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Abstract
Nitric oxide (NO) is involved in various physiological functions and its role in tumorigenesis has
been well studied. A large majority of human and experimental tumors appear to progress owing
to NO resulting from iNOS, further stimulated by proinflammatory cytokines. Conversely, in
some cases, NO is associated with induction of apoptosis and tumor regression. This dichotomy of
NO is largely explained by the complexity of signaling pathways in tumor cells, which respond to
NO very differently depending on its concentration. In addition, NO alters many signaling
pathways through chemical modifications, such as the addition of S-nitrosothiols and
nitrosotyrosine to target proteins altering various biological pathways. Hence, iNOS inhibitors are
designed and developed to inhibit various organ site cancers including the colon. Here, we review
iNOS expression, generation of NO, involvement of NO in altering signaling pathways, and iNOS
select inhibitors and their possible use for the prevention and treatment of various cancers.

Nitric oxide (NO) is one of the smallest signaling molecules that can diffuse into the cell [1].
It is present in almost all cells in the body, synthesized through several enzymatic and non-
enzymatic pathways. As a free radical with complex redox chemistry, NO can modify all
biological molecules and is, therefore, implicated in all biological functions in living
systems. These pleiotropic biological actions are reflected in the publication of more than
117,000 articles on NO in the past 20 years. Out of this number, over 16,000 have been
published on the role of NO in cancer. In spite of this extensive research in cancer, the role
of NO in cancer is still ambiguous because NO is reported to be both anti- and pro-
tumorigenic in animals and humans. The reason for these seemingly opposite effects is that:
different types of cells respond differently to NO exposure the presence of varied levels of
different forms of NOS in different tissues; and exogenous NO coming from the diet adds to
the complexity of NO signaling [2].

NO is an important bioregulatory mediator involved in a variety of biological processes in
both normal and pathophysiological conditions. NOS, particularly inducible NOS (iNOS or
NOSII) and endothelial forms are overexpressed in various cancers in both humans and
rodents (Table 1) [3–6]. NO can exert its effects directly by forming reactive nitrogen–
oxygen species and indirectly by post-translational modifications of proteins via S-
nitrosylation or tyrosine nitration [7,8]. Nitrosylation of proteins in key signaling pathways
causes dysregulation of these pathways leading to disease formation [7,9]. Significant efforts
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have been made to address the iNOS/NO in tumor production and its effect on tumor
biology. Before logically designing an effective preventive and therapeutic strategy to target
tumor-associated iNOS/NO, one must clearly understand the mechanisms of iNOS
expression and NO production and their actions in the tumor microenvironment, which have
yet to be fully defined. There is growing interest in the cancer field to understand and target
the effects of NO that play a key role in mediating tumorigenesis and metastases. In this
review, the authors present some recent evidence on both the pro- and anti-tumor activities
through direct and indirect effects of NO and will also discuss the implications of these data
on the use of iNOS inhibitors in prevention of colorectal and other cancers.

NO generation & synthesis
NO is a free diatomic molecule formed from the nitrogen in the guanidine present in L-
arginine, under the catalytic action of the NOS enzymes, generating equimolar
concentrations of L-citrulline [10–12]. NO synthesis occurs from the activation of NOS,
which exists as two isoforms: the constitutive and the inducible isoforms [13–15]. The
constitutive isoforms (cNOS) were originally found in the endothelium and in neurons, thus,
they were initially called endothelial NOS (eNOS) and neuronal NOS (nNOS), respectively.
Both isoforms (eNOS and nNOS) are stimulated by a complex signaling pathway that is
dependent or independent of Ca2+. Both eNOS and nNOS require an electron donor, the
NADP+ and co-factors such as flavine-adenine-dinucleotide (FAD), flavine mononucleotide
(FMN) and tetrahydrobiopterin (BH4) [15–17]. In humans and, presumably, in most other
species, these isoforms are encoded by three different genes located in three different
chromosomes [18]. iNOS is induced by pathological stimuli, such as bacterial
lipopolysaccharide (LPS), cytokines, including IL-1, endotoxins and TNF, which is Ca2+-
independent, this isoform can be expressed in a large variety of cell types, including
monocytes, macrophages, lymphocytes, neutrophils, eosinophils, Kupffer cells, hepatocytes
and epithelial cells. One of the main differences between cNOS and iNOS is that during
inflammatory response iNOS is able to release large amounts of NO for relatively long
periods of time in a sustained manner, which can generate some exaggerated effects,
producing toxic, tumorigenic responses in the body, whereas cNOS produces small amounts
of NO within seconds and is short acting [19–21]. Irrespective of these differences in NOS
isoforms, all of them act as catalysts in the oxidation of the terminal nitrogen atom in L-
arginine forming equimolar amounts of NO and L-citrulline.

Non-enzymatic generation of NO
Dietary sources of nitrate and nitrite are physio-logically recycled in blood and tissues
forming NO and other bioactive nitrogen oxides. Therefore, they are now viewed as storage
pools for NO-like bioactivity, thereby complementing the NOS-dependent pathway. Nitrate
is further reduced to NO by various pathways under hypoxic and acidic conditions. Nitrate
from dietary sources is reduced to nitrite with the help of commensal bacteria present in the
intestines. It is absorbed by into the bloodstream and picked up by the salivary glands. It is
then released into mouth through saliva and oral bacteria use it as a food source to generate
nitrite [22]. Nitrite is reabsorbed into the bloodstream [23].

Some of the animal studies suggested that nitrate itself is not carcinogenic. Maekawa et al.
administered sodium nitrite in the drinking-water for 2 years at levels of 0.125 or 0.25% and
sodium nitrate in the diet at levels 2.5 or 5% to F344 rats and observed no carcinogenic
effect of nitrate or nitrite [24]. However, it has been reported that exposure to higher levels
of nitrates and nitrites has been associated with increased incidence of cancer in adults [25–
31]. Thus, the evidence that nitrate can cause diseases is controversial. There is even an
emerging evidence of a possible benefit of nitrate in cardiovascular health. Although nitrates
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as such may not be carcinogenic, in processed meat foods, due to the formation of N-nitroso
compounds, they are carcinogenic. Individuals with increased rates of endogenous formation
of carcinogenic N-nitroso compounds are likely to be susceptible to the development of
cancers in the digestive system.

Association of iNOS with various cancers
Studies from humans and laboratory rodents show that iNOS has been associated with the
development of cancers. Table 1 summarizes evidence in support of iNOS association
during tumor development in humans and animals. Most of the studies emphasize the
positive association with aggressive tumor promotional activities in almost all epithelial
cancers.

Colon
Studies in both carcinogen-induced and genetic models support a role for iNOS in the
promotion of colon carcinogenesis [5,6]. Increased iNOS expression and activity were
observed in carcinogen-induced rat dysplastic aberrant crypt foci (ACF), adenomas and
adenocarcinomas, but not in hyperplastic ACF [32]. The tumor-enhancing effects of iNOS
in the colon may be associated with the ability of NO to increase the expression/activity of
the enzyme COX-2 [33], likely via cross-talk between the iNOS and COX-2 signaling
pathways [6]. In support of a role for iNOS in colon tumor promotion, mice from a
ApcMin/+-iNOS-knockout genetic background showed decreased intestinal tumor formation
[34]. In humans, iNOS expression is up-regulated in carcinomas compared with patient's
normal-appearing colonic mucosa (Table 1) [35,36].

Breast
Studies largely support a role for iNOS in the promotion of breast neoplasia. Vakkala et al.
reported that iNOS expression increases with ductal carcinoma in situ (DCIS) grade and
further increases in invasive lesions; increased expression also correlates with increased
tumor vascularization and apoptotic index (Table 1) [37–39].

Prostate
Upregulation of iNOS expression has consistently been reported in cancerous prostatic
tissue compared with normal and adjacent normal-appearing tissue [40–43]. Expression in
precancerous high-grade prostate intraepithelial neoplasia (PIN) and cancerous is also more
intense than that in low-grade PIN and benign lesions, suggesting that up-regulation is
associated with progression to malignancy (Table 1) [44].

Bladder
Increased iNOS expression also has been found consistently in bladder cancers [45–48]. In
one study, all 94 transitional cell carcinomas examined exhibited some immunostaining for
iNOS. All dysplastic lesions adjacent to carcinomas exhibited staining patterns similar to
malignant tissue, suggesting that upregulation of iNOS is an early event during bladder
carcinogenesis (Table 1) [46].

Skin
iNOS also is upregulated during progression of malignant melanoma. Although iNOS is
absent from benign melanocytic nevi, its expression increases during progression from
cutaneous melanoma in situ, to invasive melanomas, to subcutaneous metastases. Also,
iNOS overexpression is reported in human skin squamous cell carcinoma [49].
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Similarly, overexpression of iNOS was reported in head and neck [50], esophageal [51] and
other cancers. Overall, there is strong evidence that most cancers overexpress iNOS and
upregulate iNOS activity, justifying it as valid target for chemoprevention (Table 1).

NO-induced S-nitrosylation & its tumorigenic effects
NO diffuses easily into surrounding tissues and affects targets at different locations through
covalent binding, resulting in direct chemical modifications such as addition of S-
nitrosothiols and nitrosotyrosine residues. S-nitrosylation regulates numerous signaling
pathways in intact cellular systems, and recent genetic evidence supports a diversity of
regulatory roles for this protein-modification reaction [52–54]. Ions (Ca2+, Mg2+, H+) and
O2-based modifications, which can cause changes in protein structure, have been shown to
promote S-nitrosylation and/or denitrosylation [55–58], and they also play a significant role
in specifying the sites of S-nitrosylation. S-nitrosylation has been reported to regulate the
activity of a number of metabolic enzymes, oxidoreductases, proteases, protein kinases and
phosphatases, both in vivo and in vitro, as well as respiratory proteins, receptors, ion
channels and transporters, cytoskeletal and structural components, transcription factors and
regulatory elements, including G proteins [59].

NO induces S-nitrosylation of the active site cysteines in caspases and other related proteins
leading to inhibition of apoptosis and the formation of S-nitrosothiols leading to the
oxidation of thiol proteins, which may act as switches in cells survival and apoptotic
signaling pathways [60–62]. Nitrosylation of nucleic acid bases leads to conversion of
cytosine to uracil and guanine [61]. NO also can inhibit DNA repair by nitrosylation of
DNA repair enzymes [63–66]. This might be one of the key elements favoring the
carcinogenesis process during inflammatory conditions. NO is known to stimulate the anti-
apoptotic Akt pathway via activation of Ras [67]. NO can protect human colon cancer cells
from apoptosis in vitro by scavenging superoxide radicals in mitochondria [68]. This results
in the formation of peroxynitrate (ONOO-), which can inactivate iron–sulphur proteins and
cause DNA damage. Furthermore, the oxidant products of peroxide can initiate NF-κB and
AP1 activation leading to tumor cell proliferation and development. NO in nanomolar
concentrations has been reported to activate Ras post-translational modification via S-
nitrosylation of the critical CYS118 residue, which stimulates guanine nucleotide exchange
[69]. Ras is overexpressed in many cancers including pancreas and colon cancers. It is
possible that low concentrations of NO could amplify Ras signaling by inducing
conformational changes of membrane-bound Ras proteins. The authors have previously
shown that by using iNOS and COX-2 inhibitors, there is molecular synergism between NO
and COX-2 pathways in colon cancer [5–6,70]. Furthermore, Kim et al. reported that an
increase in PGE2 formation by iNOS activation is due to binding of iNOS to COX-2 to
deliver NO in appropriate proximity for S-nitrosylation of COX-2, which, in turn, activates
COX-2 formation of PGE2 [71]. This may create favorable inflammatory conditions for
tumor development.

Estrogen stimulation of endothelial NO production is well established [72–74]. Estrogens
are reported to stimulate dynamic endothelial protein S-NO via mechanisms linked to
specific estrogen receptors (ERs; β/α), possibly on the plasma membrane, and endogenous
production of NO. The authors have observed more iNOS expression in human colon cancer
cell lines expressing ER-β [Janakiram NB, Rao CV et al., Unpublished Data]. Estrogen
induced S-NO of proteins was blocked by both ERβ and ERα antagonists, suggests a
potential role of estrogens in enhancing S-nitrosylation of proteins in cancer [75]. This
observation of the authors and others suggest that estrogen may play a role in altering signal
mechanisms through NO. These studies open a novel avenue for investigations on the
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effects of estrogens and their receptors on nitrosylation and the effects on colon cancer cell
proliferation.

Anti-tumorigenic properties of NO
Several reports suggest that NO can exert pro-apoptotic effects. A positive role of S-
nitration in killing the cancer cells was reported by Leon-Bollotte et al. [76], post-
translational modifications (S-nitrosylation of cysteine residues 199 and 304) in the
cytoplasmic domain of Fas occurs in colon and mammary cancer cells and this leads to
enhanced apoptosis; S-nitrosylation at CYS-304 promotes redistribution of Fas to lipid rafts,
formation of the death-inducing signal complex, and induction of cell death in these cancer
cells. Hussain et al. provided genetic and mechanistic evidence that NO can suppress
tumorigenesis in transgenic mice [77].

Hussain et al. reported that p53, a tumor suppressor protein, accumulates upon NO mediated
DNA damage and growth arrest [78]. NO inhibits the activity of NF-κB by stabilizing its
inhibitor, Iκ-Bα. NF-κB is a constituent of one of the anti-apoptotic pathways observed to
be overactivated during tumorigenesis [79]. NO is also reported to inhibit NF-κB by
nitrosylating its p50 subunit, thus, inhibiting its binding to DNA [80]. In the ApcMin/+
colon cancer mouse model, deletion of iNOS (iNOS−/− mice) has been found to promote
intestinal tumorigenesis, thereby substantiating a role for iNOS in host defense mechanisms
[81]. This report is contradictory to the finding by Ahn et al. [34]. The reasons for opposite
results in these animal models may be due to the type of diets given and the conditions in
which the mice were harbored. These results simulate the conditions seen with human
patients and further confirm the dual role of NO in a given situation. Evidence also suggests
that NO regulates cell proliferation at the translational level. NO causes a cell cycle arrest
through inhibition of cyclin D1 protein. Ambs et al. reported an increased concentration of
p21 in tumors of iNOS expressing LoVo cells [82]. Ropponen et al. suggest that high iNOS
staining intensity and percentage distribution in tumor epithelium may have a protective role
against colorectal cancer progression in humans [83]. They reported that iNOS expression
correlated positively with cell cycle regulators p21 and AP-2.

Concentration-dependent effects of NO on tumor growth
NO affects diverse signaling pathways and has opposing biological effects under different
contexts and at concentrations (Figure 1). Low physio logical concentrations of NO are
implicated in various different processes of tumorigenesis. Low concentrations of NO can
stimulate cell growth and protect many cell types from apoptosis, whereas high
concentrations of NO can inhibit cell growth and induce apoptosis [84]. Clinical and
preclinical reports by the authors and others have shown a positive relationship between
high expression of iNOS and tumorigenesis in colon tumors [5,6]. Solid tumors exhibited
sustained levels of NO that may be produced by infiltrating cells such as monocytes,
macrophages and fibroblasts. Some clinical studies have shown that iNOS increases
significantly in colon adenoma and carcinoma with little or no expression in normal colon
tissue [3,35,36], whereas other studies report that iNOS expression is decreased in colon
cancer compared with high expression in normal colon tissue [85–88]. In animal models,
induction of iNOS is correlated with colorectal cancer regression (both in situ and
metastatic) [89,90], whereas the authors found that NOS inhibitors prevent colonic aberrant
crypt foci formation and adenocarcinomas in azoxy methane (AOM)-induced rats (Table 2)
[5,6,70,91]. NO also is shown either, to promote or to inhibit growth of colorectal cancer
cells [92,93] and the effect was suggested to be concentration dependent [94]. Two separate
groups recently reported opposite effects of iNOS gene knockouts in mice on intestinal
carcinogenesis [3,95].
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Liu et al. observed growth inhibitory activity at higher concentrations of GSNO, an NO-
releasing compound. At low doses, NO exposure for 8 days with drug replenishment every
other day caused cytostasis of Caco-2 cells by inhibition of ODC activity [97]. ODC is an
important enzyme in polyamine synthesis, which is expressed highly in colon cancer and
polyamines help in increased proliferation of tumor cells. This report suggests that a low
dose of NO is an inhibitor of ODC and proliferation of tumor cells. In non-tumorigenic, non-
transformed colon cells, the NO donors SNAP and NOR-1 increased both COX-2 mRNA
transcription and protein synthesis [98]. Liu et al. reported that GSNO induced both COX-1
and -2 protein expression and stimulated PGE2 production in a dose- and time-dependent
manner in three colon cancer cell lines [96]. Jenkins et al. reported that NO slowed down the
growth of DLD-1, a colon adeno carcinoma cell line, in vitro but accelerated its cell growth
in vivo [99]. However, micro encapsulated iNOS-expressing cells (human fetal kidney cell
line EcR293) could inhibit DLD-1 cell growth in vivo (xenografts) and this was ascribed to
the difference in iNOS activity in the cells [94,93]. It is possible that high levels of iNOS
expression may be cytostatic/cytotoxic for tumor cells; lower activity can have the opposite
effect, promoting tumor growth and neovascularization (Figure 1).

iNOS selective inhibitors & NO-releasing donors in cancer
NOS activity was increased in AOM-induced colonic tumors in rats [5,6,100] and NO and
NOS are increased in Crohn's disease [101] and ulcerative colitis [102]. NO is
overexpressed in preneoplastic lesions of the colon [103] and in human adenocarcinomas of
the colon [104–106]. Wan et al. found high iNOS levels in the colon when animals were fed
a high-fat diet and it is well known that a high-fat diet is associated with colon cancer in
humans [107]. The many reports indicating high NOS activity and a positive role of NO in
colon cancer support the testing of structural analogues of iNOS substrates and iNOS
inhibitors to suppress/inhibit the induction of iNOS and to reduce its tumorigenic effects.

L-arginine structural analogues (Table 3) have been in use to inhibit tumor growth and
proliferation. L-nitroarginine methyl ester (L-NAME) is an irreversible inhibitor of brain
constitutive NOS (both nNOS and eNOS) with reversible effects on macrophage iNOS
[108]. Kawamori et al. examined its influence on the development of ACF induced by AOM
at a dose of 15 mg/kg once a week for 2 weeks in rats [91]. Dietary administration of 100
ppm of L-NAME for 11 weeks inhibited the development of ACF by 32% in terms of
multiplicity (Table 2) [91]. The results are in line with the authors' study, which showed that
S,S-1,4-phenylene-bis(1,2-ethanediyl)bis-isothiourea, a selective iNOS inhibitor, suppressed
the development of ACF induced by AOM in rats and reduced protein levels of COX-2 and
iNOS in colonic mucosa (Table 2) [5]. A similar observation was observed with Se-PBIT on
ACFs induced by AOM in rats (Table 2). We have extensively studied the role of iNOS in
molecular mechanisms of colon carcinogenesis [6,109].

Previously, we reported that low-dose combination of a COX-2 inhibitor (celecoxib) and an
iNOS inhibitor (SC-51) inhibited AOM-induced crypt formation in rats (Table2) [6].
Cianchi et al. also reported that iNOS and COX-2 are co-expressed within same cancer cells
and iNOS levels and PGE2 production correlative [110]. These data indicate that iNOS
expression may correlate with increased COX-2 expression in cancer cells, which is similar
to the observation in inflammatory conditions, hence, this effect may play a pivotal role in
colon tumorigenesis [111]. It is likely that iNOS is associated with the modulation of COX-2
activity in colon cancer. NO enhances the activity and expression of COX-2 in a variety of
cell types [112]. Overall, these data suggest that the rate of development of adenoma,
adenocarcinoma [91,113] and adenomatous polyps [34] is significantly decreased with L-
NAME and iNOS-specific inhibitors (Table 2).
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NO has been reported to be involved in invasion and metastatic spread of tumors. The
signaling cascades involved in the initiation of migratory behavior have been noted to be
NO dependent. For example, colon tumors that are exposed to an iNOS inhibitor showed
decreased potential for invasion, with decreased expression of VEGF [82]. Ridnour et al.
reported the MMP9 is a key physiologic mediator of the effects of NO. MMPs are
associated with cancer progression and usually high expressions of MMPs are observed in
cancers [114]. Table 3 summarises various iNOS inhibitors and their IC50 values in human
and animal cells [115]. Conversely, as discussed above, NO can also be anti-tumorigenic.
Hence, chemopreventive interventions were created to develop NO-release compounds in
colon cancer. The NO-releasing agent DETONONOate sensitized SW620 metastatic colon
cancer cells to pro-apoptotic treatments [116]. The NO donor sodium nitroprusside induced
caspases and reduced Bcl2 expression. Hence, these NO donors are being developed to
sensitize or enhance apoptosis of cancer cells. NO drug molecules tagged to known
nonsteroidal anti-inflammatory drugs (NSAIDs) as NO–NSAIDs, such as NO–aspirin, NO–
sulindac, NO–naproxen, NO–ibuprofen are well studied. These agents are being tested in
vitro and in vivo for growth inhibition in colon cancer [117]. The mode of action of some of
these agents is reported to be through S-nitrosylation and tyrosine nitration of important
signaling proteins, such as p53, NF-κB and Wnt signaling proteins in human colon cancer
cells [118].

iNOS inhibitors are studied in detail in colon cancer, whereas very little studies are available
on use of iNOS inhibitors in other cancers. The following available studies have suggested
the usefulness of iNOS inhibitors in other cancers. NOS inhibitors (l-NAME, l-NMMA,
cavtratin) showed decreased angiogenesis and tumor growth:

■ In murine melanomas;

■ By inhibition of eNOS in murine lungs;

■ By inhibition of iNOS in breast tumors;

■ By NOS inhibition in human head and neck tumors;

■ By inhibition of e-NOS and iNOS in hepatoma by xenografts (Table 2) [119–
121].

In another mouse study, iNOS deficiency decreased pulmonary metastases, impaired
angiogenesis, and suppressed pleural effusion of injected murine melanoma cells [122].
Aminoguanidine caused statistically significant reduced proliferation and increased
apoptosis in a xenograft model with injected gastric cancer cells compared with untreated
animals [123]. S,S′-1,4-phenylenebis(1,2-ethanediyl)bis-isothiourea PBIT reduced the
production of NO in nitrosomethylbenzylamine (NMBA)-induced preneoplastic and
papillomatous esophageal lesions when compared with comparable lesions in rats treated
with NMBA only [124]. PBIT caused a statistically significant reduction in tumor incidence
and multiplicity in rats fed PBIT in an NMBA-induced rat model of esophageal cancer
(Table 2) [124].

Conclusion & future perspective
NO plays an important role in growth, immunity and development. The role of NO in cancer
is multifactorial based on its temporal and spatial concentrations. Various iNOS inhibitors
have been under development for colon cancer, individually or in combination with COX-2
inhibitors for better efficacy. Simultaneous inhibition of external and internal sources of NO
can prove beneficial in suppressing tumor formation. The number of factors affecting NO
generation, including types of NOS present and the complex concentration-dependent
actions, make the design of specific inhibitors for use in colon cancer challenging. Post-
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translational modification of proteins by NO, such as protein nitrosylation, has emerged as
an important mechanism for regulation of the activity and function of key proteins in various
signaling pathways. Identification and targeting of specific nitrosylated proteins in key
pathways affecting tumor initiation, growth and metastasis may provide a better approach to
tackle in colon and other cancers. Although the most desirable animal models in colon
cancer, such as AOM-induced colon cancer in F344 rats, ApcMin/+ mice are available, opt
preclinical models that simulate initiation and development of other human cancers, as well
as methods to evaluate the role of NO and its inhibition during initiation, or development of
cancer are needed. Continuous investigation into the biology of NO at initiation or early
development of cancers will improve our knowledge on its signaling functions and may help
in development of more appropriate agents to prevent colon and other cancers.
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Executive summary

Background

■ NO is synthesized by NOS. Specifically, inducible NOS (iNOS) is implicated
in various cancers. NO can cause protein post-translational modifications
leading to deregulation of signaling pathways causing diseases. Both pro- and
anti-tumorigenic effects of NO are reported.

NO generation & synthesis

■ NO is generated by the action of NOS enzymes on L-arginine.

Non-enzymatic generation of NO

■ Inorganic nitrate from dietary sources is another major source of NO,
independent of the arginine-dependent NOS pathway.

Association of iNOS with various cancers

■ High iNOS expression is reported in almost all epithelial cancers, suggesting
its tumorigenic potential. iNOS expressions were observed at preneoplastic
or low grade lesion stages in the mentioned epithelial cancers justifying it as
a valid target for chemoprevention.

NO induced S-nitrosylation & its tumorigenic effects

■ NO can produce reactive nitrogen species that cause post-translational
modification of proteins, such as enzymes, receptors, respiratory proteins and
ion channels, altering their functions. This leads to anti-apoptotic signaling
and helps in tumor development.

Anti-tumorigenic properties of NO

■ NO mediates growth arrest on tumor cells. Also, S-nitrosylation of proteins
causes pro-apoptotic effects of tumor cells.

Concentration-dependent effects of NO on tumor growth

■ NO is observed to possess both pro- and anti-tumorigenic properties. This
biphasic nature of NO is attributed to its concentrations effects on tumor
growth or inhibition.

iNOS-selective inhibitors & NO-releasing donors in cancer

■ As it is evident that iNOS is expressed at preneoplastic lesion stages, use of
specific iNOS inhibitors at early stages in epithelial cancers such as colon
cancer inhibited these early lesions and also invasive adenocarcinomas. Also,
NO-releasing donors have shown anti-tumorigenic efficacy in in vivo and in
vitro cancer models.

Conclusion & future perspective

■ Expression of iNOS, concentrations of NO, time of NO exposure, region of
exposure, are important factors that determine NO functions. Also,
understanding the above effects of NO and role of nitrosylated proteins in a
tumor cell or in tumor environment may help in better designing of
preventive inhibitors for colon and other epithelial cancers.
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Figure 1. Pleiotropic effects of different levels of nitric oxide on inflammation and tissue
response
NO: Nitric oxide.
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Table 1

Inducible NOS expression in various cancers.

Organ Expression of inducible NOS in Ref.

Colon Aberrant crypt foci [5,6,32]

Adenoma

Adenocarcinoma

Breast Invasive lesions [38,39]

Tumors

Prostate High-grade prostatic intraepithelial neoplasia [40–44,50]

Cancer

Bladder Dysplastic lesions [45–48]

Carcinoma

Skin Preneoplastic [50]

Papillilomatous lesions

Esophageal Malignant melanoma [51]

Head and neck Carcinoma [49]
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Table 2

Effect of inducible NOS inhibitors on aberrant crypt foci/tumors inhibition in different animal cancer models.

Organ site iNOS inhibitor % inhibition Ref.

Colon cancer

Rat (AOM)- aberrant crypt foci PBIT 78 (4/ > crypts Foci) [5]

PBIT-Se 47 (4/ > crypts Foci) [125]

AG1(high dose) 48 (4/ > crypts Foci) [6]

SC51 (high dose) 52 (4/ > crypts Foci) [6]

SC51+celecoxib (low-dose combination) 41 (4/ > crypts Foci) [6]

Rat (AOM) adenocarcinoma PBIT 43 – incidence [126]

60 – multiplicity

70 – incidence [126]

83 – multiplicity

PBIT and celecoxib 40 – incidence [126]

46 – multiplicity

NILT 40 – incidence [70]

Adenocarcinoma 60 – multiplicity [70]

Invasive adenocarcinoma 67 – multiplicity [70]

NILT + Celecoxib 70 – incidence [70]

Adenocarcinomas 77 – multiplicity

Mouse (ApcMin/+-iNOS−/−) AG 29 – incidence [34]

7 – multiplicity

Mouse (ApcMin/+) high-fat diet PBIT >80 [127]

Mouse (xenograft with iNOS-expressing human colon
tumor) 1400W Promoting effect [128]

Mouse (iNOS-expressing intra-tumoral-macrophages) 1400W No effect [128]

Gastric cancer

Mice (Xenografts) Aminoguanidine 35–47 [129]

Mammary cancer

Mouse (iNOS-expressing adenocarcinoma) 1400W 49–59 [128]

Liver cancer

Mice (HepG2 tumors) Cavtratin 52 [119]

Lung cancer

Mice (Lewis lung cancer tumors) Cavtratin 38 [119]

Esophageal cancer

Rat (nitrosomethylbenzylamine) PBIT 77–83 – incidence [124]

50–59 – multiplicity

Head and neck

Rabbit (human tumor specimens, A-431 cells) L-NMMA Reduced angiogenesis/invasion [129]

Melanoma
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Organ site iNOS inhibitor % inhibition Ref.

Mice (xenografts with B16F1 and B16F10) L-NMMA Reduced angiogenesis/invasion [122]

AG: Aminoguanidine; AOM: Azoxymethane; iNOS: Inducible NOS; NILT: N6-iminoethyl-lysine tetrazoleamide; NMMA: N-Monomethyl-L-
arginine; PBIT: S,S'-1,4-phenylenebis(1,2-ethanediyl)bis-isothiourea.
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Table 3

List of induced NOS inhibitors and their selectivity at a particular concentration for different NOS.

Arginine analogues Neuronal NOS Found in

L-arginine 1.6 μM Rat

L-canavanine 60 μM Murine

L-NAMA 0.18 μM Rat

L-NNA 15 nM Bovine

N6, NG-dimethyl-L-arginine

L-NIL 35 μM Human

92 μM Rat

NILT 1850 μM Human

L-NIO 1.7 μM Rat

Vinyl-L-NIO 100 nM Rat

AMT 34 μM Rat

L-thiocitrulline 0.06 μM Rat

S-methyl-L-thiocitrulline 50 nM Rat

1.2 nM Human

N-propyl-L-arginine 57 nM Bovine

1400W 2 μM Human

Urea/guanidine derivatives

A-guanidinoglutaric acid 2.7 μM Rat

S-(2-aminoethyl)isothiourea 1.8 μM Human

EIT hydrobromide

AMT 34 nM Rat

Mercaptoethylguanidine 60 μm Rat

S-ethylisothiourea 29 nM Human

250 nM Rat

S-ethyl-N-[4-(trifuromethyl)phenyl] isothiourea 0.32 μM Human

S-isopropylisothiourea 37 nM Human

S-methylisothiourea 0.16 μM Human

1,3-PBIT 0.25 μM Human

1,4-PBIT 16 nM Human
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Arginine analogues Neuronal NOS Found in

Aminoguanidine 160 μM Rat

Other induced NOS inhibitors

2-imi no-4-methylpiperidine 0.2 μM

TRIM 28.2 μM Murine

7-nitroindazole 0.7 μM Murine

3-bromo-7-nitroindazole 0.17 μM Rat

BYK 191023 dihydrochloride 17000 nM

AMT: 2-amino-5,6-dihydro-6-methyl-4H-l,3-thiazine; L-NIL: L-N6-(1-iminoethyl)lysine dihydrochloride; L-NIO: N(5)-(-iminoethyl)-L-ornithine; L-
NNA: Nω-nitro-L-arginine; NILT: N6-iminoethyl-lysine tetrazoleamide; PBIT: S,S'-1,4-phenylenebis(1,2-ethanediyl)bis-isothiourea; TRIM: 1-[2-
trifluoromethylphenyl] imidazole.
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