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Abstract

The epidemiology of circular leaf spot of persimmon, caused by Mycosphaerella nawae, was 

studied in a semi-arid area in Spain for two consecutive years. No conidia were observed on 

diseased leaves and all infections were thought to be caused by ascospores formed in the leaf 

litter. Ascospores were released mainly in April and May, but relatively low numbers in June 

were able to induce severe symptoms on trap plants. Temperature was not significantly 

correlated with ascospore catches or disease incidence on trap plants, indicating that it was not a

limiting factor for disease development during the period of study. Rainfall was above normal, 

but still considerably lower than in endemic areas of Korea. Most infections coincided with 

rains, but the disease was observed also on trap plants exposed to less than 1 mm of 

precipitation and even in the absence of rain. Orchards were flood irrigated once inoculum 

deposits in the leaf litter had already been depleted, so it was not possible to determine its 

effects on ascospore release and disease development. The use of a wind tunnel to determine 

inoculum potential allowed detection of physiologically mature ascospores of M. nawae in the 

leaf litter 1-2 weeks before they were released to air in the orchard. Disease progress was fitted 
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to the monomolecular growth curve, associated with monocyclic pathogens and diseases with a 

variable incubation period as a function of the host phenology.

Keywords Diospyros kaki, Mediterranean climate, risk analysis, dew

Introduction

Global  production  of  persimmon  (Diospyros  kaki L.  f.)  is  estimated  at  about  four  million

tonnes, with a cultivated area of 785,000 ha (FAO, 2009). Far East Asia is considered the centre

of origin of this fruit tree (Badenes et al., 2003), and currently China, Japan and Korea represent

more than 95% of the total production worldwide (FAO, 2009). Although there are reports of

persimmon trees  in  Spain  from the  XVI century  (Giordani,  2003),  cultivation  of  this  crop

expanded significantly during last decade due to the extensive planting of the cultivar ‘Rojo

Brillante’,  coupled  with  the  development  of  postharvest  treatments  to  remove  astringency

without reducing fruit firmness (Arnal and Del Río, 2003).

Circular leaf spot disease of persimmon, caused by Mycosphaerella nawae Hiura & Ikata, is

widespread in persimmon-growing areas of Japan and Korea (Ikata and Hitomi, 1929; Kang et 

al., 1993). In 2008, the disease was detected in the Mediterranean Basin in Valencia Province in

east-central Spain, which was the first report in a semi-arid area (Vicent, 2008; Berbegal et al., 

2010). The disease causes necrotic spots on leaves, chlorosis and early defoliation. Although M.

nawae is a foliar pathogen, leaf lesions and defoliation induce premature fruit maturation and 

abscission, resulting in serious economic losses (Kwon and Park, 2004; Berbegal et al., 2010).

The fungus reproduces in pseudothecia formed in leaf litter. Ascospores mature in spring

and  are  released  to  the  air  when specific  temperature  and moisture  conditions  are  met.  In

epidemiological studies conducted in Korea, temperatures over 15ºC and rain were the main

factors  associated with ascospore discharge  (Kang et  al.,  1993; Kwon et al.,  1995; 1997a).
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Under laboratory conditions, temperatures above 10ºC and at least 1 mm of precipitation were

necessary  for  release  of  significant  numbers  of  ascospores  (Vicent et  al.,  2011).  In  Korea,

infection occurs mainly in the spring and early summer  (Kang et al., 1993; Kwon and Park,

2004),  but  the  specific  temperature  and  moisture  requirements  for  infection  have  been not

determined. Secondary inoculum consisting of Ramularia-type conidia was described in Korea.

These spores are produced on leaf lesions and are capable of infecting and inducing symptoms

on leaves. However, their role in disease epidemics is considered generally less important than

ascospores (Kwon et al., 1998a; Kwon and Park, 2004). Circular leaf spot is characterized by a

long incubation period, with a lag time between infection and symptom expression of up to four

months (Kwon and Park, 2004).

Several fungicide applications per season are required for the economic control of circular

leaf  spot  (Kwon et al.,  1997b; Berbegal et  al.,  2011).  However,  their  efficacy is  extremely

dependent  on  the  synchrony  between  spray  timing  and  infection  periods  in  each  region.

Persimmon-growing areas in southern Korea and Japan are characterized by humid-subtropical

climate  (Cwa),  with  a  summer  rainfall  pattern  and  yearly  precipitation  around  1,500  mm

(WMO, 2011).  In  these  areas,  persimmon trees  can  be grown under  rainfed  conditions.  In

contrast, the climate in Spain is typically Mediterranean (Csa), with dry summers and annual

precipitation rarely over 500 mm, distributed mainly in spring and fall (WMO, 2011). In semi-

arid areas such as Spain, persimmon cultivation is only possible with irrigation.  Due to the

climatic  and agronomic differences  between two areas,  information about circular  leaf  spot

epidemiology and infection periods from Korea cannot be extrapolated to Spain. In fact, based

on classic climatic comparisons, the emergence and severe impact of the disease in a semi-arid

area were completely unexpected (Makowski et al., 2011). Therefore, the basic epidemiological

traits of circular leaf spot under semi-arid conditions and its associated adaptive mechanisms

need to be determined.
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The objectives of this study were: (i) to study the dynamics of inoculum potential and 

inoculum availability of M. nawae in affected orchards, and (ii) to determine the infection 

periods and disease progress of circular leaf spot under semi-arid conditions in Spain.

Materials and methods

Experimental orchards

Experiments were conducted in 2010 and 2011 in four commercial persimmon cv. Rojo 

Brillante orchards severely affected by the disease at Benimodo, L'Alcúdia, Guadassuar and 

Villanueva de Castellón in Valencia Province, Spain. Orchards were 6 yr old at Benimodo, 11 

yr old at L'Alcúdia, and 9 yr old at Guadassuar and Villanueva de Castellón. Trees were grafted

on D. virginiana L. rootstock at Benimodo, and on D. lotus L. at Villanueva de Castellón, 

Guadassuar and L'Alcúdia. All four orchards were flood irrigated, with rows oriented east to 

west and on a 4 × 5-m tree spacing. 

Isolations from affected leaves in the canopy and leaf litter were performed to verify the 

presence of the pathogen in the orchards prior to the experiments. Symptomatic green leaves 

were surface disinfested with 1% NaOCl for two min and small fragments from necrotic lesions

were plated in Potato Dextrose Agar (PDA) amended with 0.5 g L-1 streptomycin sulphate 

(PDAS). Isolations from leaf litter were carried out by and attaching wetted leaf pieces to the 

top of a Petri dish and allowing the ascospores to be ejected from pseudothecia onto PDAS. 

Plates were incubated at 24°C in the dark and examined daily during two weeks. The resulting 

fungal colonies were transferred to PDA to characterize colony morphology. Molecular 

identification was performed on five representative isolates from each orchard by sequencing 

the internal transcribed spacer (ITS) using the conserved primers ITS1 and ITS4 (White et al. 

1990).
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In the centre of each orchard, an experimental area of ≈0.2 hectares (10 × 10 trees) 

remained untreated during the 2-yr period of study. Environmental data were monitored hourly 

in the orchard at Benimodo with an automated meteorological station (Hobo U30, Onset 

Computer Corp.) including sensors for temperature and relative humidity (Hobo S-THB, 

accuracies ± 0.2ºC, ± 2.5%), rainfall (7852, Davis Instruments Corp, resolution 0.2 mm) and 

leaf wetness duration (Hobo S-LWA, resolution 0.59%). Environmental monitors were located 

within the row in the experimental area at the site of a missing tree. Data were collected at 1.5 

m above the soil surface, in the top one-quarter of the canopy height. Leaf wetness sensors were

placed with a northerly exposure and fixed at a 30-degree angle from the horizontal. Leaf 

unfurling (BBCH 15) was observed in the orchards on 19 April in 2010 and 7 April in 2011

(García-Carbonell et al., 2002). Full flowering (BBCH 65, 50% of flowers open) was observed 

on 13 May in 2010 and on 3 May in 2011.

Inoculum dynamics and infection periods

Inoculum dynamics and infection periods were studied from March to September in all four 

orchards in 2010 and 2011. The dynamics of inoculum potential in the leaf litter were studied 

by covering dry leaves on the experimental area in each orchard with a plastic mesh (2 x 2 m, 5-

by-5-mm openings) fixed with four stainless-steel pins. Leaf litter density under the plastic nets 

was adjusted to ≈350 g of dry leaves m-2 (Vicent et al., 2011). A sample of 20 g of dry leaves 

was collected weekly in each orchard and soaked for 15 min in distilled water. Immediately 

after soaking, leaves were placed with the abaxial surface facing upward in a wind tunnel for 30

min until they were visibly dry (Whiteside, 1973; Vicent et al., 2011). During the process, air 

and water temperature was maintained at ≈21°C. Released ascospores were collected on a glass 

microscope slide (26 x 76 mm) coated with silicone oil (Merck). Spores were stained with 

lactophenol-acid cotton blue and examined at 400X magnification. All ascospores showing the 
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morphological characteristics of M. nawae; spindle-shaped, 10-13 x 3-4 µm, hyaline, 2-celled 

with a medium or slightly supramedian septum (Kwon et al., 1998b), were counted in four 

microscope field transects.

The dynamics of airborne inoculum were studied by placing four glass microscope slides 

coated with silicone oil in the centre of the experimental area in each orchard. Slides were 

placed under a plastic rain shelter (0.3 x 0.3 m) 0.25 m above the soil surface at a 45-degree 

angle from the horizontal, covering the four cardinal points (Campbell and Madden, 1990). 

Microscope slides were changed weekly and ascospores of M. nawae were counted as described

above.

The presence on M. nawae conidia on leaf lesions was evaluated from first symptom 

appearance to complete leaf fall in both years. Samples of 25 affected leaves on the canopy and 

recently fallen on the orchard floor were collected weekly in each orchard. Leaf lesions were 

observed under the stereomicroscope at 40X magnification to find fungal structures, which 

were then mounted on glass slides and examined at 400X for identification.

To determine the distribution of infection periods, sets of three trap plants were placed in 

centre of the experimental area at Benimodo orchard each week. Trap plants were 2-yr-old 

'Rojo Brillante' persimmon trees grafted on D. virginiana rootstock maintained in a greenhouse 

at the IVIA research station in absence of inoculum. Plants were grown in plastic pots (250 mm 

in diameter by 200 mm deep) containing potting mix (75% peat, 25% sand, vol/vol) until leaves

were fully developed. Exposed trap plants were returned to a screenhouse and disease severity 

was evaluated periodically on all leaves using the following severity rating scale: 0 = no lesions

observed; 1 = less than 10 lesions; 2 = 10 to 20 lesions; 3 = more than 20 lesions; 4 = 

defoliated. Defoliation was assessed by counting the number of nodes on each shoot from 

which leaves had abscised. Disease incidence was calculated considering the total percentage of

symptomatic and defoliated leaves. Correlations among weather variables, inoculum potential, 

airborne inoculum, and disease incidence on trap plants were analysed using the CORR 
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procedure in SAS 9.0 (SAS Institute, Cary, NC). In each weekly period, inoculum potential on 

the first day and accumulated ascospores catches on the last day were evaluated.

Disease progress

Disease severity was evaluated periodically in four two-tree plots randomly selected in the 

experimental area in Benimodo and L'Alcúdia orchards. Evaluation dates in 2010 were 14, 17, 

19, 22, 25 September, 3, 10, 17, 25 October in Benimodo, and 7, 10, 13, 16, 19, 27 September, 

3, 10, 18 October in L'Alcúdia. Evaluation dates in 2011 were 28, 31 August, 7, 13, 19, 25 

September, 5 October in both orchards. All leaves on 10 shoots arbitrarily selected in each tree 

(≈ 70 leaves tree-1) were rated according to severity scale described above. Disease incidence 

was calculated considering the total percentage of symptomatic and fallen leaves. Disease 

growth models were evaluated by nonlinear regression of disease incidence data against days 

after disease onset using the NLIN procedure in SAS 9.0.

Results

Inoculum dynamics and infection periods

Fungal colonies isolated from affected leaves and leaf litter in the experimental orchards were 

dark grey to black, erumpent, with sparse aerial mycelium and a characteristic slow growing 

pattern. The ITS sequences from all isolates analysed had 100% identity with the GenBank 

accession nº GQ465767 of M. nawae.

No conidia were observed on leaf lesions in either 2010 or 2011. Airborne ascospores of M.

nawae were detected in 2010 from 25 March to 22 July in Benimodo, Guadassuar and 

Villanueva de Castellón orchards (Fig. 1). In L'Alcúdia orchard, ascospores were detected from 
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31 March to 22 July. More than 81% of total airborne ascospores were detected during April 

and May. Ascospores were discharged artificially from leaf litter samples collected from 18 

March to 29 July in all four orchards. Ascospores released from the leaf litter in April and May 

represented more than 83% of the total collected during the period of study.

In 2011, airborne ascospores were detected in the orchards from 29 March to 19 July (Fig. 

1). Ascospore catches during April and May represented more than 90% of the total. 

Ascospores were discharged artificially from the leaf litter samples collected from 22 March to 

30 August. The percentages of released ascospores in April-May and June-July were 42.3% and

49.7% of the total in Benimodo, 72.2% and 22.3% in L'Alcúdia, 43.7% and 50.1% in 

Guadassuar, and 54.9% and 35.2% in Villanueva de Castellón.

Trap plants in all exposure periods from 25 March to 8 July in 2010 and from 5 April to 21 

June in 2011 were affected by the disease (Fig. 2). The percentage of affected leaves ranged 

from 1.8% to 92.9% in 2010 and from 10.1% to 65% in 2011.

In 2010, average weekly temperature ranged from 8ºC to 27.1ºC (Fig. 2). Average leaf 

wetness duration ranged from 4.7 h day-1 to 16 h day-1 and relative humidity ranged from 45.8%

to 84.4%. A total of 208.8 mm of rain and 24 rain days (>1 mm) were recorded from March to 

June. In 2011, average weekly temperature ranged from 8.3ºC to 26.1ºC. Average leaf wetness 

duration ranged from 4.9 h day-1 to 19.1 h day-1 and relative humidity ranged from 41% to 

80.3%. A total of 245.3 mm and 25 rain days were recorded from March to June.

In 2010, a significant positive correlation (P < 0.01) was observed between inoculum 

potential in the leaf litter and airborne ascospores in all four orchards, but only in L'Alcúdia in 

2011 (P < 0.05) (Table 1). In 2010, inoculum potential in the leaf litter was significantly 

negatively correlated (P < 0.01) with relative humidity. The number of airborne ascospores was

significantly positively correlated (P < 0.05) with rainfall in 2011. In both years, disease 

incidence on trap plants was significantly positively correlated with inoculum potential in the 

leaf litter and airborne ascospores, and negatively correlated with relative humidity.
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Significant relationships were identified also among environmental variables. A positive 

correlation (P < 0.01) was detected between rainfall and rain days. Both variables were 

significantly negatively correlated with temperature and positively correlated with leaf wetness 

in 2010 and 2011. Temperature was significantly negatively correlated (P < 0.01) with leaf 

wetness only in 2011. In 2010, relative humidity was positively correlated (P < 0.01) with leaf 

wetness.

Disease progress

In 2010, the first symptoms of the disease were observed on 10 September, 120 days after full 

flowering (DAFF), in L'Alcúdia, and on 17 September (127 DAFF) in Benimodo. In 2011, the 

first symptoms were observed on 31 August (120 DAFF) in both orchards. Disease progress 

curves were best described by the monomolecular model:

inc = 1 - (1-y0) exp (-r T) (1)

where inc = disease incidence, y0 = initial disease increase, r = rate of disease increase, and T = 

time in days (Fig. 3). Estimated values of initial disease increase ranged from 0.1114 in 

Benimodo in 2011 to 0.2024 in 2010, but no significant differences were observed among them.

The rate of disease increase ranged from 0.0855 in Benimodo in 2011 to 0.2652 in 2010, which 

was significantly higher compared to the other values. Relative mean square errors (RMSE) 

ranged from 0.0271 to 0.0612. Pseudo-R2 values were higher than 0.99 and P < 0.0001 in all 

cases (Table 2).

Discussion

Ascospores of M. nawae were released from the end of March to middle July, but most of them 

were captured in April and May. In southern areas of Korea, ascospores were released from 
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early May to middle August, although maximum dissemination was generally from early June 

to mid-July (Kang et al., 1993; Kwon et al., 1995; Kwon and Park, 2004). Average monthly 

temperatures from January to July in Valencia are 3.6ºC higher than in southern regions of 

Korea (WTO, 2011). As with host phenology (George et al., 1994), higher temperatures may 

influence ascocarp development accelerating ascospore maturation and release.

Recent work established the temperature threshold for ascospore release at about 10ºC

(Vicent et al., 2011). In this present study, temperature was above this value from 16 and 8 

March onwards in 2010 and 2011, respectively. This environmental variable was not 

significantly correlated with airborne ascospore counts, indicating that it was not a limiting 

factor for ascospore release during the experimental period.

Field studies conducted in Korea indicated that rain was strongly associated with the 

presence of airborne ascospores (Kang et al., 1993; Kwon et al., 1995; 1997a). Under 

laboratory conditions, at least 1 mm of precipitation was necessary to release significant 

numbers of ascospores (Vicent et al., 2011). Although rainfall was positively correlated with 

ascospore catches only in 2011, measurable amounts of rain were recorded in 12 of the 16 

weekly periods with airborne ascospores in 2010. Statistical significance was probably affected 

by the presence of rains before and after the period of inoculum availability. Relatively low 

numbers of ascospores were detected in five weekly periods without rain or irrigation. Although

these ascospores were probably discharged during the last days of the preceding period, further 

studies in dry years would be necessary to clarify the possible effect of dew in ascospore release

(Vicent et al., 2011).

The spore trap used was similar to that of the epidemiological studies conducted in Korea, 

and the results obtained were consistent with the known biology of the pathogen. However, 

stronger relationships with environmental variables might be detected using spore traps with 

higher time resolution and improved collection efficiency (Jackson and Bayliss, 2011).
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In 2010, inoculum potential in the leaf litter was correlated positively with airborne 

ascospores in all four orchards, but only in L’Alcúdia in 2011. Measurable levels of inoculum 

potential were detected before and after the period of ascospore release, possibly influencing 

the statistical output. Similar relationships between inoculum potential in the leaf litter and 

airborne ascospores have been described for other ascomycetes (Luley and McNabb, 1989; 

Aylor, 1996; Kollar, 1998).

The discharge test allowed detection of physiologically mature ascospores of M. nawae in 

the leaf litter 1-2 weeks before they were released to air in the orchard. Even considering the 

same weekly period, inoculum potential data were available for the first day whereas airborne 

ascospores were counted the last day. Therefore, this technique offers some possibilities to 

predict the onset of ascospore release and forecast subsequent infection periods. It could be also

further developed in potential ascospore dose studies (Gadoury and MacHardy, 1986) and 

combined with ascocarp maturation models (Kim, 2007).

Previous studies suggested that flood irrigation could increase the rate of disease 

progression by favouring ascospore release (Vicent et al., 2011). Accumulated precipitation 

from March to June was 208.8 mm and 245.3 mm in 2010 and 2011, respectively. These values

are greatly above the normal value of 129 mm (WMO, 2011), so irrigation in the study area was

scheduled from middle July onwards, when inoculum in the leaf litter had already been 

depleted. Further studies in dry years would help to clarify the role of flood irrigation in circular

leaf spot epidemics. In any case, persimmon growers in Spain are increasingly moving to drip 

irrigation.

Infection periods on trap plants were detected from 25 March to 8 July in 2010 and from 5 

April to 21 June in 2011, with a duration of 105 and 77 days, respectively. Experimental 

orchards had unfurled leaves on 19 April in 2010 and 7 April in 2011, so infection periods on 

the trees were likely shorter than on trap plants. In epidemiological studies conducted in Korea 

from 1992 to 1996, infection periods on trap plants started in mid-May and lasted until the end 
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of July with a duration of 60-81 days (Kang et al., 1993; Kwon and Park, 2004). Differences in 

infection periods between Spain and Korea would be associated with the patterns of inoculum 

availability in each geographical area.

Average temperature during the infection periods ranged from 12.1ºC to 24.9ºC and, based 

on the lack of statistical significance, apparently it was not a limiting factor for infection during 

the periods of study. Previous reports from Korea indicated a temperature range for infection of 

16.8-24.2ºC (Kang et al., 1993), somewhat narrow compared to that obtained in our study. 

Although infection efficiency of M. nawae ascospores at different temperatures has not been 

determined experimentally, our results suggest that this species can infect at relatively low 

temperatures, as was indicated in recent simulation studies (Makowski et al., 2011).

Measurable amounts of rain were recorded in 22 out of 26 weekly infection periods. 

However, rainfall and rain days were not correlated with disease incidence, probably due to the 

presence of some rain outside the periods of infection and inoculum availability. Cumulative 

rainfall during infection periods was 125 mm and 134.8 mm in 2010 and 2011, respectively. 

Even though these values were above normal, they were notably lower than the 300 mm 

recorded during infection periods in Korea (Kang et al., 1993).

Disease incidences of 1.8-21.9% were obtained in four weekly periods without measurable 

rain, and 10-69.6% in four periods with only one rain day and less than 1 mm precipitation. In 

contrast to the field studies from Korea, where infections were associated with high rainfall, our

results suggest that light rains or even leaf wetness would be enough for M. nawae ascospores 

to germinate and infect. In fact, germination rates above 20% were obtained under laboratory 

conditions at 20ºC and 8 h of wetness, increasing to more than 80% with 15 h (Kwon et al., 

1998c).

Inoculum in the leaf litter and airborne ascospores were correlated positively with disease 

incidence in both years, highlighting the potential of the ascospore discharge technique in 

disease forecasting. The relatively low proportion of ascospores in June was, however, able to 
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induce disease incidences up to 71.6% and 65% in 2010 and 2011, respectively. Moreover, a 

disease incidence of 3.3% was observed in the period of 1-8 July 2011, when ascospore 

concentration in the air was probably below the limit of detection of the spore trap and no 

catches were recorded. Therefore, quantitative relationships between ascospore catches and 

disease incidence should be carefully interpreted, especially considering that the study was 

conducted during the first years of the epidemic with high inoculum pressures.

Relative humidity was correlated negatively with disease incidence in both years. Following

the pattern of normal values (AEMET, 2011), infection periods in April and June coincided 

with lower levels of relative humidity. Expected relationships among environmental variables, 

such as a negative correlation of temperature and a positive correlation of leaf wetness with 

both rainfall and rain days, were also observed.

Disease progress was best fitted to the monomolecular model in both years. Similar values 

of initial disease and rate of increase were obtained, except for Benimodo in 2010 where 

disease progressed faster. Although the nature of the disease cycle cannot be inferred from the 

disease progress curve, the monomolecular model has been successfully used to describe 

numerous monocyclic diseases (Pfender, 1982; Madden et al., 2007). Since no conidia were 

observed, all infections are likely to be caused by ascospores released from the leaf litter. 

Therefore, under semi-arid conditions in Spain, circular leaf spot can be considered monocyclic

within a growing season and polyetic during successive growing seasons.

The monomolecular growth curve has been also proposed as the best model to describe the 

progress of diseases with a variable incubation period as a function of the host phenology

(Bergamin-Filho and Amorim, 2002). In this group of diseases, symptom expression is a 

function of the phenological stage of the plant organ and has little relation to the time of 

infection. Despite differences in weather conditions, phenology and infection periods, 

symptoms of circular leaf spot appeared 120-127 DAFF in all experiments, 88-94 days after the

last infections were detected on trap plants. The synchrony in symptom expression, coupled 

Vicent et al.                                                                                                         Eur. J. Plant Pathol.13



with the production of toxins by M. nawae (Sassa et al., 1989), allow us to hypothesize that 

critical host-pathogen interactions might be triggered by specific physiological processes as 

described in other pathosystems (Walters et al., 2008).

In summary, M. nawae managed to adapt to semi-arid conditions in Spain mainly by 

displacing the period of inoculum production to coincide with rains and susceptible host 

availability. It appears that temperature ranges in the study area were not limiting either for 

ascospore release or infection. Although both years were characterized by rainfall above the 

normal, precipitation was considerably lower than that reported in southern areas of Korea 

where the disease is endemic. Actually, results obtained on trap plants indicated that ascospores

of M. nawae were able to disseminate and infect under relative dry conditions. The unforeseen 

epidemic development of circular leaf spot in a semi-arid area highlights the limitations of 

climate suitability analyses, especially when based only on disease distribution records without 

considering detailed epidemiological data.
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Table 1 Pearson’s correlation coefficient between incidence of circular leaf spot in trap plants, potential and airborne inoculum, and weather 
variables in 2010 and 2011.

Year/variablesa Incidence
Relative
humidity

Rain
days

Rainfall
Leaf

wetness
Temp.

Airborne inoculum
Benimodo L'Alcudia Guadassuar Castelló

2010
Inoculum potential  0.6941** -0.4879**  0.1355  0.0673  0.1127 -0.3098 0.7379** 0.6935** 0.7890** 0.5130**
Airborne inoculum  0.4249* -0.2607  0.1550  0.1497  0.2657 -0.3198
Temperature -0.2154  0.0865 -0.4010* -0.3639* -0.1800
Leaf wetness -0.1525  0.5853**  0.3843*  0.4552*
Rainfall  0.0375  0.3078  0.8300**
Rain days  0.2733  0.1778
Relative humidity -0.5322**

2011
Inoculum potential  0.3972* -0.2788  0.0306  0.0577  0.2324  0.0621 0.0773 0.4057* 0.1920 0.1606
Airborne inoculum  0.5668** -0.2457  0.2247  0.4505*  0.0632 -0.1318
Temperature -0.2016  0.3166 -0.6943** -0.5319** -0.4911**
Leaf wetness  0.2415  0.1253  0.3624*  0.4908**
Rainfall  0.2142  0.1460  0.7541**
Rain days  0.2586 -0.0459
Relative humidity -0.3684*

a Thirty weekly periods from March to September in each year. Average value for temperature (ºC), leaf wetness (h) and relative humidity (%). 
Accumulated value for rainfall (mm) and rain days (>1 mm). **Significant at P < 0.01; *significant at P < 0.05.
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Table 2 Parameter values and model fit summary statistics for the monomolecular disease progress curves of circular leaf spot in Benimodo 
and L’Alcúdia orchards in 2010 and 2011.

Year/orchard
Initial disease
increase (yo)

Rate of disease
increase (r)

RMSE Pseudo-R2 P

2010 / Benimodo 0.2024 (0.1393 0.2665)a 0.2652 (0.2186 0.3118) 0.0271 0.9992 <0.0001
2010 / L'Alcudia 0.1974 (0.1116 0.2833) 0.1171 (0.0911 0.1430) 0.0392 0.9981 <0.0001
2011 / Benimodo 0.1140 (-0.0487 0.2767) 0.0855 (0.0565 0.1144) 0.0612 0.9955 <0.0001
2011 / L'Alcudia 0.1319 (-0.0131 0.2769) 0.0887 (0.0613 0.1161) 0.0543 0.9965 <0.0001
a Confidence intervals 95%.
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Fig. 1 Dynamics of ascospore potential in the leaf litter and airborne ascospores in four 
persimmon orchards affected by circular leaf spot in Valencia Province, Spain, from 
March to September in 2010 and 2011. Dates of the last day for each period.
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Fig. 2 Incidence of circular leaf spot on trap plants and environmental variables in Benimodo 
orchard from March to September in 2010 and 2011. Dates of the last day for each 
period.
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Fig. 3 Monomolecular disease progress curves of circular leaf spot incidence against days after 
disease onset in Benimodo and L'Alcúdia orchards in 2010 and 2011. Dots are the 
data obtained in the experiments, the solid line shows the regression model fit to the 
data, and the dashed lines are the 95% confidence levels for the response.
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