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The role that inositol lipids play in cellular signaling 
events in eukaryotic cells remains one of the most in- 
tensively investigated areas of cell biology. In this re- 
spect, phosphoinositide-mediated signal transduction 
in the CNS is no exception; major advances have been 
made since a previous review on this subject (Fisher 
and Agranoff, 1987). Not only have stimulated phos- 
phoinositide turnover and its physiological sequelae 
been demonstrated repeatedly in a variety of neural 
preparations, but, in addition, the detailed molecular 
mechanisms underlying these events continue to un- 
fold. Here we review the progress that has occurred in 
selected aspects of this topic since 1987. In the first 
two sections of this article, emphasis is placed on novel 
functional roles for the inositol lipids and on recent 
insights into the molecular characteristics and regula- 
tion of three key components of the phosphoinositide 
signal transduction system, namely, the inositol lipid 
kinases, phospholipases C (PLCs), and the inositol 
1,4,5-trisphosphate [I( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ,4,5)P3] receptor. The metabolic 
fate of I( 1,4,5)P3 in neural tissues, as well as its control, 
is also detailed. Later we focus on identification of the 
multiple receptor subtypes that are coupled to inositol 
lipid turnover and discuss possible strategies for inter- 
vention into phosphoinositide-mediated signal trans- 
duction. Due to space limitations, an extensive eval- 
uation of the diacylglycerol/protein kinase C (DAG/ 
PKC) limb of the signal transduction pathway is not 
included (for reviews, see Nishizuka, 1988; Kanoh et 
al., 1990). 

INOSITOL LIPIDS AND ENZYMES 
OF THEIR METABOLISM 

Phosphoinositides and cell function: new roles 
It is by now well-established that the major inositol- 

containing lipids that serve as precursors of intracellular 
second messenger molecules in both neural and non- 
neural tissues are phosphatidylinositol (PI), phospha- 
tidylinositol 4-phosphate (PIP), and phosphatidylino- 
sitol4,5-bisphosphate (PIP2). However, recent studies 
indicate the additional presence of a number of quan- 
titatively minor inositol lipids that are characterized 
by the presence of a phosphate group at the D-3 po- 
sition of the inositol ring. Although much of the evi- 
dence accumulated for the existence of these lipids 
comes from nonneural tissues (for review, see Carpen- 
ter and Cantley, 1990), PI(3)P has been identified in 
1321NI astrocytoma cells (Stephens et al., 1989) and 
in NG 115-401L-C3 neuroblastoma cells (Poyner et 
al., I990), and phosphatidylinositol 3,4,5-trisphosphate 
(PIP3) in cerebral cortex (Vadnal and Parthasarathy, 
1989). Because the 3-phosphoinositides are only poorly 
separated from their quantitatively major counterparts 
by present TLC methods, definitive identification of 
the lipid structure requires an initial removal of the 
glycerol backbone to yield the inositol phosphate, fol- 
lowed by periodate oxidation, reduction, and dephos- 
phorylation to the corresponding polyol. Although such 
rigorous analysis has been used for identification of 
PI(3)P in astrocytoma cells (Stephens et al., 1989), in 
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diphosphodiacylglycerol; DAG. diacylglycerol; ET, endothelin: G 
protein, guanine nucleotide binding protein: G,, putative G protein 
that regulates PLC activity: GTPyS, guanosine 5'-0-(3-thiotriphos- 
phate); IP, , mvc-inositol monophosphate; IP2. myo-inositol bis- 
phosphate; IP3, mw-inositol trisphosphate; IP,, myn-inositol tetra- 

kisphosphate; IP5, myo-inositol pentakisphosphate; IP,, myo-inositol 
hexakisphosphate; (numbering of phosphate groups is related to the 
1 -D structure of PI); mAChR, muscarinic acetylcholine receptor; PI, 
phosphatidylinositol; PIP, phosphatidylinositol 4-phosphate; PIP2, 
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3,4,5-trisphosphate; (positions of phosphate groups are designated 
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most instances, structures of the 3-phosphoinositides 
have been inferred from a comparison of HPLC elution 
profiles of deacylated lipid products with authentic 
standards. The physiological role of these novel phos- 
phoinositides is not yet known. Upon the addition of 
carbachol to astrocytoma cells, a slow but marked de- 
crease in PI(3)P radiolabel was noted (Stephens et al., 
1989). In contrast, labeling of the same lipid was un- 
altered following the addition of either mitogenic or 
nonmitogenic stimuli to NG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 15-40 1GC3 cells (Poy- 
ner et al., 1990). Although the 3-phosphoinositides were 
first identified in cells that undergo rapid cell division, 
PI(3)P has now been identified in both proliferative 
and nonproliferative tissues (Downes and MacPhee, 
1990). Furthermore, because these phosphoinositides 
are present only in trace concentrations and do not 
serve as substrates for PLC activity (Lips et al., 1989; 
Serunian et al., 1989), their role zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas precursors of second 
messenger molecules appears unlikely. This raises the 
possibility that the 3-phosphoinositides undergo further 
metabolism, e.g., dephosphorylation (see Lips and 
Majerus, 1989). 

A separate role for inositol lipids in the maintenance 
of the cytoskeleton has also been proposed based upon 
the known ability of PIP2 to bind to actin-binding pro- 
teins, the best documented of which is gelsolin. Bound 
PIP2 facilitates the release of gelsolin from the actin 
filament, thereby regulating new filament formation 
(for review, see Majerus et al., 1990). PIP2 also binds 
with high affinity (KD < 0.1 p M )  to profilin, a protein 
which inhibits actin polymerization (Goldschmidt- 
Clermont et al., 1990). It is possible that PIP2 thus 
promotes actin polymerization by regulation of the 
gelsolin-actin and profilin-actin complexes. Recently, 
a direct role for phosphoinositides in exocytosis from 
chromaffin cells was proposed (Eberhard et al., 1990). 
It is conceivable that, in these cells, cytoskeletal ele- 
ments involved in exocytosis are regulated by the ino- 
sitol lipids. 

The presence of a PI glycan in brain was first indi- 
cated some 30 years ago by Klenk and Hendricks 
(1 96 l), who demonstrated that human brain contained 
an inositol lipid with glucosamine, mannose, and eth- 
anolamine. In both neural and nonneural cells, PI gly- 
cans may anchor proteins to the outer membrane leaflet 
(thereby conferring increased lateral mobility). The 
common structural features of this attachment are an 
ethanolamine residue with an amide linkage to the ter- 
minal carboxyl group of the protein, a mannose-con- 
taining glycan, and a nonacetylated glucosamine res- 
idue linked to the D-6 position of myo-inositol via a 
glycosidic linkage (for reviews, see Low, 1989; Lisanti 
et al., 1990). In brain, Thy-1 and a number of other 
cell-surface glycoproteins, the expression of which may 
be regulated during development, are anchored to the 
membrane via glycosyl PI linkages (Low and Kincade, 
1985; Margolis et al., 1988). Moreover, brain contains 
at least two PLC activities which appear specific for 
the glycosylated form of PI (Fouchier et al., 1990). Un- 

like the bulk of cellular PI in which stearate and ar- 
achidonate predominate, these substituents are no 
longer prominent in PI anchors, being replaced in 
various tissues and species by myristate, octadeca- 
no1 (as a 1-alkyl substituent), or docosanoate. In 
PC 12 pheochromocytoma cells, the addition of nerve 
growth factor stimulates both the production of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
[3H]myristate-labeled species of DAG (but not that of 
[3H]arachidonyl-DAG) and an inositol phosphate gly- 
can (Chan et al., 1989). The latter may serve as an 
intracellular second messenger, as has been proposed 
for insulin action (Lisanti et al., 1990). The possibility 
that D-chiro-inositol-anchored proteins occur (Fergu- 
son and Williams, 1988; Kennington et al., 1990) must 
also be considered. 

Phosphoinositide kinases and their regulation 
Although the concept that multiple forms of PI ki- 

nase might exist in tissues was first raised over 20 years 
ago (Hanvood and Hawthorne, 1969), only recently 
have distinct forms of the enzyme been isolated and 
purified from brain. At least three forms of PI kinase 
can be distinguished on the basis of the product formed, 
M,, ATP requirement, effects of detergents, and inhi- 
bition by adenosine (Table 1A). A type I or PI 3-kinase, 
originally purified from fibroblasts (Whitman et al., 
1987), has been purified to near homogeneity from 
bovine brain cytosol (Morgan et al., 1990). This kinase 
specifically phosphorylates PI at the D-3 (rather than 
the D-4) position of myo-inositol, is strongly inhibited 
by detergents, and exhibits a high affinity for ATP. This 
enzyme will also phosphorylate added PIP and PIP2 to 
a comparable extent with the presumed formation of 
PI(3,4)P2 and PIP3, respectively (Morgan et al., 1990). 
Two additional 4-kinase activities have been described 
by Endemann et al. (1987), both of which are specific 
for PI. One (type I1 PI kinase) can be distinguished 
from PI 3-kinase in that it is an integral membrane 
protein, phosphorylates only at the D-4 position, is of 
a lower M,, and is activated by detergents. It is also 
potently inhibited by adenosine. A type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 PI kinase 
is also present in brain and shows the same phosphor- 
ylation pattern as type I1 PI kinase, but exhibits a larger 
M, and a lower affinity for ATP. Recently, a mono- 
clonal antibody has been developed which is highly 
specific for the type I1 kinase (Endemann et al., 199 1). 
Saltiel et al. (1987) have also isolated a 4-kinase activity 
from myelin which is distinct from that described as 
type I, but phosphorylates both PI and PIP. Little is 
known of the regulation of PI kinase activities in brain. 
In contrast, in nonneural cells, inhibition and activa- 
tion of enzyme activity by adenosine and polyamines, 
respectively, have been proposed (Endemann et al., 
1987; Downes and MacPhee, 1990). 

PIP 5-kinases are present in both the cytosol and 
brain membranes, although they predominate in the 
former (Table 1 B). These enzymes phosphorylate PIP, 
but not PI, and have been purified from both the cytosol 
and membranes. There is some suggestion that PIP 
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TABLE 1. Biochemical characteristics of phosphoinositide kinases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin bruin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~~ ~~~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ATPI K, (adenosine) 

Source M, Substrate Product ( p M )  Detergent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( P W  Reference 

A. PI kinases 
Type 1 Bovine brain 85K 

(whole brain) 

Type 11 Bovine brain 55K 

Type I11 Bovine brain 230K 

Rat brain 76K 

? Bovine brain 45K 

(membranes) 

(membranes) 

(membranes) 

(myelin) 

PI 
PIP 
PIP2 
PI 

PI 

PI 

PI 
PIP 

Pl(3)P 67 Inhibition ND Morgan et al. (1990) 
PIP2 
PIP3 
PIP 54 Activation 18 Endemann et al. (1987) 

PIP 742 Activation 1.520 Endemann et al. (1987) 

PIP 150 Activation 200 Yamakawa and Takenawa 

PIP 150 ND ND SaltieI et al. (1987) 
PIP* 

(1988) 

B. PIP 5-kinase Rat brain 45K PIP PIP2 25 Cochet and Chambaz 
(CYtOW (1986) 

(CYtOd) 

(membranes) 

Rat brain 45K PIP PIP2 ND Van Dongen et al. (1984) 

Bovine brain llOK PIP PIP2 ND Mortiz et al. (1990) 

ND, not determined. 

kinase in brain membranes may be activated by GTP 
and its nonhydrolyzable analogues, an effect apparently 
not mediated via an inhibition of phosphomonoester- 
ase or PLC activities (Smith and Chang, 1989; Strosz- 
najder and Strosznajder, 1989). A further means of 
regulation of PIP kinase may be through a brain-spe- 
cific protein Bso, which upon phosphorylation by PKC, 
inhibits PIP kinase (Van Hooff et al., 1988). 

PLC and its regulation 
Multiple forms of PLC are now known to exist in 

both neural and nonneural tissues. The five isozymes 
thus far identified (designated as a, 8, y, 6, and E ,  based 
upon the chronological order of their purification) are 
immunologically distinct entities and the products of 
separate genes (Rhee et al., 1989). In addition, a num- 
ber of isoforms presumed to reflect proteolytic cleavage 
of the parent enzymes have been identified and puri- 
fied. Amino acid sequence data indicate that only a 
very limited homology exists between the 6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, and 6 
isozymes, whereas none is observed for PLC-a. The 
two regions of homology include one of approximately 
150 and a second of 120 amino acid residues which 
are 54% and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA42% identical between the isozymes, re- 
spectively, but are differentially localized within each 
isozyme. PLC-y also exhibits some amino acid se- 
quences that are related to those found in nonreceptor 
tyrosine kinases of the src family, GTPase-activating 
protein, and a-spectrin. Deletion mutant forms of PLC 
that lack portions of these sequences retain enzyme 
activity, thereby indicating that they serve a regulatory, 
rather than catalytic function (Emori et al., 1989). 

Of the five known isozymes, PLC-0, -7, and -6 pre- 
dominate in brain and have been extensively purified 
from a variety of sources (Table 2). The cDNA se- 

quences of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, 7, and 6 forms of brain PLC have 
also been elucidated and antibodies to these isozymes 
raised. Although PLC has been purified routinely from 
cytosol, enzyme activity is also present in membrane 
fractions, the proportions of PLC activity present in 
each cellular compartment being isozyme-specific (Lee 
et al., 1987). Confirmation that the same enzyme ac- 
tivity may reside in both cytosol and membrane frac- 
tions was obtained by Lee et al. (1987), who demon- 
strated that PLC-p activities derived either from KCl- 
washed membranes or from cytosol had similar M, 
values, were recognized by the same monoclonal an- 
tibodies, and exhibited a similar elution profile of tryp- 
tic peptides. Although the bimodal subcellular distri- 
bution of PLC has raised the suggestion that the enzyme 
undergoes translocation, there is little direct evidence 
for this at present. The availability of monoclonal an- 
tibodies to PLC-& -?, and -6 has permitted studies of 
the regional and cellular distribution of the isozymes 

TABLE 2. PLC isozymes isolatedfrorn brain 

PLC isozyme Source M, Reference 

B- 1 Bovine brain 150K Ryu et al. (1986, 1987u,b) 
Bovine brain 154K Katan and Parker (1987) 
Rabbit brain 155K Carter et al. (1990b) 

P-2 Bovine brain 140K Ryu et al. (1987a,b) 
8-3 Bovine brain lOOK Ryu et al. (1986, 1987a,b) 
Y Bovine brain 145K Ryu et al. (1986, 1987a,b) 
6 Bovine brain 85K Ryu et al. (1987a,b) 

Rat brain 85K Homma et al. (1988) 
Bovine brain 88K Rebecchi and Rosen (1987) 

(4 Rat brain 8SK Homma et al. (1988) 
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within the CNS. Whereas PLC-y is distributed rela- 
tively uniformly within neurons in all brain regions, 
PLC-p immunoreactivity is most concentrated in neu- 
rons present in the globus pallidus, substantia nigra, 
cerebral cortex, hippocampus, and thalamic nuclei 
(Gerfen et al., 1988). In contrast, PLC-6 immunoreac- 
tivity appears preferentially localized to glial cells in 
all brain areas examined (Choi et al., 1989). 

The activity of PLC is strongly dependent upon the 
assay conditions chosen. However, when conditions 
comparable to those of the intracellular ionic environ- 
ment are used (pH 7, high K+, [Ca2+] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1 pM), two 
key properties of PLC become evident. The first is that 
for all isozymes (in particular, PLC-p; see Rhee et al., 
1989), PIP2 and PIP are the preferred substrates. Ino- 
sitol lipids containing a 3'-phosphate do not appear to 
serve as substrates for PLC (Lips et al., 1989; Serunian 
et al., 1989). The specificity with which the polyphos- 
phoinositides are hydrolyzed in vitro by PLC is con- 
sistent with studies of their receptor-stimulated turn- 
over in brain and neuroblastomas, in which evidence 
is obtained for the breakdown of PIP2 and/or PIP, but 
not of PI (Batty and Nahorski, 1989; Fisher et al., 1990). 
The second property of note is that the concentration 
of Ca2+ required for full activation of PIP2 hydrolysis 
is within the physiological range (0.1- 1 .O pM), whereas 
much higher concentrations of the cation are required 
for PI hydrolysis. Thus, PLC is regulated by physio- 
logically relevant concentrations of Ca2+, an observa- 
tion consistent with the ability of agents which promote 
a rise in the concentration of intracellular Ca2+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( [Ca2+li), such as K+ depolarization, Ca2+ ionophores, 
or maitotoxin, to elicit an increased phosphoinositide 
hydrolysis in neural tissues (Eberhard and Holz, 1988; 
Gusovsky et al., 1989; Baird and Nahorski, 1990~). In 
digitonin-permeabilized neuroblastoma cells, PLC ac- 
tivity could be regulated by alterations in [Ca2+Ii (Fisher 
et al., 1989). 

It has been calculated that the activity of brain PLC, 
if unregulated, would be sufficient to elicit complete 
hydrolysis of PIP2 within 2-20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, even in the absence 
of receptor activation (Rhee et al., 1989). Although 
such calculations ignore PIP2 resynthesis, it is probable 
that PLC activity in vivo is subject to stringent control. 
A further consideration is that the breakdown and re- 
synthesis of PIP, is metabolically expensive (3 mol of 
ATP and 1 mol of CTP consumed per mol of PIP2 
hydrolyzed). These observations have led to the (as yet 
unconfirmed) suggestion that a regulatory protein exists 
which represses PLC in vivo (Fain et al., 1988; Rhee 
et al., 1989). More definite evidence exists for the ability 
of guanine nucleotide binding protein(s) [G protein(s)] 
to regulate PLC activity. The activation of PLC by 
guanine nucleotides (Gonzales and Crews, 1985) is 
presumably mediated through G protein (Gp) which 
in neural, as in nonneural tissues, is usually insensitive 
to either pertussis or cholera toxins. A novel pertussis 
toxin-insensitive G protein, G,, has been shown re- 
cently to activate specifically the @ isozyme of PLC 

from bovine brain (Smrcka et al., 1991; Taylor et al., 
1991). More elusive has been the demonstration of 
GTP-dependent agonist-stimulated PLC activity in 
brain membranes, but such has been observed recently 
(Chiu et al., 1988; Clar6 et al., 1989; Carter et al., 
1990~). Whereas carbachol alone elicits little or no ac- 
tivation of PLC, a potentiative interaction occurs in 
the presence of guanosine 5'-0-(3-thiotriphosphate) 
(GTPyS). Inhibitory G proteins may also regulate PLC. 
Nanomolar concentrations of nonhydrolyzable GTP 
analogues inhibit basal PLC activity, whereas at higher 
concentrations of the guanine nucleotide (> 1 pM) ,  the 
predicted stimulation of enzyme activity occurs (Li- 
tosch, 1989). The inhibitory (but not the stimulatory) 
effect on PLC activity can be prevented by preincu- 
bation of the membranes with pertussis toxin. Addition 
of F- is also able to activate phosphoinositide hydrolysis 
in membranes, an effect usually attributed to activation 
of G, (Litosch, 1987; Godfrey and Watson 1988; Gon- 
zales and Crews, 1988; Jope, 1988). However, some 
caution is warranted in this interpretation, because the 
F- effect on inositol phosphate release is not blocked 
by guanosine 5'-0-(2-thiodiphosphate) (P. P. Li et al., 
1990). Furthermore, F- has been demonstrated to ac- 
tivate purified PLC-p directly (Carter et al., 1990b). 
The mechanism whereby G, activation regulates PLC 
activity is still uncertain, but may be a lowering of the 
enzyme's requirement for Ca2+. Thus, in the absence 
of guanine nucleotides, supraphysiological concentra- 
tions of Ca2+ (1- 10 pM)  are needed for enzyme acti- 
vation in permeabilized neuroblastoma cells, whereas 
in the presence of GTPyS, concentrations of Ca2+ 
found in the cytosol of these cells (30- 150 nM) suffice 
(Fisher et al., 1989). 

PLC may also be regulated through phosphorylation. 
Numerous reports exist to indicate that activation of 
PKC by phorbol esters results in an inhibition of 
receptor-activated phosphoinositide hydrolysis (see 
Fisher and Agranoff, 1987, and references therein; 
Orellana et al., 1987; Pearce et al., 1988), and studies 
with permeabilized cells indicate that this inhibition 
resides at, or distal to, the G,-PLC interaction site (Or- 
ellana et al., 1987; Cioffi and Fisher, 1990). Direct 
phosphorylation of PLC-a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-p, -7, and -6 has been 
demonstrated in vitro upon the addition of purified 
PKC (Crooke and Bennett, 1989). However, no change 
in the catalytic activity of PLC occurs under such con- 
ditions. This raises the possibilities that PLC itself is 
not the target for PKC-mediated phosphorylation or, 
alternatively, that phosphorylated PLC loses its ability 
to interact with G,. Phosphorylation of PLC by protein 
kinase A (PKA) also remains a possibility. Increases 
in tissue cyclic AMP are accompanied by an inhibition 
of both receptor- and GTPyS-stimulated phosphoino- 
sitide turnover in neuroblastoma and glioma cells, pri- 
mary glial cultures, and isolated membranes (Akil and 
Fisher, 1989; Kim et al., 1989; Campbell et al., 1990; 
McAtee and Dawson, 1990; Robertson et al., 1990). It 
is suggested that the site of inhibition is at, or is distal 
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to, the GdPLC interaction (Akil and Fisher, 1989; 
McAtee and Dawson, 1990; Robertson et al., 1990), 
in a manner analogous to that observed for PKC in- 
hibition. There is also evidence from nonneural cells 
that PLC is phosphorylated in response to the addition 
of growth factors. The latter bind to receptors which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
possess intrinsic tyrosine kinase activity, which can then 
phosphorylate a tyrosine residue on the PLC-7 (Rhee 
et al., 1989, and references therein). This means of re- 
ceptor-activated PLC activity can be distinguished from 
the aforementioned types in that an intervening G pro- 
tein is not involved (Boyer et d., 1989). Rhee et al. 
(1 989) note that the molecular masses of PLC are sig- 
nificantly larger than those of related enzymes [e.g., 
phospholipase A2 (PLA2)], lending support to their 
suggestion that large portions of the PLC molecule are 
devoted to the enzyme’s regulation. 

Few specific inhibitors of PLC are currently avail- 
able. Manoalide, which causes the irreversible inacti- 
vation of PLC-a, also has other sites of action, such as 
the blockade of Ca2+ channels and inhibition of PLA2 
(Crooke and Bennett, 1989). Mastoparan, a wasp 
venom undecapeptide, blocks GTPyS-stimulated 
phosphoinositide turnover in neuroblastoma and as- 
trocytoma cells (Wojcikiewicz and Nahorski, 1989; 
Nakahata et al., 1990). This compound does not pen- 
etrate intact cells uniformly, it is not specific for G,- 
linked receptors, and its mode of inhibition (i.e., 
through G, or direct interaction with PIP2) is uncertain. 
To date, the most promising agent is the aminosteroid 
U-73 122. This agent readily gains access to intact cells 
and blocks stimulated inositol lipid turnover, Ca2+ sig- 
naling, and related events (Bleasdale et al., 1990; Smith 
et al., 1990; Thompson et al., 1991). It is particularly 
effective at blocking GTPyS-stimulated phosphoino- 
sitide turnover, whereas that induced by the addition 
of Ca2+ is less affected. 

INOSITOL PHOSPHATE ISOMER 
FORMATION, METABOLISM, 

AND FUNCTION 

Metabolism of I( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,4,5)P3 
The complexity of the metabolism of the inositol 

phosphates has become increasingly evident with the 
identification in tissues of more than 20 of the 63 pos- 
sible isomers. Much effort has been expended in the 
elucidation of both their metabolic interrelationships 
and the characteristics of the relevant enzymes involved 
(for review, see Shears, 1989). It is now generally ac- 
cepted that in brain, as in other tissues, the initial prod- 
uct of receptor-stimulated PLC activity is I( 1 ,4,5)P3 
(and possibly its cyclic 1,2 derivative). Because it has 
been established that IP3 acts as a second messenger 
in the mobilization of intracellular Ca2+, the routes of 
its enzymatic metabolism and their regulation assume 
considerable importance (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1). I( 1,4,5)P3 can be 
metabolized by either 5-phosphatase or 3-kinase activ- 
ities to yield inositol 1,4-bisphosphate [I( 1,4)P2] or 

inositol 1,3,4,5-tetrakisphosphate [I( 1,3,4,5)P4], re- 
spectively, either of which could be regarded as “off’ 
signals. The 5-phosphatase is particularly enriched in 
cerebellum (50-60% of total brain activity) and has 
been localized histochemically to the cerebellar mo- 
lecular layer (Heacock et al., 1990). Although primarily 
particulate (Emeux et al., 1986), two forms of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5- 
phosphatase have been purified from brain cytosol 
(Hansen et al., 1987). Both type 1(60 kDa) and type 
I1 (160 kDa) attack I( 1,4,5)P3 and I( 1 ,3,4,5)P4, although 
the type I1 enzyme is relatively weak against the latter 
substrate. With I( 1 ,4,5)P3 as substrate, the I( 1 ,4)P2 that 
results from 5-phosphatase action is dephosphorylated 
further to inositol 4-monophosphate [I(4)P, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA] via the 
action of a Mg2+-dependent inositol polyphosphate 1- 
phosphatase (Inhorn and Majerus, 1987, 1988; Gee et 
al., 1988~). This enzyme has been purified from brain 
cytosol, has an M, of 40K-44K, and is inhibited by 
Ca2+, and uncompetitively by Li+. 4-Phosphatase ac- 
tivity against I( 1 ,4)P2 in various tissue homogenates, 
including brain (Ackermann et al., 1987; Ragan et al., 
1988) and neuroblastoma (Fisher et al., 1990), is either 
absent or low. 

Alternatively, I( 1 .4,5)P3 may be converted to 
I( 1,3,4,5)P4 via IP3 kinase. In contrast to the 5-phos- 
phatase, the 3-kinase is largely cytosolic and is partic- 
ularly enriched in cortex, cerebellum, and hippocam- 
pus (Heacock et al., 1990). Recent in situ hybridization 
studies indicate a preponderance of the enzyme’s 
mRNA in CA 1 pyramidal neurons, granule cells of the 
dentate gyrus, and cerebellar Purkinje cells (Mailleux 
et al., 1991). The kinase has been purified from brain 
(Johanson et al., 1988; Lee et al., 1990; Takazawa et 
al., 1990a), and its cDNA has been cloned and se- 
quenced (Choi et al., 1990; Takazawa et al., 1990b). 
The predicted molecular mass (50 kDa) is in close 
agreement with values obtained for the protein on so- 
dium dodecyl sulfate-polyacrylamide gel electropho- 
resis (SDS-PAGE). Ca2+ and calmodulin increase the 
V,,, of the enzyme at IP3 concentrations greater than 
the K, (Johanson et al., 1988; Takazawa et al., 1988; 
Heacock et al., 1990). A rise in [Ca2+Ii may thus pro- 
mote the formation of I( 1,3,4,5)P4, which is itself im- 
plicated in Ca2+ homeostasis. In addition to possessing 
a calmodulin-binding site, IP3 kinase also exhibits six 
regions enriched in sequences that contain five amino 
acids (proline, glutamate, aspartate, serine, and thre- 
onine) which render it susceptible to hydrolysis by the 
protease calpain (Choi et al., 1990). A further potential 
means of regulation is via phosphorylation of the en- 
zyme. Sim et al. ( 1990) have demonstrated that PJSA- 
and PKC-induced phosphorylations of serine residues 
on brain IP3 kinase increase and decrease, respectively, 
the V,,, of enzyme activity. 

Once formed, the major route of I(1,3,4,5)P4 me- 
tabolism is that of dephosphorylation to I( 1 ,3,4)P3, 
catalyzed by the same 5-phosphatase that acts on 
I( 1,4,5)P3. In addition, an I( 1 ,3,4,5)P4 3-phosphatase 
activity has been found in brain cytosol, which results 
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FIG. 1. Pathways of l(1 ,4,5)P3 metabolism in neural tissues. myo-lnositol is visualized as a turtle in which the axial (2) position is the head 
and the five equatorial hydroxyls constitute the four legs and tail (Agranoff, 1978). The solid spheres indicate the positions of the phosphate 
groups. See text for details of enzymatic conversions. The dashed line indicates a pathway that is yet to be demonstrated in CNS. It is 
also possible that an initial product of PIP, hydrolysis is the cyclic 1,2 derivative of IP3. This inositol phosphate is presumed to undergo 
sequential dephosphorylations to (cyclic 1 ,2)IP1, then l(l)Pi, and thence to myo-inositol. The dephosphorylation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl(1 ,3)P2 to I(3)Pi has 
yet to be described. Also not shown is an alternative pathway for IPS formation (see text). The solid bars indicate enzymatic steps subject 
to Li+ inhibition. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in the reformation of I(1,4,5)P3 (Hoer et al., 1988, 
1990). The physiological significance of a 3-kinase/3- 
phosphatase futile cycle has been questioned (Downes 
and MacPhee, 1990). I(1,3,4)P3 is acted upon either 
by inositol polyphosphate 1-phosphatase (Inhorn and 
Majerus, 1987, 1988; Gee et al., 1988~) to produce 
I(3,4)P2 or, alternatively, by a Li+-insensitive 4-phos- 
phatase to yield I( 1,3)P2. These two compounds are 
then dephosphorylated further by 4- or 3-phosphatases 
to yield I(3)PI and I( l)P1, respectively. Whereas the 4- 
phosphatase is insensitive to both Li+ and Mg2+, two 
separate 3-phosphatase activities can be distinguished 
by their Mg2+ requirements (Howell et al., 1989). As 
was originally proposed (Ackermann et al., 1987), a 
single enzyme, inositol monophosphatase, exhibits 
similar affinities for the dephosphorylation of I( l)PI 
and I(4)P1 and, most likely, for other IPI isomers 
(Shears, 1989). The enzyme, which has been purified 
to homogeneity (Gee et al., 1988b; Meek et al., 1988), 

exists as a dimer of subunit M, 29K and is inhibited 
by Li+ in an uncompetitive manner with a Ki of < 1  
mM. The cDNA for the enzyme, which has been 
cloned, sequenced, and expressed, encodes a protein 
of 277 amino acids with an M, of -30K (Diehl et al., 
1990). Unlike many other tissues, brain can synthesize 
inositol de novo (Eisenberg, 1967). The key enzyme, 
IPI synthase, which catalyzes the cyclization of glucose 
6-phosphate, has been localized immunohistochemi- 
cally to the brain vasculature (Wong et al., 1987). 

As yet, relatively little is known of the pathways of 
synthesis for inositol pentakisphosphate (IPS) and ino- 
sitol hexakisphosphate (IP,) in neural tissues. These 
assume importance in view of the recent observation 
that the addition of either high K+ or agonists elicits 
an increase in IPS formation in chromaffin cells (Sa- 
sakawa et al., 1990). In homogenates of both brain 
(Stephens et al., 1988) and chromaffin cells (Sasakawa 
et al., 1990), added l3H]I( 1,4,5)P3 can be converted to 
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[3H]IP5. In brain, the I(1,3,4,5,6)P5 isomer has been 
shown to be synthesized from I(1,3,4,6)P4, which in 
turn is formed from kinase action on I(1,3,4)P3 (Ste- 
phens et al., 1988). In a preliminary study, evidence 
was provided for the presence in brain cytosol of an 
additional kinase which preferentially phosphorylates 
IPS (Stanley et al., 1990). However, the enzyme appears 
to be specific for the 1,2,4,5,6 isomer, rather than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I( 1,3,4,5,6)P5. 

Although a principal function of the complex series 
of metabolic reactions that inactivates IP3 seems to be 
to replenish the intracellular inositol pool, the possi- 
bility must also be considered that some of the inter- 
mediates formed may be physiologically relevant. In 
this context, I( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ,4)P2 has been reported to activate DNA 
polymerase (Sylvia et al., 1988). Although roles in cel- 
lular functions have been proposed for the higher ino- 
sitol phosphates (IP4, IPS, and IP6), at present, the only 
inositol phosphate that has been linked definitively to 
cellular signaling events is I( 1 ,4,5)P3. 

I(1,4,5)P3 receptors and Ca2+ homeostasis 
The direct injection of I( 1,4,5)P3 into cells, or its 

addition to permeabilized cells or membrane fractions, 
elicits an increase in Ca2+ release from nonmitochon- 
drial stores in both neural and nonneural tissues. The 
release is specific for the D isomer, is unaffected by 
known Ca’+-channel blockers, requires the presence of 
K+, and can occur at low temperatures (for reviews, 
see Berridge and Irvine, 1989; Joseph and Williamson, 
1989; Nahorski and Potter, 1989). That these effects 
of I(1,4,5)P3 on Ca2+ release are likely mediated 
through the action of specific intracellular receptor sites 
was recognized some time ago. The first direct dem- 
onstration of such sites (albeit in low density) was made 
in liver and neutrophils by Spat et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1986). A detailed 
distribution of I( 1 ,4,5)P3 binding sites in brain has been 
obtained by means of both receptor autoradiography 
(Worley et al., 1987a, 1989) and radioligand binding 
assays (Worley et al., 19873). Moderate levels of bind- 
ing sites are present in the hippocampus, cerebral cor- 
tex, caudate nucleus, and substantia nigra, whereas the 
highest concentrations by far are found in the cere- 
bellum (Purkinje cell layer). Their enrichment in the 
cerebellum has greatly facilitated progress in the elu- 
cidation of the molecular characteristics of the 
I( 1,4,5)P3 receptor. When assayed at 4OC and in the 
absence of Mg2+ (to avoid ligand degradation), the 
binding of [3H]I( 1 ,4,5)P3 to cerebellar membranes is 
saturable (KD = 80- 100 nM) and highly stereospecific. 
Because intracellular concentrations of I( 1 ,4,5)P3 in 
brain are reportedly at least 10-fold higher than this 
KD value (Challis et al., 1988), the concept of com- 
partmentation of I( 1 ,4,5)P3 has been invoked (Challis 
et al., 1990). Heparin is a potent antagonist, and in- 
clusion of Ca’+ at physiological concentrations (1 p M )  
inhibits binding. The ability of heparin to bind the IP3 
receptor has been used to advantage in purification of 
the IP3 receptor (Supattapone et al., 1988). The receptor 

has an M, of 260K on SDS-PAGE and is highly selec- 
tive for I( 1 ,4,5)P3, Ligand binding to the purified re- 
ceptor is insensitive to Ca2+, but Ca” sensitivity is re- 
stored by the addition of detergent-solubilized cere- 
bellar membranes. Danoff et al. (1988) subsequently 
established the presence in these extracts of a protein 
named “calmedin,” which exhibited an M, of 300K 
on gel filtration and which conferred Ca2+ sensitivity 
on the purified receptor. Calmedin is abundant in 
neural tissues, in keeping with the observation that Ca’+ 
sensitivity of I( 1,4,5)P3 binding is prevalent in CNS. 
Although differences in Ca2+ sensitivity and in KD val- 
ues of I( 1 ,4,5)P3 binding might indicate the existence 
of multiple receptor subtypes, studies which directly 
address the issue have not previously supported this 
proposition (Nunn et al., 1990; Varney et al., 1990). 
However, Danoff et al. (199 1) have recently identified 
distinct neuronal and nonneuronal forms of the 
I( 1 ,4,5)P3 receptor that are formed by alternative splic- 
ing. The longer transcript corresponds to the neuronal 
form of the receptor which contains a 120-nucleotide 
insert (absent from the nonneuronal receptor) located 
between two PKA phosphorylation consensus se- 
quences. 

In retrospect, the 1P3 receptor had been first en- 
countered, in fact, some 12 years earlier by Mallet et 
al. (1976) who, in a study of cerebellar ataxic mice, 
observed that a membrane glycoprotein (P400) was en- 
riched in Purkinje cells of normal mice, but was re- 
duced in Purkinje cell-deficient mutants. As noted for 
the IP3 receptor, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP400 is a glycoprotein of M, 250K on 
SDS-PAGE and is highly enriched in the cerebellum. 
The availability of monoclonal antibodies permitted 
the cloning of cDNA for P400 and determination of its 
amino acid sequence (Furuichi et al., 1989). On the 
basis of its cDNA sequence, P 4 ~  is comprised of 2,749 
amino acids with an M, of 3 13K, a value greater than 
that obtained on SDS-PAGE. This discrepancy may 
be due to either an aberrant electrophoretic migration 
of the protein or posttranslational proteolytic process- 
ing. Mignery et al. (1990) independently obtained the 
complete primary structure for the IP3 receptor in rat 
cerebellum using a series of overlapping cDNA clones 
that encode for proteins which contain either 2,734 or 
2,749 amino acids. Only 21 amino acid substitutions 
were observed when the rat receptor sequence was 
compared with that of murine P400. Furthermore, pu- 
rified P400 bound [3H]I( 1 ,4,5)P3 in a saturable and spe- 
cific manner analogous to that observed for the purified 
IP3 receptor (Maeda et al., 1990). Confirmation that 
Pm and the IP3 receptor are one and the same was 
obtained from experiments in which transfection of 
P400 cDNA into NG 108- 15 cells resulted in the expres- 
sion of IP3-binding sites (Furuichi et al., 1989). The 
IP3 receptor is not identical to the ryanodine receptor, 
but shares considerable homology with it (Mignery et 
al., 1989). 

There is less agreement regarding the subcellular lo- 
calization of the receptor. Using monoclonal antibodies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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to P400, Maeda et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1989) observed that the receptor 
was localized to the endoplasmic reticulum, plasma 
membrane, and postsynaptic density. In contrast, using 
polyclonal antibodies, Ross et al. (1989) localized the 
IP3 receptor to the endoplasmic reticulum, the sub- 
plasmalemmal cisternae, and nuclear membrane, but 
not to the plasma membrane. Two further studies in 
which an immunogold labeling technique was em- 
ployed also failed to detect IP3 receptors at the plasma 
membrane (Mignery et al., 1989; Satoh et al., 1990). 
It appears then that IP3 receptors are associated pre- 
dominantly, if not exclusively, with the smooth en- 
doplasmic reticulum. 

IP3 receptors may be regulated in vivo by both ATP 
and cyclic AMP, in addition to Ca2'. When reconsti- 
tuted into either lipid vesicles or a planar lipid bilayer, 
the IP3 receptor mediates an increase in Ca2+ flux (Fer- 
ns et al., 1989; Maeda et al., 1991). Submillimolar 
concentrations of ATP increase this flux following in- 
teraction of the nucleotide with an ATP-binding site 
(Fems et al., 1990; Maeda et al., 199 l), whereas higher 
concentrations (millimolar) inhibit Ca2' flux, consis- 
tent with the reported inhibitory effects of ATP on 
[3H]1( 1,4,5)P3 binding (Willcocks et al., 1987). The IP3 
receptor also contains three consensus amino acid se- 
quences that fulfill the criteria for PKA action (Mignery 
et al., 1990). Addition of PKA catalytic subunits to 
cerebellar microsomes markedly reduces the potency 
with which IP3 enhances 4sCa2f release (Snyder and 
Supattapone, 1989). 

The native IP3 receptor is thought to be a tetramer, 
composed of four noncovalently bound identical sub- 
units of M, - 300K, each subunit possessing an in- 
dependent ligand binding site (Mignery et al., 1990; 
Maeda et al., 199 1). It is proposed that the tetramer 
forms a single central transmembrane pore. Upon the 
binding of three to four molecules of IP3 (Meyer et al., 
1988), a conformational change in the receptor occurs 
and an open ion channel forms (Maeda et al., 1991). 
The CaZ+ signal so generated is frequently found to 
oscillate in single cells. Whether such oscillations reflect 
cyclical changes in IP3 mass or, alternatively, that a 
constant concentration of IP3 drives intracellular Ca2+ 
oscillations is currently under investigation (Wakui et 
al., 1989; Harootunian et al., 1991). 

Higher inositol phosphates 
Although there has been much speculation over the 

possible involvement of IP4 in the maintenance of a 
prolonged receptor-mediated Ca2+ signal in nonneural 
tissues, there is little direct evidence for a similar role 
in the CNS. However, it should be stressed that 
I( 1 ,3,4,5)P4 is formed readily upon receptor activation 
in brain slices, during which time its concentration may 
rise 20-fold (Challis and Nahorski, 1990). Furthermore, 
specific I( 1 ,3,4,5)P4 binding sites in cerebellum have 
been purified 1,000-fold from homogenates (DoniC et 
al., 1990). In oocytes, I( 1 ,3,4,5)P4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand I( 1 ,3,4,6)P4 (both 
of which can be formed in brain) are effective in altering 

Ca2' homeostasis (Ivorra et al., 1991). For further dis- 
cussion of the possible role Of IP4, the reader is referred 
to reviews by Joseph and Williamson (1 989), Nahorski 
and Potter (1 989), and Downes and MacPhee (1  990). 

In contrast to the intracellular roles envisioned for 
IP3 and IP4, an extracellular role has been proposed 
for IPS and IPS by Vallejo et al. (1987) based upon the 
ability of these inositol phosphates to elicit changes in 
heart rate and blood pressure when injected into the 
nucleus tractus solitarius. Bath application of IP6 to 
slices of rat brainstem failed, however, to alter the ex- 
citability, membrane potential, or resistance at con- 
centrations of 44 &(Brooks and Spyer, 1989). None- 
theless, demonstration of specific IPS binding sites in 
both brain and pituitary, and their linkage to 45Ca2+ 
flux in the latter tissue, leave open the possibility of an 
extracellular role for these inositol polyphosphates 
(Hawkins et al., 1990; Nicoletti et al., 1990; Sortino et 
al., 1990). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

RECEPTOR SUBTYPES COUPLED TO 
PHOSPHOINOSITIDE TURNOVER 

More than 25 pharmacologically distinct receptors 
present on neurons and/or glia have been linked thus 
far to phosphoinositide turnover. Whereas an impres- 
sive number of receptors are now purported to couple 
to inositol lipid hydrolysis, two groups can still be 
clearly distinguished. Activation of category I receptors 
elicits a robust increase in inositol lipid turnover in 
tissue preparations obtained from both the CNS (brain 
slices, primary neuronal and dial cultures) and neu- 
rotumor cells. For a second group (category 11), receptor 
activation elicits only small increases in inositol lipid 
turnover in CNS-derived preparations, such that most 
of the evidence accumulated in favor of their involve- 
ment has been obtained not from brain, but from the 
use of neurotumor cells or other neural-related tissues. 
A comprehensive list of receptor subtype(s) known to 
be linked to phosphoinositide turnover is shown in Ta- 
ble 3. Discussion below is restricted to newly identified 
receptors (or subtypes) for which substantive infor- 
mation exists and to previously unrecognized aspects 
of receptor function. 

Category I 
Muscurinic cholinergic. The previous division of 

muscarinic acetylcholine receptors (mAChRs) into two 
groups (M1 and M2) based on pirenzepine sensitivity 
is now superseded by molecular cloning studies. At 
least five biochemically and pharmacologically distinct 
subtypes of mAChRs are known (Bonner et al., 1987, 
1988). Transfection studies with cDNAs encoding in- 
dividual mAChR subtypes have indicated that M1, M3, 
and MS receptors couple primarily to phosphoinositide 
turnover, whereas the M2 and M4 subtypes are linked 
to inhibition of adenylate cyclase (Bonner et al., 1988; 
Ashkenazi et al., 1989). Ml and M3 mAChRs can be 
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TABLE 3. Receptor activation of phosphoinositide turnover zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin neural tissues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CATEGORY I 

Muscarinic cholinergic (MI and M,) 
Brain slices-Hynie et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1989); Forray and El-Fakahany ( 1990) 
Primary neuronal cultures-Akins et al. (1990); Ellis et al. (1990) 
Neuroblastoma, SK-N-SH-Fisher and Heacock (1988); Ashkenazi et al. (1989); Baumgold and White (1989) 
Neuroblastoma, SH-SY-SY-Serra et al. (1988); Lambert et al. (1989): Cioffi and Fisher. (1990) 
Neuroepithelioma, SK-N-MC-Fisher and Landon (199 I )  
Astrocytoma, 1321N1-Ashkenazi et al. (1989); Kunysz et al. (1989) 
Pheochromocytoma, PCI 2-Horowitz (1989); Takashima and Kenimer (1989) 
Retina-Moroi-Fetters et al. (1988) 
Cochlea-Guiramand et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  990) 
Peripheral nerve-Day et al. ( I  99 I )  
Glioma, C6-Ananth et al. (1987) 

Brain slices-Michel et al. (1990) 
Primary neuronal cultures-Xu and Chuang (1987a.b): Wilson and Minneman (1990): Wilson et al. (1990) 
Primary dial cultures-Wilson et al. (1990) 
Neuroepithelioma, SK-N-MC-Fisher and Landon ( 199 I )  
Glioma, C,-Ananth et al. (1987) 

Primary dial cultures-ArbonCs et al. (1988) 
Neuroblastoma, NIE-I 15-Oakes et al. (1988) 
Glioma, C6-Ananth et al. (1987) 

Brain slices-Claustre et al. (1988a); Gcdfrey et al. (1988); Pierce and Peroutka (1988): Sanders-Bush et al. (1988) 
Brain (in vivo)-Hide et al. ( 1989) 
Primary neuronal cultures-Xu and Chuang (1987b): Malhotra et al. (1990) 
Pituitary tumor, PI I-Ivins and Molinoff (1990) 
Glioma, C6-Ananth et al. (1987) 

Brain slices-Blackstone et al. (1989): Palmer et al. (1989); Alexander et al. (1990); Schocpp et al. (1990a) 
Synaptoneurosomes-Dudek et al. (1989); Hynie et al. (1989); Guiramand et al. (1990) 
Primary dial cultures-Pearce et al. ( 1990) 
Retina-Osborne ( 1990) 

Brain slices-Kloog et al. (1988, 1989); Crawford et al. (1990): MacCumber et al. ( 1990) 
Primary neuronal cultures-Lin et al. (1990) 
Primary glial cultures-Lin et al. ( 1990) 
Gliomas, c6 and A,,,-Lin et al. (1990); Zhang et al. (1990) 
Neuroepithelioma, SK-N-MC-Fisher and Landon (199 I ) 

Adrenergic (alA and a,,.,) 

Histaminergic (HI)  

Serotonergic (5-HT2 and 5-HT1,) 

Glutamatergic (metabotropic) 

Endothelin 

CATEGORY 11 

Purinergic (P2) 
Primary glial cultures-Pearce et al. (1990) 
Neuroblastorna, NIE- 1 l5-Ehrlich et al. ( 1988) 
Neuroepithelioma. SK-N-MC-Fisher and Landon ( 199 1 )  
Adrenal medulla-Sasakawa et al. (1989); Allsup and Boarder (1990) 
Pituitary-Van der Merwe et al. (1989); Davidson et al. (1990) 

Astrocytoma, 132 1 N I-Nakahata et al. ( 1989) 

Pheochromocytoma, PC12-VolontC and Racker (1988); Volontk et al. (1988); Van Calker et al. (1989) 

Adrenal medulla-Negishi et al. (1989) 

Primary glial cultures-Cholewinski et al. (1988) 
Dorsal root ganglion-Burgess et al. (1989): Gammon et a1 (1989); Perney and Miller (1989): 
Neuroblastoma-glioma NG 108- 1 5-Chiang and Hauser ( 1989); Imaizumi et al. (1  989) 
Pheochromocytoma, PC12-Volontk et al. (1988) 
Neurohybridoma, NCB-20-Chuang and Dillon-Carter ( 1988) 
Pituitary tumor, Flow 9000-Sharif et al. (1988) 
Anterior pituitary-T. H. Jones et al. (1989) 

Brain slices-Moratalla et al. (1988); Shewey and Dorsa (1988) 
Primary dial cultures-Cholewinski et al. (1988) 

Thromboxane (Az) 

Nerve growth factor 

Prostaglandin (E2) 

Bradykinin (B2) 

Vasopressin (V,) 
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TABLE 3-Continued zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cholecystokinin 

Neuroblastoma, CHP 212-Barrett et al. (1989) 
Pituitary tumor, Flow 9000-Lo and Hughes (1988) 

Dorsal root ganglion-Perney and Miller (1989) 

Neuroblastoma-glioma, NG108-15-Imaizumi et al. (1989) 

Brain slices-Hollingsworth (1989) 

Brain slices-Hollingsworth (1989); Prasad and Moody (1989) 

Primary glial cultures-Cholewinski et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  988) 
Anterior pituitary-Mau et al. (1990) 
Retina. superior colliculus-Osborne and Ghazi ( I  989) 

Primary glial cultures-Cholewinski et al. (1988) 

Anterior pituitary-Mau et al. (1990) 
Retina, superior colliculus-Osborne and Ghazi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  989) 

Primary dial cultures-Cholewinski et al. ( 1  988); Torrens et al. ( 1  989) 
Anterior pituitary-Mau et al. (1990) 
Retina, superior colliculus-Osborne and Ghazi (1  989) 

Primary neuronal cultures-Malhotra et al. (1990) 

Neuroblastoma-glioma, NG108-15-Camthers et al. (1990) 

Anterior pituitary-Sortino et al. (1988) 

Primary dial cultures-Murphy and Welk ( 1  990) 
Pituitary cells-Grandison (1990) 

Pituitary-Desrues et al. (1990) 
Pituitary tumor, GH3-Sharif et al. (1989); Wood and Schofield (1989); Cubitt et al. (1990) 

Neuropeptide Y 

Neurotensin 

Gastrin-releasing peptide 

Bombesin 

Substance P 

Oxytocin 

Eledoisin 

Neurokinin 

Vasointestinal peptide 

Angiotensin 

Gonadotropin-releasing hormone 

Platelet-activating factor 

Thyrotropin-releasing hormone 

distinguished on the basis of their pirenzepine sensi- 
tivities (MI > M,) and their M, values (M, 3 MI). 
Whereas the involvement of the MI subtype in phos- 
phoinositide hydrolysis had been firmly established 
previously, it has since been shown that the M3 receptor 
is also functionally linked. mAChRs present on both 
SK-N-SH neuroblastoma and 132 1N 1 astrocytoma 
cells exhibit a higher M, (90K-1OOK) than that asso- 
ciated with the MI subtype (60K-70K), and pirenze- 
pine only weakly inhibits the ability of these M3 re- 
ceptors to activate inositol lipid hydrolysis (Liang et 
a]., 1987; Fisher and Heacock, 1988; Baumgold and 
White, 1989; Kunysz et al., 1989). For the SH-SY-5Y 
cell line, a neuroblast subclone of the SK-N-SH cell, 
there is conflicting evidence as to the predominant 
subtype present. From both pharmacological and bio- 
chemical considerations (Lambert et al., 1989; Cioffi 
and Fisher, 1990), it has been concluded that these 
cells also express the M3 subtype. In contrast, the results 
of Serra et al. ( 1  988), obtained with the same cells, are 
more consistent with the presence of a functionally 
linked M receptor. Additional pharmacological evi- 
dence for the involvement of M3 receptors in phos- 
phoinositide hydrolysis has been obtained recently for 

both primary neuronal cultures (Ellis et al., 1990) and 
brain slices (Forray and El-Fakahany, 1990). 

A characteristic of mAChR-stimulated phosphoino- 
sitide hydrolysis in a variety of neural preparations is 
its slow rate of desensitization (Nakahata and Harden, 
1987; Xu and Chuang, 1987a; Lenox et al., 1988; 
Thompson and Fisher, 1990; but see also Eva et al., 
1990). In SK-N-SH neuroblastoma cells, inositol lipid 
hydrolysis proceeds at a constant rate during a period 
in which mAChRs are sequestered from the cell surface 
(Thompson and Fisher, 1990). Because only cell surface 
mAChRs can activate PLC, the ability of mAChRs to 
sustain phosphoinositide hydrolysis may reflect their 
ability to recycle continuously to the cell surface 
(Thompson and Fisher, 199 1). 

Adrenergic. Two subtypes (alA and a 1 B )  of the aI-  
adrenergic receptor have been defined, on the basis of 
their susceptibility to alkylation by chloroethylcloni- 
dine ( a l B  > aIA) and the 10-70-fold greater affinities 
of two competitive antagonists (WB-4 101 or 5-meth- 
ylurapidil) for the aIA subtype (Minneman, 1988; 
Hanft and Gross, 1989). Although it has been suggested 
that the ( Y ~ B  subtype couples to inositol lipid turnover, 
whereas the aIA receptor is linked to Ca2+ influx 
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(Minneman, 1988), such a clear distinction now ap- 
pears unlikely. In brain slices, norepinephrine-stimu- 
lated inositol phosphate formation is inactivated by 
chloroethylclonidine and is inhibited relatively weakly 
by WB-410 1, thereby implicating the involvement of 
an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaIB subtype (Michel et al., 1990). In contrast, in 
primary cultures of neurons and glia, alkylation has 
little effect on norepinephrine-stimulated inositol 
phosphate release, whereas WB-4101 is a potent in- 
hibitor. Furthermore, unlike the case in brain slices, 
phosphoinositide turnover in primary cultures is 
blocked by pertussis toxin (Wilson and Minneman, 
1990). In SK-N-MC neuroepithelioma cells, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaIA 
receptor appears to be the major subtype linked to ino- 
sitol lipid turnover (Fisher and Landon, 199 1). These 
findings suggest that both aIA and a l ~  subtypes have 
the potential to activate phosphoinositide hydrolysis. 

Gluturnate. Progress in the pharmacological char- 
acterization of the metabotropic glutamate receptor has 
been aided by the recent introduction of the relatively 
selective agonist, 1 -aminocyclopentyl- 1,3dicarboxylic 
acid (ACPD)’ (Palmer et al., 1989; Desai and Conn, 
1990; Manzoni et al., 1990). The ability of this rigid 
analogue of glutamate to activate effectively the me- 
tabotropic, but not the ionotropic, excitatory amino 
acid receptor has been demonstrated in both brain slices 
and cultured neurons and is in contrast to the relative 
nonselectivity of quisqualic and ibotenic acids. The 
availability of a more potent, but noncompetitive, an- 
tagonist, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2-amino-3-phosphonopropionic acid, may 
also facilitate characterization and functional analysis 
of this receptor (Schoepp et al., 1990~). In some prep- 
arations, a portion of the phosphoinositide turnover 
induced by quisqualate may be due to activation of 
ionotropic receptors, perhaps as a result of activation 
of PLC by elevated [Ca2+]i (Alexander et al., 1990; 
Baird and Nahorski, 19906). A G-protein link with the 
metabotropic glutamate receptor is evidenced by the 
reported sensitivity of its phosphoinositide response to 
pretreatment with pertussis toxin, a property which 
distinguishes this receptor from most other CNS phos- 
phoinositide-linked receptors thus far examined (Ni- 
coletti et al., 1988; Ambrosini and Meldolesi, 1989). 
Earlier studies demonstrating enhanced coupling in 
neonatal rat brain suggested a role for metabotropic 
glutamate receptors in neuronal plasticity. Further 
support for this concept is provided by reports that 
signal transduction at this receptor is enhanced follow- 
ing hypoxic-ischemic brain injury (Chen et al., 1988; 
Seren et al., 1989) and following lesions in the hip- 
pocampus, striatum, and amygdala (Nicoletti et al., 
1987; Akiyama et al., 1989). In addition, in developing 
cat visual cortex, the critical period for synaptic mod- 
ification coincides with a transient rise in the ability of 
glutamate to stimulate phosphoinositide turnover, a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

’ Although previously designated as trans-ACPD, it is in fact zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcis- 
ACPD (see Schoepp et al., 19906). 

phenomenon which is absent in kittens raised in the 
dark (Dudek and Bear, 1989). Further details regarding 
the properties of the metabotropic glutamate receptor 
may be found in a recent review by Schoepp et al. 
( 19906). Further characterization of this receptor 
should be facilitated by its recent cloning from rat brain 
(Houamed et al., 1991; Masu et al., 1991). The nu- 
cleotide sequence of the metabotropic glutamate re- 
ceptor encodes a protein with a molecular mass of 133 
kDa and no apparent homology to other known mem- 
bers of the G protein-coupled receptor family. 

Endothelin. In addition to its potent vasoconstrictive 
effects on vascular smooth muscle, endothelin (ET) is 
also synthesized in the CNS where it may exert a neu- 
roregulatory role. The ETs exhibit an unusually high 
degree of sequence homology with the sarafotoxins 
(SRTXs), venoms derived from the Israeli snake Ac- 
tractupsis eingadensis. High-affinity SRTX/ET binding 
sites exist within the CNS and exhibit a distinctive re- 
gional distribution (Kloog et al., 1988; C.  R. Jones et 
al., 1989). Moreover, the addition of either SRTX or 
ET elicits an increased phosphoinositide turnover in 
several brain regions, in cultured C6 glioma cells, and 
in primary cultures of both neurons and glia. All three 
forms of ET (ET-1, ET-2, and ET-3) have been shown 
to activate inositol lipid hydrolysis (but with different 
potencies). Although the precise role of ET-stimulated 
phosphoinositide turnover in neural function is not 
known, a role in mitogenesis has been suggested 
(MacCumber et al., 1990). 

Category I1 
Purinergic. There is now a considerable body of ev- 

idence to suggest that ATP serves as a neuromodulator 
in both the CNS and PNS. The addition of ATP to a 
variety of neural preparations can elicit an increase in 
phosphoinositide turnover, whereas adenosine and 
AMP are relatively ineffective. The receptor involved 
can thus be classified as P2 purinergic rather than PI 
(Burnstock and Kennedy, 1985). However, given the 
ability of pyrimidines (CTP and UTP) to enhance ino- 
sitol phosphate release in adrenal (Sasakawa et al., 
1989) and other nonneural tissues, the term “nucleo- 
tidoceptor” may be most appropriate (Pfeilschifter, 
1990). Although P2 receptors can be subdivided phar- 
macologically into Pzy or PZx subtypes (Burnstock and 
Kennedy, 1985), it is not yet possible to ascribe phos- 
phoinositide turnover to either of these receptors in 
neural tissues. In the adrenal medulla, in which the 
pharmacology of the response has been carefully ex- 
amined, the characteristics fit neither of the known 
profiles (Allsup and Boarder, 1990). 

Neuropeptides. The list of neuropeptide receptors 
implicated in phosphoinositide hydrolysis continues to 
grow. Those for neuropeptide Y, gastrin-releasing pep- 
tide, oxytocin, and gonadotropin-releasing hormone 
have been identified recently. Many of these neuro- 
peptide receptors are to be found in primary cultures 
of glia. Cholewinski et al. (1 988) examined the ability 
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of 12 neuropeptides to enhance inositol lipid turnover 
in astrocytes obtained from cerebral cortex, cerebellum, 
and spinal cord. Each culture displayed a unique pat- 
tern of neuropeptide stimulation. Thus, whereas all 
three tissues responded to bradykinin, eledoisin, and 
neurokinin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, the addition of oxytocin and vasopressin 
elicited a response only in cortical and cerebellar cul- 
tures. Only spinal cord cultures responded to substance 
P and neurokinin a. The regional responsiveness of 
astrocytes to peptides approaches that displayed by 
neurons. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Other CNS receptors 

Dopamine. Conflicting reports exist regarding the 
ability of dopamine to enhance phosphoinositide turn- 
over. No effects of dopamine on either basal or stim- 
ulated inositol phosphate release were observed by 
Kelly et al. (1988) and Rubinstein and Hitzemann 
(1 990), whereas the stimulatory effect reported by Dyck 
(1990) could be blocked by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 antagonist, prazosin. 
Wallace and Clarb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1990) reported a negative effect on 
carbachol-stimulated release in membranes following 
D1-receptor activation. In contrast, Undie and Fried- 
man ( 1990) have provided compelling evidence for the 
involvement of D1 receptors in rat striaturn. In this 
context, it may be relevant that injection of mRNA 
from rat striatum into oocytes results in the expression 
of a D1 receptor linked to both IP3 production and 
Ca2+ efflux (Mahan et al., 1990). 

Opioid. Opiates have been reported either to have 
no effect on, to stimulate, or to inhibit inositol lipid 
hydrolysis (Bunn et al., 1988; Misawa et al., 1990; Pe- 
riyasamy and Hoss, 1990). 

Modulation of receptor-stimulated 
phosphoinositide hydrolysis 

Given the complexity of neural tissue, it is not sur- 
prising that activation of inositol lipid-linked receptors 
is itself subject to modulation following agonist occu- 
pancy of certain pharmacologically distinct receptors. 
Both positive and negative modulations (and species 
dependence) have been reported (Table 4). The un- 
derlying molecular mechanisms of such regulation of- 
ten remain obscure, due perhaps either to the absence 
of selective antagonist data, to difficulty in excluding 
the involvement of secondary effects, such as inter- 
neuronal communication or depolarization, or to the 
concurrent rise or fall in intracellular concentrations 
of other second messengers (e.g., cyclic AMP). 

STRATEGIES FOR INTERVENTION OF 
PHOSPHOINOSITIDE SIGNAL 

TRANSDUCTION 

Within the series of events that link receptor occu- 
pancy to PLC activation, a number of sites might be 
amenable to pharmacological disruption. From the 
viewpoint of drug development, the receptor is an ob- 
vious target, because it is extracellular and thus acces- 
sible. The expression of individual receptor molecules 
in cells following transfection with appropriate cDNA 
clones and demonstration of their functional coupling 
to phosphoinositide turnover may allow for the iden- 
tification of “tailored subtype-specific’’ ligands (Lester, 
1988), which may be useful in drug development. In- 
tervention at the level of the G,-PLC interaction is 
more problematic due to the uncertainty of G,’s iden- 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Modulation of receptor-stimulated phosphoinositide hydrolysis in brain 

Reference Stimulus Modulator Antagonist Tissue 

A. Positive 
Norepinephrine y-Aminobutyric acid, 

nipecotic acid 

Serotonin 
Glutamate Glycine 
Acetylcholine Vasointestinal peptide 
Histamine 2-Chloroadenosine 

B. Negative 
Carbachol N-Methyl-Baspartate 

8-Hydroxy-2-(di-n- 

Dopamine, SKF-38393 
dipropy1amino)tetralin 

Norepinephrine Glutamate 

Histamine Adenosine 
Adenosine 

Rat cerebral cortex Crawford and Young 
( 1  99041); X. Li et al. 
( 1990) 

Cerebellar granule cells 
Ketanserin/prazosin Primary glial cultures Hansson et al. (1990) 

Cerebellar granule cells 
Rat cerebral cortex 

8-0-Cyclopentyl- 1,3- Guinea pig cerebral cortex Alexander et al. (1989) 

Yu and Chuang (1988) 

Nicoletti and Canonico (1989) 
Raiteri et al. (1987) 

dipropylxanthine 

MK-801 Rat cerebral cortex Gonzales and Moerschbaecher 

2-Amino-5-phosphopentanoic 

Cyanopindolol Rat hippocampus Claustre et al. ( 1  988b) 

SKF-83566 Rat cerebral cortex Wallace and Clarl, ( 1990) 

(1989) 
Noble et al. (1989); Momsett 

acid et al. (1990) 

SCH-23390 
Rat cerebral cortex 

Cyclopentyladenosine Mouse cerebral cortex Kendall and Hill (1988) 
Theophylline Human cerebral cortex Kendall and Firth (1 990) 

Jope and Li (1989); X. Li et 
al. (1990) 
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tity, its insensitivity to either cholera or pertussis toxins, 
and the existence of multiple isozymes of PLC. None- 
theless, assuming G, is a heterotrimer, one potential 
approach would be the use of synthetic peptides cor- 
responding to known regions of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ subunit of the 
G protein, the 40 carboxyl-terminal amino acids of 
which are highly conserved (Hamm et al., 1988). As 
previously discussed, inhibitors of specific PLC-iso- 
zyme activation are not as yet identified. For investi- 
gation of the interrelationship between the product of 
PLC action, i.e., I( 1 ,4,5)P3, its receptor, and Ca” mo- 
bilization, the recent development of synthetic IP3 an- 
alogues that are resistant to hydrolysis offers promise 
(Willcocks et al., 1988). 

At present, the strategy of limiting the availability 
of lipid substrates has attracted most attention. Pre- 
viously, inositol analogues have been shown to be ef- 
fective inhibitors of brain cytidine diphosphodiacyl- 
glycerol (CDP-DAG) inositol transferase, the enzyme 
responsible for PI synthesis (Benjamins and Agranoff, 
1969; see also Agranoff and Fisher, 1991). In addition, 
Moyer et al. (1988) have demonstrated that two ana- 
logues, 5-deoxy-myo-inositol and 5-deoxy-5-fluoro- 
myo-inositol, can permeate intact cells and be incor- 
porated into cellular inositol phospholipid. This 
“fraudulent” lipid, however, can only be phosphory- 
lated at the 4-position of the inositol ring, and hence 
PIP2 cannot be synthesized. Interference with inositol 
lipid synthesis is considered to be an explanation for 
the antimanic effect of Lif in humans (Bemdge et al., 
1982). Largely as a result of studies by Sherman and 
colleagues, it is now established that “therapeutically” 
relevant concentrations of Li+ in the rat result in the 
accumulation of inositol phosphates both in vivo and 
in vitro, the result of selective inhibition of inositol 
monophosphatase (Allison et al., 1976; Hallcher and 
Sherman, 1980). The net effect is to reduce the avail- 
ability of inositol, which could theoretically reduce PI 
synthesis, given the limited permeability of the blood- 
brain barrier to inositol. Because the mode of inhibition 
by Li’ is uncompetitive (i.e., Li’ binds to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE - S  
complex), lipid resynthesis is anticipated to be most 
compromised in hyperactive neurons which should 
produce correspondingly larger amounts of IP, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
Whereas experimental evidence has been obtained in 
favor of a link between Li+ and phosphoinositide turn- 
over (Casebolt and Jope, 1987; Kendall and Nahorski, 
1987; Godfrey et al., 1989), questions still remain. For 
example, although the addition of Li’ to tissue incu- 
bations results in the accumulation of CDP-DAG (due 
to inositol depletion), a reduction of agonist-stimulated 
PIP2 breakdown invariably is not found, suggesting the 
existence of a pool of lipid that is spared the effects of 
Li’ (Drummond and Raeburn, 1984; Downes and 
Stone, 1986). Furthermore, chronic administration 
(27-39 days) of Li’ to rats failed to alter significantly 
the concentration of brain PI, PIP, or PIP2 (Honchar 
et al., 1989), nor did this treatment influence the extent 
of I(l)PI accumulation observed in the presence of 

muscarinic agonists (Honchar et al., 1990). A deficit 
in the phosphoinositide pathway has also been pro- 
posed in the PNS in diabetic neuropathy (Greene and 
Lattimer, 1985). 

CONCLUDING REMARKS 

In the 4 years that have elapsed since we last reviewed 
phosphoinositides in the nervous system, there have 
been more publications than in the entire preexisting 
literature. It is daunting from the standpoint of writing 
a minireview that the rate of publication continues to 
accelerate. Among novel findings since 1987 is the 
presence in many tissues, including brain, of PI-linked 
proteins. The recent findings of intracellular PIP2 and 
IP3 binding proteins and of 3-phosphoinositides cer- 
tainly will have implications eventually for brain func- 
tion. It is likely that there will be yet other revelations 
in the years to come. 
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