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ABSTRACT Target tracking is popular in computer vision field. Although the classic BPNN completes

targets tracking, its computation is complex and tracking accuracy is low when the tracking scene is

uncertain or complex. To deal with the difficulties above, in this paper, we propose an innovative target

tracking method combined adaptive α–β filter with robust BPNN. First, we utilize the adaptive α–β filter to

compute the location region on optimal filtering parameters in the prediction stage. Of course, the novel filter

reduces the region and gives effective image information to the robust BPNN that has the optimal number

and weight of neurons as well as the improved learning rate. Subsequently, the network makes an accurate

recognition and sends back the updated positions of targets to the filter for the next cycle. Employing the

novel interactive mechanism, the numerical study and experiments indicate that the proposed method has

remarkable improvement on average performance in the uncertain and complex environment.

INDEX TERMS Target tracking, α − β filter, BPNN, weight, target dynamics.

I. INTRODUCTION

As a popular research topic in computer vision field, the target

tracking has significant applications on navigation, intelligent

traffic, military and etc. In the past decades, many studies on

this topic have been completed. First, the Kalman filter (KF)

is used to track mobile targets. Aimed at the limitation on

linear component, [1] proposed a new hierarchical model

based on the contextual knowledge and multiple cues into

the unscented KF (UKF). Of course, the particle filter (PF) is

another method though the real-time is relatively poor. In [2],

a robust and unconstrained tracking method was developed

to overcome tracking failure issues with the PF. Nowadays,

the kernelized correlation filter (KCF) is widely utilized.

In [3], a shape-preserved KCFwas proposed to accommodate

target shape information for robust tracking. Subsequently,

the historical template and the KCF were integrated to track

the target and its position in [4]. In [5], a new visual tracking

framework of discriminant KCF based on adaptive template

update strategy was presented. Meanwhile, the methods can-

not be well applied in some uncertain and complex scenes

owing to technical restraint [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Sudipta Roy.

Modeling on the architecture of human brain, the neural

network (NN) is regarded as a set of connected neurons

that can process signals through the network and generate

the desired output. Especially, the back propagation NN

(BPNN) computes the difference between the desired output

and the actual output. When an input vector is presented to

the network, it is propagated forward layer by layer, until

it reaches the output layer. At this time, the actual output is

compared with the desired output based on the loss function.

The resulting error of BPNN is calculated for each neuron

on the output layer and is propagated through the network,

until the neuron has its error. With flexible property and

learning ability, the BPNN is used to model the unknown and

nonlinear relationship between multiple inputs and multiple

outputs. Due to its advances, the BPNN has been used to track

mobile targets. In [7], a new method of image recognition

on feature extraction under the blurred backgrounds was pro-

posed. Aiming at the problem that the existing target tracking

framework based on deep learning is difficult to realize the

real-time video target tracking on low-power mobile surveil-

lance system, [8] put forward an improved multi-target track-

ing method. According to the Lyapunov function, a BPNN

method was presented for nonlinear pure-feedback system,
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where all closed-loop signals were uniformly bounded in [9].

Subsequently, [10] proposed a BPNN scheme for quarter-

vehicle mode, and the network was used to approximate the

unknown mass of vehicle-body. Although the BPNN com-

pletes target tracking, the computational cost is high in the

uncertain and complex scene. We should reduce the cost of

classic BPNN and improve its accuracy.

As for the classic BPNN, the whole image assigned to

a given target brings about extra running time. Neverthe-

less, the filtering algorithm extrapolates target dynamics.

It generates and updates the tracks based on the available

measurement. In [11], an adaptive BPNN was proposed for

suspension system, and then a dynamic surface control tech-

nique was developed to stabilize the attitude of vehicles

by using a first-order filter. By comparison, the α-β filter,

a second-order filter, presumes that the complex system is

approximated under the dynamic model, which computes

steady-state solutions with the exponentially reduced com-

putation. However, it is difficult to adaptively define the

filtering gains for maneuvering targets. To overcome it, a new

α-β filter on the fuzzy method was discussed to compute

filtering coefficients in [12]. In [13], an adaptive α -β filter

was applied in the radar tracking system. Reference [14]

designed a novel α -β filter and come to the satisfactory

conclusion under the noisy condition. If possible, the tar-

get with the variable acceleration (VA) motion should be

tracked by using it. Consequently, the filter-auxiliary tracking

this kind of target with low computational load is our goal.

In this work, we define the relationship between current

measurement information and target dynamics. The adaptive

coefficient is put forward to adapt to the target maneuver-

ability in an optimal ellipse region. Subsequently, the BPNN

utilizes the resulting errors to calculate gradient. It is fed

to the optimization method, which in turn uses it to update

the weight of each neuron, in an attempt to minimize the

value of loss function. Inevitably, the weight output delta

and input activation make the important role. Considering

the tracking reliability of the classic BPNN, we introduce

the inertia on initial weights to improve robustness, where

the inertia makes the current weight change under the error

function. Simultaneously, the problems of getting stuck are

avoided, and the gradient on the error function becomes small

in a flat plateau that immediately leads to a deceleration of

gradient descent. The deceleration is delayed by the addition

of inertia so that the plateau is escaped. Besides, the learning

rate is improved based on the change of gradient direction.

Inspired by technical specifications for target track-

ing, the paper presents an innovative method combined

adaptive α -β filter with robust BPNN. It mainly addresses

the efficiency and reliability in some scenes, and distinctly

exhibits a novel mechanism. The interactive tracking frame-

work on the adaptive α -β filter and the robust BPNN are

mutually adjusted to reduce tracking error and get optimal

region when the motion state is maneuvering. For example,

in the prediction stage, the adaptive α-β filter reduces the

required location region by using the filtering parameters

and target dimension. Within this region, the network makes

an effective recognition and sents the updated positions of

targets to the adaptive filter for the next calculation. As a

result, the robustness and accuracy of the proposed method

are improved inherently.

The remainder of this paper is assigned as follows: In

Section 2, the principle of the adaptive α -β filter is for-

mulated and the characteristics of two kinds of sensors are

discussed to define the square location region. In Section 3,

we explore the robust BPNN with the weight optimization,

learning rate improvement and model construction. What’s

more, the process of the proposed method is presented at

length. The numerical study and some scenarios are indicated

with the promising results to verify the tracking performance

of the proposed method in Section 4. Further, it achieves

mobile targets tracking under the different environments.

In Section 5, the conclusions are drawn by providing the next

research plan.

II. FILTER MODEL

We have in hand the predicted vector of target in the state

space X at time k − 1 [9], [15], [16]:

Xk|k−1 = Fk|k−1Xk−1|k−1 + ŴkUk (1)

where Fk|k−1 is the state transfer matrix of target center,

Xk−1|k−1 is the target state vector at time k − 1, Ŵk is the

gain matrix of state noise vectorUk that follows the Gaussian

distribution N (0,Qk), and Qk is the variance.

The measurement model in the measurement space Z at

time k can be formulated as:

Zk = HkXk|k−1 + Vk (2)

where Hk is the measurement transfer matrix, Vk is the

measurement noise vector with the Gaussian distribution

N (0,Rk), and Rk is the variance.

A. PRINCIPLE OF α-β FILTER

In general, the classic α-β filter excludes measurement error

as much as possible when gathering the target dynamics.

Suppose that the scanning period isT , we have the predicted

equation of target state as follows [17], [18]:
{

xk|k−1 = xk−1|k−1 + ẋk−1|k−1T

ẋk|k−1 = ẋk−1|k−1
(3)

where xk|k−1 and ẋk|k−1 are the predicted position and veloc-
ity vector respectively at time k − 1.

Subsequently, the updated equation of target state at time

k can be written as:






xk|k = xk|k−1 + αk
(

Zk −Hkxk|k−1
)

ẋk|k = ẋk|k−1 +
βk

(

Zk −Hkxk|k−1
)

T

(4)

where αk and βk are the filtering coefficients corresponding

to the position and velocity. As for the target with linear
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dynamics, they are often defined by [14], [19]:










αk =
2 (2k − 1)

k (k + 1)

βk =
6

k (k + 1)

(5)

Due to the target maneuverability and noise interference,

the accuracy becomes poor.

B. ADAPTIVE α-β FILTER

To overcome the drawbacks of the classic α-β filter, an adap-

tive filter for general target has presented. As for the extended

dynamics, the pseudo-acceleration is added to the prediction

equation for tracking the non-maneuvering and maneuvering

targets. In practice, the motion state of target is complex.

It easily changes from the non-maneuvering state into the

maneuvering state. The constant acceleration (CA) motion

model should be constructed for maneuvering target. There-

fore, we extend (3) as follows:






xk|k−1 = xk−1|k−1 + ẋk−1|k−1T +
1

2
aT 2

ẋk|k−1 = ẋk−1|k−1 + aT
(6)

where a is the acceleration of target:

a =
ẋk−1|k−1 − ẋk−2|k−2

T
(7)

Substituting (7) into (6), we have:






xk|k−1 = xk−1|k−1 +
1

2

(

3ẋk−1|k−1 − ẋk−2|k−2
)

T

ẋk|k−1 = ẋk−1|k−1 + ẋk−1|k−1 − ẋk−2|k−2
(8)

When T is small, the process noise is regarded as a constant.

At this time, we have the product of T 2 and the standard

deviation ratio between Uk and Vk :

λk = T 2
√

QkR
−1
k (9)

where Qk is defined by:

Qk =

√

√

√

√

√

K
∑

k=1

(

xk|k − xk|k−1
)2

K
(10)

Note that the stronger the maneuverability of target,

the greater the value of
(

xk|k − xk|k−1
)2
. Then, we get the

solutions in the limited time:






λk =
βk√
1− αk

βk = 2 (2− αk)− 4
√
1− αk

(11)

After solving (11), we have:










αk =
√

λk (λk + 8)
(

(λk + 4)−
√

λk (λk + 8)
)

8

βk =
λk

(

(λk + 4)−
√

λk (λk + 8)
)

4

(12)

whereαk ∈ [0, 1] and βk ∈ [0, 2] under the condition of

λk ∈ [0,∞), and αk represents the trust level between the

FIGURE 1. Ellipse estimation region.

measurement position and the predicted position. Similarly,

βk describes the trust level on the between the measurement

velocity and the predicted velocity.

With respect to the VA motion model, we introduce the

adaptive adjustment coefficient:

γκ =

√

2(2κ + 1)

κ(κ − 1)
(13)

where the index κ is taken to an integer that is greater than 2.

With the increase of κ , γκ becomes convergent and the tar-

get keeps stable dynamics. Therefore, we adjust κ with the

increment 1κ when the target dynamics is unstable:

1κ = round



κ





xk|k − xk|k−1

γκ

√

δ2ρ + ρ2δ2θ

− ε







 (14)

where round (·) denotes the nearest integer, ρ is the radius

of the location region 2, ε is the threshold of position

change rate, δρ and δθ are the errors of range and azimuth

respectively. There is κ ← κ + 1 under the condition of
xk|k−xk|k−1
γκ

√

δ2ρ+ρ2δ2θ

≥ ε. Otherwise, we have κ ← κ −1κ .

Let γκδρ and γκρδθ be the spans of range and azimuth.

In Figure 1, an ellipse is applied to estimate target position in

the Cartesian coordinate system xk|k =
(

xk|k , yk|k
)

:

((

y− yk|k
)

sin θ +
(

x − xk|k
)

cos θ
)2

γ 2
κ δ2ρ

+
((

y− yk|k
)

cos θ −
(

x − xk|k
)

sin θ
)2

γ 2
κ ρ2δ2θ

= 1 (15)

Note that the computational complexity is saved when esti-

mating target position in 2.

Proof 1: Recalling (15), we compute the area of 2:

S2 = πγ 2
κ ρδρδθ (16)

The area ratio of total region to location region is:

S

S2

=
(

ρ + 2γκδρ

)

γρδθ

πγ 2
κ ρδρδθ

=
1

π

(

ρ

γκδρ

+ 2

)

(17)
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FIGURE 2. Optimal square region for actual target.

Due to ρ ≫ γκδρ , the actual estimation region is reduced and

the computational cost is saved when using the target center

(i.e., the geometrical center of target) in 2.

C. OTHER PRELIMINARIES

Given that the actual target has a1 × a2 pixel (a1 ≥ a2) in

the image, the required location region should be further

optimized in a given square, where the minimalM meets the

condition a1 ≤ 2M in Figure 2. Then, the target is fixed based

on its size. Since the region is input to the BPNN, we use the

square of 2M × 2M pixel for convenience.

Remark 1:Although Figure 2 shows the appearance region

of actual target, it is usually changed in the whole image. As a

result, the actual target position should be further considered

in double cases. First, the fixed sensor tracks multi-target in a

certain region, that is, the targets are immediately found when

they come into the region. It uses the fixed background and

the absolute displacements of targets in the current image.

On the other hand, the mobile sensor tracks multi-target with

a certain velocity, that is, the targets cannot disappear when

the velocity of mobile sensor is high. It applies the different

background and relative displacements of targets between the

current image and the previous images.

III. BP NEURAL NETWORK

A. PRINCIPLE OF BPNN

The BPNNwith above one hidden layer has the faster training

speed. We have in hand a general BPNN with C (C ≥ 3)

layers for p targets, which includes 1 input layer, (C − 2)

hidden layers and 1 output layer. At time k , there are

qc (qc = 1, · · · ,Qc, c = 1, · · · ,C) neurons ℓ
(c,qc)
p,k on each

layer. Then, the neurons for the pth target in this network are

given by [20], [21]:






































ℓ
(c,qc)
p,k =

(

ℓ
(1,1)
p,k , ℓ

(1,2)
p,k , · · · , ℓ(1,Qc)

p,k

)T

c = 1

ℓ
(c,qc)
p,k = f





Qc−1
∑

qc−1=1
w

(c−1,qc−1)
p,k ℓ

(c−1,qc−1)
p,k + b(c−1)

p,k





T

c = 2, · · · ,C
(18)

where w
(c−1,qc−1)
p,k and b

(c−1)
p,k are the weight and threshold

between two adjacent layers, and f (·) is the excitation func-

tion. Usually, the Sigmoid function is applied, which can

compress the input into an output in [0, 1].

In view of multi-class problem with p training targets, the

squared error loss function on the output layer is:

Ek =
1

2

P
∑

p=1

QC
∑

qC=1

(

d
(C,qC )
p,k − ℓ

(C,qC )
p,k

)2
(19)

Note that the target is organized as a 1
/

p model, where the

elements d
(C,qC )
p,k are positive when ℓ

(C,qC )
p,k belongs to the pth

target, and the rest elements are zero or negative. Since Ek
is the sum of errors of all targets, we only compute the back

propagation on the single target p [22]–[24]:

Ep,k =
1

2

QC
∑

qC=1

(

d
(C,qC )
p,k − ℓ

(C,qC )
p,k

)2
(20)

Remark 2: The BPNN sends the error back to train all

weights that are trained on the minimal sum of squared errors.

Due to the dynamic change in the huge number of images and

the parameters in the learning and training stages, the classic

BPNN cannot keep rapid convergence when it is far away

from the local minimum. Therefore, the weight assigned to

a given neuron should be modified.

B. ROBUST BPNN

1) WEIGHT OPTIMIZATION

Suppose that ς is the inertia and ηk−1 is the learning rate

coefficient, the weight assigned to the qthc neuron on the cth

layer for the pth target at time k is given by:

w
(c,qc)
p,k = w

(c,qc)
p,k−1 + ς

(

w
(c,qc)
p,k − w(c,qc)

p,k−1

)

− ηp,k−1
∂E

(C,qc)
p,k−1

∂w
(c,qc)
p,k−1

(21)

Note that the sum of them plays a positive role on w
(c,qc)
p,k ,

and the weight is adjusted on the current gradient and inertia.

We rewrite (21) into the recursion form:






























































w
(c,qc)
p,k −w

(c,qc)
p,k−1=ς

(

w
(c,qc)
p,k −w

(c,qc)
p,k−1

)

− ηp,k−1
∂E

(C,qc)
p,k−1

∂w
(c,qc)
p,k−1

w
(c,qc)
p,k−1−w

(c,qc)
p,k−2=ς

(

w
(c,qc)
p,k−1−w

(c,qc)
p,k−2

)

− ηp,k−2
∂E

(C,qc)
p,k−2

∂w
(c,qc)
p,k−2

...

w
(c,qc)
p,1 −w

(c,qc)
p,0 =−ηp,0

∂E
(C,qc)
p,0

∂w
(c,qc)
p,0

(22)

After adding the equations above, we have:

w
(c,qc)
p,k = ςw

(c,qc)
p,k−1 + (1− ς)w

(c,qc)
p,0 −

k−1
∑

i=0
ηp,i

∂E
(C,qc)
p,i

∂w
(c,qc)
p,i

= ς



ςw
(c,qc)
p,k−2+(1− ς)w

(c,qc)
p,0 −

k−2
∑

i=0
ηp,i

∂E
(C,qc)
p,i

∂w
(c,qc)
p,i




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+ (1− ς)w
(c,qc)
p,0 −

k−1
∑

i=0
ηp,i

∂E
(C,qc)
p,i

∂w
(c,qc)
p,i

= ς2w
(c,qc)
p,k−2 +

(

1− ς2
)

w
(c,qc)
p,0

−





k−1
∑

i=0
ηi

∂E
(C,qc)
p,i

∂w
(c,qc)
p,i

+ ς

k−2
∑

i=0
ηp,i

∂E
(C,qc)
p,i

∂w
(c,qc)
p,i





...

= ς2w
(c,qc)
p,0 +

(

1− ς2
)

w
(c,qc)
p,0

−





k−1
∑

i=0
ηp,i

∂E
(C,qc)
p,i

∂w
(c,qc)
p,i

+ ς

k−2
∑

i=0
ηp,i

∂E
(C,qc)
p,i

∂w
(c,qc)
p,i

+ · · · + ςk−1
0

∑

i=0
ηp,i

∂E
(C,qc)
p,i

∂w
(c,qc)
p,i





= w
(c,qc)
p,0 −

k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

∂E
(C,qc)
p,i

∂w
(c,qc)
p,i

(23)

where w
(c,qc)
p,k is determined by the initial weight and the

sum of gradients at the previous time on the right-hand side.

It reduces weight error and accelerates convergence rate.

Recalling the C-layer BPNN, we compute the weight

assigned to the qthC neuron on the output layer:

w
(C,qC )
p,k

= w
(C,qC )

p,0 −
k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

∂E
(C,qC )
p,i

∂w
(C,qC )
p,i

= w
(C,qC )

p,0 −
k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

∂E
(C,qC )
p,i

∂ℓ
(C,qC )
p,i

∂ℓ
(C,qC )
p,i

∂ℓ̃
(C,qC )
p,i

∂ℓ̃
(C,qC )
p,i

∂w
(C,qC )
p,i

= w
(C,qC )

p,0 +
k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

QC
∑

qC=1
δ
(C)
p,i (24)

where δ
(C)
p,i is defined as:

δ
(C)
p,i =

(

d
(C,qC )
p,i −ℓ

(C,qC )
p,i

) (

1−ℓ
(C,qC )
p,i

)

ℓ
(C,qC )
p,i ℓ

(C−1,qC−1)
p,i

(25)

As for the weight assigned to the qthC−1 neuron on the last

hidden layer, there is:

w
(C−1,qC−1)
p,k

= w
(C−1,qC−1)
p,0 −

k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

∂E
(C,qC )
p,i

∂w
(C−1,qC−1)
p,i

= w
(C−1,qC−1)
p,0 −

k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

∂E
(C,qC )
p,i

∂ℓ
(C,qC )
p,i

∂ℓ
(C,qC )
p,i

∂ℓ̃
(C,qC )
p,i

×
∂ℓ̃

(C,qC )
p,i

∂ℓ
(C−1,qC−1)
p,i

∂ℓ
(C−1,qC−1)
p,i

∂ℓ̃
(C−1,qC−1)
p,i

∂ℓ̃
(C−1,qC−1)
p,i

∂w
(C−1,qC−1)
p,i

= w
(C−1,qC−1)
p,0 +

k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

QC−1
∑

qC−1=1
δ
(C−1)
p,i (26)

where δ
(C−1)
p,i is defined as:

δ
(C−1)
p,i

=





QC
∑

qC=1

(

d
(C,qC )
p,i −ℓ

(C,qC )
p,i

) (

1−ℓ
(C,qC )
p,i

)

ℓ
(C,qC )
p,i w

(C,qC )

p,0





×
(

1− ℓ
(C−1,qC−1)
p,i

)

ℓ
(C−1,qC−1)
p,i ℓ

(C−2,qC−2)
p,i

=
(

1− ℓ
(C−1,qC−1)
p,i

)

ℓ
(C−2,qC−2)
p,i

QC
∑

qC=1
δ
(C)
p,i w

(C,qC )

p,0 (27)

Similarly, the weight assigned to the qth1 neuron on the 1st

hidden layer is:

w
(2,q2)
p,k = w

(2,q2)
p,0 −

k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

∂E
(C,qC )
p,i

∂w
(2,q2)
p,i

= w
(2,q2)
p,0 −

k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

∂E
(C,qC )
p,i

∂ℓ
(C,qC )
p,i

∂ℓ
(C,qC )
p,i

∂ℓ̃
(C,qC )
p,i

×
∂ℓ̃

(C,qC )
p,i

∂ℓ
(C−1,qC−1)
p,i

∂ℓ
(C−1,qC−1)
p,i

∂ℓ̃
(C−1,qC−1)
p,i

×
∂ℓ̃

(C−1,qC−1)
p,i

∂ℓ
(C−2,qC−2)
p,i

· · ·
∂ℓ

(2,q2)
p,i

∂ℓ̃
(2,q2)
p,i

∂ℓ̃
(2,q2)
p,i

∂w
(2,q2)
p,i

= w
(2,q2)
p,0 +

k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

Q2
∑

q2=1
δ
(2)
p,i (28)

where δ
(2)
p,i is defined as: From the recursion above, we can

derive the presentation on each weight in the C-layer BPNN

with Lemma 1.

Lemma 1: The weight w
(c,qc)
p,k assigned to the qthc neuron on

the cth (c = 2, · · · ,C) layer at time k can be defined as:

w
(c,qc)
p,k = w

(c,qc)
p,0 −

k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

∂E
(C,qC )
p,i

∂w
(c,qc)
p,i

= w
(c,qc)
p,0 −

k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

∂E
(C,qC )
p,i

∂ℓ
(C,qC )
p,i

∂ℓ
(C,qC )
p,i

∂ℓ̃
(C,qC )
p,i

×
∂ℓ̃

(C,qC )
p,i

∂ℓ
(C−1,qC−1)
p,i

∂ℓ
(C−1,qC−1)
p,i

∂ℓ̃
(C−1,qC−1)
p,i

×
∂ℓ̃

(C−1,qC−1)
p,i

∂ℓ
(C−2,qC−2)
p,i

· · ·
∂ℓ

(c+1,qc+1)
p,i

∂ℓ̃
(c,qc)
p,i

∂ℓ̃
(c,qc)
p,i

∂w
(c,qc)
p,i

= w
(c,qc)
p,0 +

k−1
∑

i=0

k−i
∑

j=1
ςk−i−jηp,i

Qc
∑

qc=1
δ
(c)
p,i (30)
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δ
(2)
p,i =

















Q3
∑

q3=1
· · ·











QC−1
∑

qC−1=1















QC
∑

qC=1





(

d
(C,qC )
p,i − ℓ

(C,qC )
p,i

)

×
(

1− ℓ
(C,qC )
p,i

)

ℓ
(C,qC )
p,i w

(C,qC )

p,0









×
(

1− ℓ
(C−1,qC−1)
p,i

)

ℓ
(C−1,qC−1)
p,i w

(C−1,qC−1)
p,0





















×
(

1− ℓ
(3,q3)
p,i

)

ℓ
(3,q3)
p,i w

(3,q3)
p,0

















×
(

1− ℓ
(2,q2)
p,i

)

ℓ
(2,q2)
p,i ℓ

(1,q1)
p,i

=
(

1− ℓ
(2,q2)
p,i

)

ℓ
(1,q1)
p,i

Q3
∑

q3=1
δ
(3)
p,iw

(3,q3)
p,0 (29)

where δ
(c)
p,i is given by:

δ
(c)
p,i =

(

1− ℓ
(c,qc)
p,i

)

ℓ
(c−1,qc−1)
p,i

×















Qc
∑

qc+1=1
δ
(c+1,)
p,i w

(c+1,qc+1)
p,0 , c = 2, · · · ,C − 1

(

d
(c,qc)
p,i − ℓ

(c,qc)
p,i

)

ℓ
(c,qc)
p,i , c = C

(31)

Note that the weights on each hidden layer have the similar

expression on initial weights of neurons. For comparison,

the weight assigned to a given neuron on the output layer is

only dependence of initial values on the layer. We can only

modify them with the sum of gradients at previous times to

compute the current weight.

2) LEANING RATE IMPROVEMENT

In view of the learning rate, the proposed BPNN should be

adaptively adjusted based on the change of gradient direction.

When the gradient directions of two successive iterations are

the same, the learning rate ηp,k should be increased, which

indicates that the current descent is slow. When the gradient

directions of successive iterations are opposite, ηp,k should

be reduced, which indicates that the current descent is fast.

There is:

ηp,k=











ζpηp,k−1, opposite gradient directions
(

ζp ≥ 1
)

ξpηp,k−1, same gradient directions
(

0 < ξp < 1
)

ηp,k−1, else

(32)

where ζp and ξp are both the adjustment coefficients assigned

to the previous learning rate ηp,k−1. Since ηp,k is adjusted in

the iteration process, the error function Ep,k approximates the

minimum in different directions on the hyper-surface.

3) MODEL CONSTRUCTION

Given that the size of required images are not the same during

the training and testing stages and the number of neurons on

the input layer is fixed, it is necessary to normalize the image

size before grey processing. If the size is small, the image

edges are filled with some zeros. In view of a 256-gray-scale

image, we have the dynamic range [0,255] for input neurons.

Since the original grey information of an image is used for

recognition, the number of input neurons is as the number of

input image pixels. Besides, the number of neurons on the

output layer is:

QC = round
(

log2 (P+ 1)
)

(33)

where round (·) denotes the nearest integer.
As for the classic BPNN, the robustness is poor when

the number of neurons on each hidden layer is insufficient.

It requires lots of computational complexity when the number

of hidden neurons is extensive. Then, we define the number

of neurons by using the geometric array:

Qc = round
(

√

Qc−1Qc+1
)

c = 2, · · · ,C − 1 (34)

Subsequently, the initial weights of neurons are taken to

random values that are all less than 1, but the sum of weights

is equal to 1. We put the concerned sub-image based on

the coordinate (x, y) in the current frame into the network,

and then get the output error Ek by using (20). The relative

distance between the current output and the matching result

in the previous frame is given by:

1Ek =
1

2

P
∑

p=1

QC
∑

qC=1

(

o
(C,qC )

p,k−1 − ℓ
(C,qC )
p,k

)2
(35)

where o
(C,qC )

p,k−1 is the output with the same size of sub-image

based on the center (x0, y0) in the previous frame. Let υ1 and

υ2 be the coefficients corresponding to Ek and 1Ek , the total

errors can be obtained by the information entropy:

log2 υ1Ek + log2 υ21Ek (36)

where the point with the minimum value in sub-image is

regarded as the re-updated position
(

xk|k , yk|k
)

for target

center.

Remark 3: In the stage of BPNN construction, the feature

extraction of targets in the sub-image is not operated. The

reason is that the sub-image not only contains the given target,

but also has the information entropy. The sub-image including

the tracked target is input the network when the size of sub-

image is small compared with the size of whole image. The

efficiency of target tracking is improved.
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FIGURE 3. Target position estimates.

4) PROCESS OF PROPOSED METHOD

① Optimize the α-β filtering parameters via (12)∼(14) and
get the target location region 2 via (15);

② Compute the updated position of target center via (4);

③ Set the optimal square of 2a1 × 2a1 to locate target and

get corresponding sub-image as ϒ × ϒ pixel before grey

operation;

④ Optimize the BPNN parameters via (30), (32)∼(33) and
input ϒ × ϒ pixel;

⑤ Compute the output ℓ
(C,qC )
p,i and recognize target with

optimal square. If there is no matched result in current image

window, the whole image is recognized by blocking. If there

is no matching result in the whole image, i.e., the target

disappears, then exits the process.

⑥ Compute the error via (35) and get the re-updated posi-

tion
(

xk|k , yk|k
)

for target center;

⑦ Send the re-updated position into the α-βfilter for pre-

diction in the next cycle.

IV. SIMULATION RESULTS AND DISCUSSIONS

A. NUMERIC STUDY

First, the numerical study is done to verify the adaptive α -β

filter for maneuvering target tracking. The experimental envi-

ronment was: IntelTM CoreTM i5, WindowsTM 7, 4 GB DDR

and MATLABTM R2018a.

During the tracking time of 60 s, the target has VA motion

state. Its velocity is (5,10) m/s and initial position is (0,0) m.

The accelerations are (2,0) m/s2, (0,−1.5) m/s2, (0,2) m/s2

and (−1.5,0) m/s2 during the 11th ∼ 15ths, 21st ∼
25ths, 31st ∼ 35ths and 41st ∼ 45ths. Other parameters are

set as: T = 1 s, γκ = 2.23, ρ0 = 100 m, δρ = 1 m, δθ = 0.1◦

and ε = 0.01. The root of mean squared error (RMSE) is used

to compare the classic α-β filter.

Figure 3 shows the true and estimated tracks of the maneu-

vering target. Although the target has the VA motion states,

the adaptive α-β filter effectively estimates it in the x and y

coordinates. The estimated position still keeps close to the

true track. For comparison, the classic filter gives some devi-

ations because of the target maneuverability.

FIGURE 4. RMS in the x and y positions.

FIGURE 5. RMS in the x and y velocities.

Figure 4 indicates the RMSE in the x and y positions. Note

that the classic filter exaggerates the biased position during

the period of motion state transition. Meanwhile, the adaptive

filter achieves the prospective tracking whether the target

is maneuvering or not. For example, it has 39% RMSE

of 2-positions of classic filter at the peak moment.

Figure 5 depicts the RMSE of x and y velocities. Given

that the target maneuverability determines the velocity com-

ponents, the adaptive filter adjusts velocity estimates when

the motion state changes abruptly. As a result, the velocity

estimates are more accurate.

Subsequently, the tracking performance of the robust

BPNN is evaluated. We consider a 4-layer BPNN for sim-

plification. Its parameters are: η0 = 0.5, ς = 1 and P = 1.

The size of all images is uniformed as 320 × 240 pixel, and

128 images are sampled in the training stage.

In Figure 6, the mean squared error (MSE) of the proposed

BPNN is indicated. As seen, the values of MSE keep decreas-

ing from 10−0.5 to 10−5. At the 1834th epoch, the MSE

reaches the best value. By comparison, the classic BPNN

needs 5778 epochs to achieve the preset value.

VOLUME 7, 2019 60305



B. Li: Innovative Target Tracking Method Combined Adaptive α–β Filter With Robust BPNN

FIGURE 6. MSE and best values.

FIGURE 7. Gradient and learning rate.

Figure 7 shows the gradient and learning rate of the

classic BPNN and robust BPNN corresponding to the best

epoch. Note that the learning rate of the proposed BPNN

is lower than that of the classic BPNN. According to the

Figure 6, we conclude the proposed BPNN has prospective

training performance because of the modified network struc-

ture, i.e., the optimal weight and number of the neuron on

each layer and the improved learning rate.

B. EXPERIMENTAL RESULTS AND DISCUSSIONS

We combine the adaptive α-β filter with the robust BPNN to

track the vehicle-target under the different scenarios in traffic

field for instance, which mainly includes the single target

tracking, pair targets tracking, multiple targets tracking and

occluded target tracking. Both the TB-100 sequences datasets

and the actual traffic images are tested.

1) SINGLE TARGET TRACKING

As for the single target tracking, the numbers of neurons on

each layer are Q1 = 4096, Q2 = 256, Q3 = 16 and Q4 = 1.

We randomly extract 2 frames (Frames 0091 and 0094) form

TB-100 Sequences Datasets.

Figure 8 shows the tracking results. Note that the vehicle

can be recognized in the image, and the geometric center of

FIGURE 8. Single target tracking. (a) Frame 0091. (b) Frame 0094.

TABLE 1. Center and area of single target.

vehicle is marked with a red point by using the proposed

method. The detailed results are in Table 1, where the area of

vehicle is 64× 64 pixel in the adaptive α -β filter for making

the robust BPNN convenient. The intermediate results indi-

cate the interactive process in the proposed method. As seen,

2 256-grey-scale images are in the left column. The adaptive

α-β filter gives the target center that is updated by using the

BPNN for the next cycle. Of course, the classic BPNN can

track the vehicle-target. Table 2 cites the average tracking

performance of 3 methods. Note that the proposed method

has higher tracking rate and accurate with small number of

neurons. However, the classic BPNN needs plenty of neurons

to get the similar performance. There is no neuron in the

KCF that has satisfactory results owing to the kernelized

correlation algorithm.

2) PAIR TARGETS TRACKING

We randomly extract 2 frames (Frames 1186 and 1189) from

actual Traffic Datasets.
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TABLE 2. Average performance for singe target tracking.

TABLE 3. Center and area of multiple targets.

FIGURE 9. Multiple targets tracking. (a) Frame 1186. (b) Frame 1189.

The tracking results are demonstrated in Figure 9. We can

get the outlines and centers of 2 targets. Combined with

Table 3, some information on the vehicles is obtained.We also

set the required area of 2-vehicle as 64×64 pixel. Considering
the vehicle outline is obscure in 2 images, we achieve the

tracking region by using the filter in the left volume. Besides,

the adaptive α- β filter finds 2-center coordinates. Within this

TABLE 4. Average performance for multiple targets tracking.

FIGURE 10. Occluded target tracking. (a) Frame 0157. (b) Frame 0164.

region, the vehicle is basically located and is input into the

robust BPNN. As a result, it reduces the accumulative errors.

After the network testing, the updated center and size of tar-

gets are sent to the adaptive α -β filter. From Table 4, we can

conclude that the proposed method has higher accurate owing

to its inherent structure. However, the classic BPNN cannot

get satisfactory tracking rate. Recalling Figure 9, we also find

that the obscure outlines of 2 targets bring about low accuracy

for KCF.

3) OCCLUDED TARGET TRACKING

In general, there are some special cases should be consid-

ered, such as the occluded target tracking. As for the classic

BPNN, it often has accumulative estimation errors owing to

the uncertain environment. The weights of neurons cannot

immediately adjust based on the actual situations, and then

lead to the disappearing target or the unmatched target.

Figure 10 gives the occluded target tracking results.

We randomly extract 2 frames (Frames 0157 and 0164)

from TB-100 Sequences Datasets. Note that the vehicle is

occluded by the tree. As we know, the proposed method has
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TABLE 5. Center and area of occluded target.

TABLE 6. Average performance for occluded target tracking.

2 individual computing stages. In the adaptive α-β filtering

stage, the center coordinate of target has been predicted.

Combined with the size from the robust BPNN, we easily get

the target location region in Table 5. Inevitably, the occlusion

brings about some affection on the true target. According to

the target location region, the network still makes full use of

pixel information to adjust all weights to match image. Due

to the previous information entropy, the accumulative errors

are reduced for tracking the vehicle-target. Other methods

can only give the partial outline, where the occlusion is also

considered as noise so that the unmatched target is obtained.

Subsequently, the target position is estimated in the following

images. In Table 6, we find that the classic BPNN cannot

make effectively tracking in this situation, and then distin-

guishes the true target with the random noise when the whole

image is the input. Therefore, both the tracking rate and the

accurate are lower. Although it tracks some occluded targets,

the KCF is lack of target identification so that its accuracy is

lower.

4) MULTIPLE TARGETS TRACKING

We evaluate the average tracking performance of proposed

method by using TB-100 Sequences Datasets and actual Traf-

fic Datasets.

For example, the 3-target and 5-target tracking results

are indicated in Figures 11 and 12. We can distinguish the

tracking performance of 3 methods. Obviously, the proposed

method has prospective performance. The KCF has certain

limitation on the fast mobile targets tracking.

Figure 13 shows the average accuracy (above 90%) under

100 trails. Note that the average accuracy decreases with

the increasing target cardinality in both methods. The classic

BPNN exhibits larger standard deviation (STD). The average

accuracy of KCF declines when the target cardinality is more

than 3. For comparison, the proposed method has its advance.

FIGURE 11. 3-targert tracking results. (a) Frame 0042. (b) Frame 0045.

FIGURE 12. 5-target tracking results. (a) Frame 1020. (b) Frame 1023.

FIGURE 13. Average accuracy.

Employing the adaptive α − β filter and the robust BPNN,

it overcomes the unstable decision. In view of the tracking

reliability, its average accuracy is satisfactory.

Figure 14 demonstrates the number of the required neurons

in the proposed method. Although the target cardinalities

are different over time, the neurons are around the average

value of 4486. It is easy to know there are 76800 neurons

on the input layer reaches in the classic BPNN. With respect

to the tracking efficiency, enormous neurons are saved when

employing the proposed method.
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FIGURE 14. Number of required neurons.

V. CONCLUSIONS

This paper has presented an innovative target trackingmethod

combined adaptive α-β filter with robust BPNN. It mainly

addresses both efficiency and reliability in various scenes on

the interactive tracking mechanism. We employ the adap-

tive α-β filter to get the required location region based on

the optimal filtering parameters in prediction stage. After

obtaining the center coordinate and the target area, the 256-

grey-scale image information is sent to the BPNN that has

optimal number and weight of neurons and the improved

learning rate. The networkmakes an effective recognition and

sents back the updated positions of targets to the adaptive

α-β filter for the next cycle. Therefore, the robustness and

accuracy of the proposedmethod are inherently boostedwhen

themotion state of targets ismaneuvering, even if its outline is

obscure and occluded. The numerical study indicates that the

proposed method has remarkable improvement. Especially,

the actual experiment has verified the advances in various

backgrounds. As the future developments of this research,

we continue to improve tracking accuracy in the uncertain

environment.
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