which demonstrates the
effectiveness of the 2D-SRC algorithm. (3) For large scale databases, like the AR, for both
ℓ1-solvers, the computational time of the 2D-SRC algorithm is firstly increasing and then
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image sizes ℓ1-magic l1 ls
1D-SRC 2D-SRC 1D-SRC 2D-SRC

20× 20 100.00 100.00 100.00 100.00
30× 30 100.00 100.00 100.00 100.00
40× 40 100.00 100.00 100.00 100.00
50× 50 100.00 100.00 100.00 100.00
60× 60 100.00 100.00 100.00 100.00
70× 70 100.00 100.00 100.00 100.00
80× 80 100.00 100.00 100.00 100.00

(a) Recognition rates
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(b) Speeds vs. dimensionality

Figure 11. Comparison of different ℓ1-solvers on the Yale B plus Extended database

image sizes ℓ1-magic l1 ls
1D-SRC 2D-SRC 1D-SRC 2D-SRC

20× 20 86.50 86.12 90.00 89.90
30× 30 86.40 86.08 90.37 90.13
40× 40 86.90 86.40 90.50 89.96
50× 50 86.86 86.50 90.38 90.10
60× 60 89.90 86.60 90.85 90.25
70× 70 87.10 86.90 90.90 90.55
80× 80 87.50 87.20 91.28 91.06

(a) Recognition rates
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(b) Speeds vs. dimensionality

Figure 12. Comparison of different ℓ1-solvers on the AR database

becomes flat, but the improvement percentages are different between these two ℓ1-solvers.
It can be seen that for ℓ1-magic, the 2D-SRC algorithm always computes faster than the
1D-SRC algorithm; however, for the l1 ls, the 2D-SRC algorithm firstly requires more
computational time for small problems; however, the 2D-SRC algorithm becomes faster
than the 1D-SRC algorithm as the size of problems grows larger. From this analysis,
one can see that the l1 ls solver is more optimized for computation. (4) Regarding
the recognition rates, for both the 1D-SRC algorithm and the 2D-SRC algorithm, the
experimental results show that the l1 ls solver is always having higher recognition rates
than the ℓ1-magic solver on the same database, which indicates that the l1 ls solver could
be a better choice for these recognition tasks. While the ℓ1-solver is fixed (either ℓ1-magic
or l1 ls), on the ORL database the 2D-SRC algorithm has slightly higher recognition rates
than the 1D-SRC algorithm, on the Yale B plus Extended database they have the same
recognition rates, and on the AR database the 1D-SRC algorithm has negligible higher
recognition rates than the 2D-SRC algorithm. Overall the recognition rates of the two
algorithms are close provided they are using the same ℓ1-solver. In conclusion, the 2D-
SRC algorithm demonstrates its effectiveness for these two ℓ1-solvers.
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image sizes ℓ1-magic l1 ls
1D-SRC 2D-SRC 1D-SRC 2D-SRC

20× 20 91.00 93.00 92.50 93.00
30× 30 91.00 91.50 90.50 91.50
40× 40 84.50 93.50 90.00 93.00
50× 50 89.00 92.50 89.00 92.50
60× 60 87.00 91.50 88.50 91.50
70× 70 85.50 90.50 89.00 91.00
80× 80 87.00 91.50 89.00 92.00

(a) Recognition rates
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(b) Speeds vs. dimensionality

Figure 13. Comparison of different ℓ1-solvers on the ORL database (with corruptions)

image sizes ℓ1-magic l1 ls
1D-SRC 2D-SRC 1D-SRC 2D-SRC

20× 20 100.00 100.00 100.00 100.00
30× 30 100.00 100.00 100.00 100.00
40× 40 100.00 100.00 100.00 100.00
50× 50 100.00 100.00 100.00 100.00
60× 60 100.00 100.00 100.00 100.00
70× 70 100.00 100.00 100.00 100.00
80× 80 100.00 100.00 100.00 100.00

(a) Recognition rates
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(b) Speeds vs. dimensionality

Figure 14. Comparison of different ℓ1-solvers on the Yale B+Extended
(with corruptions)

image sizes ℓ1-magic l1 ls
1D-SRC 2D-SRC 1D-SRC 2D-SRC

20× 20 75.26 74.17 81.95 81.05
30× 30 75.17 74.73 81.96 81.10
40× 40 75.65 75.03 82.05 81.37
50× 50 76.10 75.13 82.26 81.46
60× 60 76.20 75.70 82.65 81.63
70× 70 76.45 75.90 82.90 81.80
80× 80 76.51 76.10 83.18 82.10

(a) Recognition rates
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Figure 15. Comparison of different ℓ1-solvers on the AR database (with corruptions)
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4. Conclusion. In this paper, we have proposed two fast sparse representation algo-
rithms for robust face recognition. One is the 2D-SRC algorithm and the other is an
incremental version of 2D-SRC. The main idea for these these two algorithms is based
on the inner product matrix computation, and such computation can be performed in
an incremental manner. Experimental results on different benchmark datasets as well as
different ℓ1-optimization solvers show that the proposed methods are significantly faster
than the original SRC algorithm whilst still maintain or even enhance the recognition
rate, especially for large datasets or high-resolution images.

This work is an extension of our previous conference paper in ICPR 2010 [55].
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Appendix.

Lemma 1. Let Q be the Frobenius inner product in (14). rank(Q) ≤ min(L,N), where
L = hw is the total pixel number of an h × w image and N is the number of training
images.

Proof: rank(Q) ≤ N since

Q =

 ⟨A1, A1⟩F · · · ⟨A1, AN⟩F
...

. . .
...

⟨AN , A1⟩F · · · ⟨AN , AN⟩F


N×N

(48)

rank(Q) ≤ L since

Q =

 vec (A1)
T vec (A1) · · · vec (A1)

T vec (AN)
...

. . .
...

vec (AN)
T vec (A1) · · · vec (AN)

T vec (AN)


N×N

(49)

=

 vec (A1)
T

...

vec (AN)
T


N×L

[
vec (A1) · · · vec (AN)

]
L×N

(50)

where vec (·) is the vectorizing operator of matrix.

Lemma 2. If Q is a positive semi-definite matrix, then all its eigenvalues are non-
negative.

Proof: Suppose λ is an arbitrary eigenvalue of Q, associated with an eigenvector
v ̸= 0. Thus by definition Qv = λv, which implies vTQv = λvTv. Since Q is positive
semi-definite, we have

λ =
vTQv

vTv
≥ 0.
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Lemma 3. In Theorem 2.1, it is assumed that all eigenvalues {λi}ni=1 in (39) are distinct
from each other and all zi ̸= 0. However, when some eigenvalues λi are repeated and
some zi = 0, computation can be further simplified and investigated rigorously. We have
the following complementary results:
(1) If zi = 0 in Rn+1, then λi must be an eigenvalue of Rn+1. By deleting the ith row

and ith column from Rn+1 we can get a smaller matrix.

R̃(n−1)+1 =



λ1 z1
. . .

...
λi−1 zi−1

λi+1 zi+1

. . .
...

λn zn
z1 · · · zi−1 zi+1 · · · zn c


(51)

suppose the EVD of R̃(n−1)+1 is given by R̃(n−1)+1 = Ṽ(n−1)+1D̃(n−1)+1Ṽ
T
(n−1)+1, then the

EVD of Rn+1 is

D̃n+1 =

(
λi 0

0 D̃(n−1)+1

)
(52)

Ṽn+1 =

(
1 0

0 Ṽ(n−1)+1

)
(53)

Rn+1 = Ṽn+1D̃n+1Ṽ
T
n+1 (54)

notice that R̃(n−1)+1 still has the “arrowhead” form like Rn+1, so the above argumentation

can be used on R̃(n−1)+1 recursively until there is no zi = 0 in the matrix. Finally, we can

obtain a (p+1)× (p+1) “arrowhead” matrix R̃p+1 just like Rn+1 but with all zi ̸= 0, and
we go on finding its EVD in Step (2).

(2) After Step (1), we can now assume for R̃p+1 all its zi ̸= 0. If R̃p+1 has no repeated
λk values, then the condition of Theorem 2.1 is satisfied, and its EVD can be computed
exactly as Theorem 2.1 shows. Otherwise, go further to Step (3).

(3) If R̃p+1 has some repeated λk values, let λk = λk+1 = · · · = λk+q = λ̂ (q ≥ 1) is an

eigen value that repeats q+1 times, then λ̂ must be an eigenvalue of Rn+1 with multiplicity
q, and associated with q mutually orthnormal eigenvectors v1,v2, . . . ,vq which can be
found as:

v
(j)
i =


zk+izk+j

z2k + z2k+1 + · · ·+ z2k+j−1

, i = 0, . . . , j − 1

−1, i = j
0, otherwise

(55)

where v
(j)
i is the jth entry of the eigenvector vi. All duplicate values in {λk}pk=1 can be

removed to make a unique sequence λ̂1, λ̂2, . . . , λ̂r, with q1+1, q2+2, . . . , qr+1 (ql ≥ 0 for

∀l) being their multiplicity, then the above procedure can be applied to each λ̂ (if qk = 0
then it can be skipped) and totally q1+ q2+ · · ·+ qr ≡ p− r eigenvalue-eigenvector pairs of

R̃p+1 can be found, the other r + 1 eigenvalues are exactly the roots of following equation
with respect to d.

ẑ21

d− λ̂1

+ · · ·+ ẑ2r

d− λ̂r

= d− c (56)
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where ẑ2k =
∑

ifλi==λ̂k

z2i is the sum of all appearing z2i corresponding to the repeated value

λ̂k. This equation can be solved just like (39) in Theorem 2.1 since it has r + 1 distinct
roots d1, d2, . . . , dr. The eigenvector related to dk is the same one given by (41) in Theorem

2.1. So, all (p−r)+(r+1) = p+1 eigenvalues and eigenvectors of R̃p+1 can be computed
now, even if it has repeated eigenvalues.

(4) All the computations in (1)-(3) are explicitly done by explicit formulas, and their
complexity is O(n) for computing one eigenvalue and one eigenvector. So, the complexity
of finding all eigenvalue and eigenvectors will be O(n2).

Proof: We refer the reader for proving (1)-(3) in [45], and (4) is obvious by checking
each computation.


