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Representing the image to be inpainted in an appropriate sparse representation dictionary, and

combining elements from Bayesian statistics and modern harmonic analysis, we introduce an expec-

tation maximization (EM) algorithm for image inpainting and interpolation. From a statistical

point of view, the inpainting/interpolation can be viewed as an estimation problem with missing

data. Toward this goal, we propose the idea of using the EM mechanism in a Bayesian framework,

where a sparsity promoting prior penalty is imposed on the reconstructed coefficients. The EM frame-

work gives a principled way to establish formally the idea that missing samples can be recovered/

interpolated based on sparse representations. We first introduce an easy and efficient sparse-

representation-based iterative algorithm for image inpainting. Additionally, we derive its theoreti-

cal convergence properties. Compared to its competitors, this algorithm allows a high degree of

flexibility to recover different structural components in the image (piecewise smooth, curvilinear,

texture, etc.). We also suggest some guidelines to automatically tune the regularization parameter.
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1. INTRODUCTION

Inpainting is to restore missing image information based upon

the still available (observed) cues from destroyed, occluded or

deliberately masked subregions of the images. The keys to

successful inpainting are to infer robustly the lost information

from the observed cues. The inpainting can also be viewed as

an interpolation or a disocclusion problem. The classical

image inpainting problem can be stated as follows. Suppose

the ideal complete image is x defined on a finite domain V

(the plane), and its degraded version (but not completely

observed) y. The observed (incomplete) image yobs is the

result of applying the lossy operatorM on y

M : y 7! yobs ¼M½y� ¼ M½x� 1� ð1Þ

where � is any composition of two arguments (e.g. ‘þ’ for

additive noise, etc.), 1 is the noise. M is defined on VnE,

where E is a Borel measurable set. A typical example of M
that will be used throughout this paper is the binary mask; a

diagonal matrix with ones (observed pixel) or zeros (missing

pixel), and yobs is a masked image with zeros wherever

a pixel is missing. Inpainting is to recover x from yobs,

which is an inverse ill-posed problem.

1.1. State of affairs

Non-texture image inpainting has received considerable inter-

est and excitement since the pioneering paper by Masnou and

Morel [1, 2] who proposed variational principles for image

disocclusion (the term inpainting was not used yet). A recent

wave of interest in inpainting has also started from the paper

of [3], where applications in the movie industry, video and

art restoration were unified. These authors proposed nonlinear

partial differential equations (PDE) for non-texture inpainting.

Basically, the major mechanisms to get information into the

inpainting domain are:

(i) Diffusion and transport PDE/Variational principle: in

[3–6], the PDE is obtained phenomenologically, and

axiomatically in [7]. Ballester et al. in a series of

papers [8–10], proposed to solve the inpainting

problem by considering a joint interpolation of the

orthogonal direction of level lines and of the gray

levels. In [11], the authors proposed a curvature-driven
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diffusion image inpainting method. Chan and Shen

[12] systematically investigated inpainting based on

the Bayesian and (possibly hybrid) variational prin-

ciples with different penalizations (TV, ‘1 norm on

wavelet coefficients). By functionalizing Euler’s elas-

tica energy, Masnou and Morel [1, 2], proposed an

elastica-based variational inpainting model, and [13]

developed its mathematical foundation and a PDE

computational scheme. Following in the footsteps of

Chan and Shen, authors in [1] adapted the

Mumford–Shah image segmentation model to the

inpainting problem. Chan et al. [15] also employed a

TV variational approach for joint image inpainting

and deblurring. They have recently applied this work

to superresolution [15].

There are other recent references concerned with

PDE/variational inpainting and the interested reader

may refer for example to the UCLA CAM reports

website1 for an abundant literature (e.g. [17, 18], etc.).

For an extended survey of the mathematics involved

in the above frameworks and some applications, see

[19, Chapter 6, 20]. Note however that the main intrin-

sic limitations of these approaches is that they cannot

deal with texture inpainting. They are suitable for geo-

metrical parts of the image and perform well only for

non-texture inpainting. Thus, texture and large empty

gaps can be a major issue.

(ii) Exemplar region fill-in: the basic idea behind these

algorithms is to fill-in the missing regions with avail-

able information from some best matching candidates

(e.g. surrounding pixels/regions [21, 22], best corres-

pondence maps [23]). The goal is to synthesize a com-

plete, visually plausible and coherent image, where the

visible parts of the image serve as a reference/training

set to infer the unknown parts. For example, in [21],

the authors proposed a Markov random field-based

synthesis approach only suitable for texture inpainting.

Bertalmı̀o and co-workers [22, 24] adapted Meyer’s

u þ v model to decompose the image into its natural

(cartoon) and texture parts, then inpaint the natural

part using a PDE-based method and a fill-in-based

approach for the texture part following the work of

[21]. Finally, the inpainted parts are recombined.

Other authors have also proposed to first restore the

geometrical (or natural) part combined with a fill-in

texture synthesis method [25, 26]. In work by Criminisi

et al. [27], the authors proposed an algorithm that

allows one to fill-in an image progressively by

looking for best-matching prototypes in a dictionary

built from a set of patterns around the missing

subregions. Drori et al. [28] also proposed a fill-in

image completion method which bears similarities

with [27], although the fill-in step was differently

approached.

(iii) Compressed/ive Sensing: more recently, [29] intro-

duced a novel inpainting algorithm that is capable of

reconstructing both texture and cartoon image con-

tents. This algorithm is a direct extension of the Mor-

phological Component Analysis (MCA), designed for

the separation of an image into different semantic

components [30, 31]. The arguments supporting this

method were borrowed from the very exciting and

recent theory of Compressed/ive Sensing recently

developed by Donoho [32], Donoho and Tsaig [33]

and Candès et al. [34–36].

1.2. This paper

Combining elements from statistics and modern harmonic

analysis theories, we here introduce an EM algorithm [37,

38] for image inpainting/interpolation based on a penalized

maximum-likelihood formulated using linear sparse represen-

tations, i.e. x ¼ Fa, where the image x is supposed to be effi-

ciently represented by a few atoms in the dictionary.

Therefore, a sparsity promoting prior penalty is imposed on

the reconstructed coefficients. From a statistical point of

view, the inpainting can be viewed as an estimation problem

with incomplete or missing data, where the EM framework

is a very general tool in such situations. The EM algorithm for-

malizes the idea of replacing the missing data by estimated

ones from coefficients of the previous iteration, and then we

reestimate the new expansion coefficients from the complete

formed data, and iterate the process until convergence. We

here restrict ourselves to zero-mean additive white Gaussian

noise (AWGN), even if the theory of the EM can be developed

for the regular exponential family. The EM framework gives a

principled way to establish formally the idea that missing

samples can be recovered based on sparse representations.

Furthermore, owing to its well-known theoretical properties,

the EM algorithm allows us to investigate the convergence

behavior of the inpainting algorithm. Some results are

shown to illustrate our algorithm on inpainting, zooming and

disocclusion tasks.

This paper is organized as follows. In Section 2, we will

introduce the necessary ingredients of sparse representations

and concepts from modern harmonic analysis. In Section 3,

we state the inpainting problem, give the necessary material

about the EM mechanism and Bayesian estimation, and the

inpainting algorithm is also introduced. Section 4 states

some key convergence analysis results whose proofs are out-

lined in the Appendix, and discusses the influence of the regu-

larization parameter. Section 5 is devoted to presenting and

discussing experimental results including inpainting and

zooming. We conclude with a brief summary of our work

and some perspectives on its likely future development.1http://www.math.ucla.edu/applied/cam/index.html

Page 2 of 16 M.J. FADILI, J.-L. STARCK AND F. MURTAGH

THE COMPUTER JOURNAL, 2007



1.3. Notation

LetH a real Hilbert space, which is in our finite-dimensional case,

a subset of the vector space Rn. We denote by k.k2 the norm

associated with the scalar product inH, and I is the identity opera-

tor onH.The x andaare, respectively, reorderedvectorsof image

samples and transform coefficients. Let f:H 7! R < f1g, where

the domain of f is dom f ¼ fx [ H j f(x) , 1g. A function is

proper if its domain is non-empty, i.e. not identically þ1 every-

where. A function f is coercive, if limkxk2!þ1 f(x) ¼ þ1.

2. SPARSE IMAGE REPRESENTATION

2.1. Sparse representations

Suppose x [H. An
p

n �
p

n image x can be written as the

superposition of (a few) elementary functions fg(s) (atoms)

parameterized by g [ G such that (G is countable)

xðsÞ ¼
X
g[G

agfgðsÞ; CardG ¼ L: ð2Þ

Popular examples of G include: frequency (Fourier), scale-

translation (wavelets), scale-translation-frequency (wavelet

packets), translation-duration-frequency (cosine packets),

scale-translation-angle (e.g. curvelets, bandlets, contourlets,

wedgelets, etc.). The dictionary F is the n � L matrix whose

columns are the generating atoms ffggg[G, which are sup-

posed to be normalized to a unit ‘2-norm. The forward trans-

form is defined via a non-necessarily square full rank matrix

T ¼ FT [ RL�n, with L � N. When L . n the dictionary is

said to be redundant or overcomplete.

Owing to recent advances in modern harmonic analysis,

many redundant systems, like the undecimated wavelet trans-

form, curvelet, contourlet, steerable or complex wavelet pyra-

mids, were shown to be very effective in sparsely representing

images. By sparsity, we mean that we are seeking a good repre-

sentation of x with only very few non-zero coefficients, i.e.

kak0 � n. In most practical situations, the dictionary is

built by taking the union of one or several (sufficiently inco-

herent) transforms, generally each corresponding to an orthog-

onal basis or a tight frame. In the case of a simple orthogonal

basis, the inverse transform is trivially F ¼ TT; whereas

assuming that T is a tight frame implies that the frame operator

satisfies TTT ¼ cI, where c . 0 is the tight frame constant.

Hence, TT ¼ F is the Moore–Penrose pseudo-inverse trans-

form (corresponding to the minimal dual synthesis frame),

up to the constant c. In other words, the pseudo-inverse recon-

struction operator Tþ reduces to c21F.

2.2. Choosing a dictionary

Choosing an appropriate dictionary is a key step toward a good

sparse representation, hence inpainting and interpolation.

A core idea here is the concept of morphological diversity,

as initiated in [30]. When the transforms are amalgamated in

one dictionary, they have to be chosen such that each leads

to sparse representations over the parts of the images it is

serving. Thus, for example (see Fig. 1), to represent efficiently

isotropic structures in an image, a qualifying choice is the

wavelet transform [39, 40]. The curvelet system [41, 42] is a

very good candidate for representing piecewise smooth (C2)

images away from C2 contours. The ridgelet transform [43,

44] has been shown to be very effective for representing

global lines in an image. The local discrete cosine transform

(DCT) [39] is well suited to represent locally stationary tex-

tures. These transforms are also computationally tractable par-

ticularly in large-scale applications, and never explicitly

implementing F and T. The associated implicit fast analysis

and synthesis operators have typically complexities of O(n)

(e.g. orthogonal or bi-orthogonal wavelet transform) or

O(n log n) (e.g. ridgelet, curvelet, local DCT transforms).

Another desirable requirement that the merged transforms

have to satisfy is that when a transform sparsely represents a

part in the image, it yields non-sparse representations on the

other content type. This is intimately related to the concept

of mutual incoherence, which plays a fundamental role in

sparse solutions of overcomplete (redundant) linear systems.

For a given dictionary, it is defined as the maximum in magni-

tude of the off-diagonal elements of its Gram matrix (see

e.g. [45–48] for more details).

3. PENALIZED MAXIMUM-LIKELIHOOD

ESTIMATOR WITH MISSING DATA

3.1. Penalized maximum-likelihood estimator

estimation

First, let’s ignore the missing data mechanism and consider the

complete n-dimensional observed vector (by simple reorder-

ing) y. Adopting a GLM framework, we assume that y has

a density in the classical exponential family, taking the

form [49]

fYðy;h;sÞ ¼ hðy;sÞ exp
hTy� AðhÞ

gðsÞ

� �
ð3Þ

for some specific functions A(.), g(.) and h(.), h is the canonical

parameter and s is the scale parameter. From classical results

on exponential families [49], the mean of Y is related to h
via E[Yi] ¼ a0(hi), because typically, A(h) ¼

P
i¼1
n a(hi).

There also exists a one-to-one transform, called the link func-

tion, relating E[Y] to Fa. The most important case corresponds

to the canonical link function (a0)21(.), or h ¼Fa, that is

(Fa)i ¼ (a0)21(E[Yi]). In this case, a can be viewed as par-

ameters of a canonical sub-family of the original exponential

family with sufficient statistic FTY. For instance, the canonical
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link is the identity for the Gaussian case, and log in the Poisson

case.

We are seeking a regularized estimate of a from y using the

penalized maximum-likelihood estimator (PMLE)

â ¼ arg max
a
‘‘ðyjaÞ þ log paðaÞ ð4Þ

which is also termed the maximum a posteriori (MAP) estima-

tor. The first term in Equation (4) is the log-likelihood score,

which encourages fidelity to the observation. pa(.) stands

for the prior imposed on the coefficients a, e.g. Gaussian,

Laplacian, generalized Gaussian, Gaussian scale-mixture, etc.

Although the above formulation can be abstracted to the

exponential family, solving Equation (4) in general is quite a

challenging task. We postpone this aspect to future work.

We here restrict ourselves to the AWGN case, i.e.

Yja � NðFa;s2IÞ: ð5Þ

Therefore, the MAP/PMLE estimation problem can then be

expressed in terms of the decomposition coefficients a,

which gives, for AWGN with variance s2

â ¼ arg min
a

1

2s2
ky�Fak22 þ lCðaÞ; ð6Þ

where l . 0 is the regularization parameter, C: RL 7! Rþ is a

penalty function (PF) promoting reconstruction with low

complexity taking advantage of sparsity. In the sequel, we

additionally assume that the prior associated with C(a) is

separable, that is, the coefficients a are independent and iden-

tically distributed. Hence

CðaÞ ¼
XL

l¼1

cðalÞ: ð7Þ

Let us add that Equation (6) is an augmented Lagrangian form

of the problem

â ¼ arg min
a

CðaÞ subject to ky�Fak22 � t ð8Þ

with an appropriate correspondence between t and the recipro-

cal of the Lagrangian multiplier l.

The regularizing PF c is often assumed a non-negative,

continuous, even-symmetric and non-decreasing function

on Rþ, but is not necessarily convex on Rþ and could be irre-

gular at point zero to produce sparse solutions. A popular

choice of c is the ‘1-norm penalty which leads to the well-

known soft thresholding rule. The problem in Equation (6)

with the ‘1-norm penalty is a noise-aware variant of basis

pursuit. This has been considered in [50] (BPDN algorithm).

Although practical computational complexity of BPDN for

large-scale problems (e.g. image processing) is an issue,

except when the dictionary is the union of bases, in which

case the block coordinate relaxation (BCR) algorithm was

FIGURE 1. Example of a typical dictionary in image processing applications.
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proposed as a fast and effective algorithm [51]. Minimizers

of Equation (6) for a general class of regularizing func-

tions (neither non-necessarily differentiable nor convex)

have been characterized in a rigorous and systematic way

for the orthogonal wavelet transform in [52], and general

F in [53]. However, in the latter, implementation issues

were not considered except for the simple orthogonal case.

Inspired by the BCR, Elad [54] recently proposed a parallel

coordinate descent approach for iteratively solving Equation

(6) with overcomplete F and the ‘1-norm penalty. A conver-

gence analysis of this algorithm was recently proposed in

[55], but only with a smoothed and strictly convexified

version of the ‘1 penalty, which is an important and strong

assumption.

3.2. Derivation of E and M steps

Let us now turn to the missing data case and let us write y ¼

(yo, ymiss), where ymiss ¼ fyigi[Im
is the missing data, and yo ¼

fyigi[Io
. The incomplete observations do not contain all

information to apply standard methods to solve Equation

(6) and get the PMLE of u ¼ (aT, s2)T [ Q , RL
� Rþ*.

Nevertheless, the EM algorithm can be applied to iteratively

reconstruct the missing data and then solve Equation (6) for

the new estimate. The estimates are iteratively refined until

convergence.

3.2.1. The E step

This step computes the conditional expectation of the pena-

lized log-likelihood of complete data, given yo and current

parameters u (t) ¼ (a (t)T

, s2(t)

)T

Q ujuðtÞ
� �

¼ E ‘‘ðyjuÞ � lCðaÞjyo;u
ðtÞ

� �
¼ E ‘‘ðyjuÞjyo; u

ðtÞ
� �

� lCðaÞ: ð9Þ

For regular exponential families, the E step reduces to finding

the expected values of the sufficient statistics of the complete

data y given observed data yo and the estimate of a (t) and s2(t)

.

Then, as the noise is zero-mean white Gaussian, the E-step

reduces to calculating the conditional expected values and

the conditional expected squared values of the missing data,

that is

y
ðtÞ
i ¼ E yijF; yo;a

ðtÞ;s2ðtÞ
h i

¼
yi; for observed data; i [ Io;

ðFaðtÞÞi for missing data; i [ Im;

(

and E
h
y2

i jF; yo;a
ðtÞ;s2ðtÞ

i
¼

y2
i ; i [ Io;

ðFaðtÞÞ2i þ s2ðtÞ ; i [ Im:

(

ð10Þ

3.2.2. The M step

This step consists of maximizing the penalized surrogate func-

tion with the missing observations replaced by their estimates

in the E step at iteration t, that is

uðtþ1Þ ¼ arg min
u[Q

�Q ujuðtÞ
� �

: ð11Þ

Thus, the M step updates s2(tþ1)

according to

s2ðtþ1Þ

¼
1

n

X
i[Io

yi � FaðtÞ
� �

i

� �2
þðn� noÞs

2ðtÞ

" #
; ð12Þ

where no ¼ trM ¼ CardIo is the number of observed pixels.

Note that at convergence, we will have

ŝ2�!
1

no

X
i[Io

ðyi � ðFâÞiÞ
2

which is the maximum-likelihood estimate of the noise vari-

ance inside the mask (i.e. with observed pixels).

As far as the update equation of a (tþ1) is concerned, this

depends not only on the structure of the dictionary F (i.e.

basis, tight frame, etc.), but also on the properties of the PF

c (i.e. smooth/non-smooth, convex/non-convex). These two

parameters also have a clear impact on the convergence beha-

vior of the inpainting algorithm. Important cases will be

treated separately in Section 4. In all cases, the overall struc-

ture of the EM-based inpainting algorithm is as follows.

Algorithm 1

Require: Observed image yobs ¼My and a maskM, t ¼ 0, initial

a (0)

1: repeat

2: E Step

3: Update the image estimate:

yðtÞ ¼ yobs þ ðI�MÞFaðtÞ ¼ FaðtÞ þ ðyobs �MFaðtÞÞ ð13Þ
4: M Step

5: Solve Equation 6 with reconstructed y (t) substituted for y, and

get a (tþ1).

6: If desired, update s2(tþ1)

according to Equation 12.

7: t ¼ t þ 1,

8: until Convergence.

9: Reconstruct x̂ from â.

If s2 happens to be known, step 6 can be dropped from the

updating scheme.

4. CONVERGENCE PROPERTIES

In this section, we shall give both the updating rules of a (tþ1)

and the convergence properties of the corresponding EM
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algorithm (and its variants) for different penalties and types of

dictionaries (the columns of which are always supposed to be

normalized to a unit ‘2-norm). Convergence is examined in

both the weak and strong topologies.

The convergence properties of the EM algorithm and its

generalizations [e.g. GEM, expectation conditional maximiza-

tion (ECM), see [38, 56]] have deeply been investigated by

many authors (see, e.g. [37, 38, 57]). However, most of their

results heavily rely on the smoothness of the log-likelihood

function or its penalized form, hence on the regularity of the

penalty c (e.g. Q(.j.) is C1 for many results to hold [57]).

But, to produce sparse solutions, we are mainly concerned

with non-smooth penalties. Thus, most of classical conver-

gence results of the EM and its variants do not hold here.

We therefore need more involved arguments that we mainly

borrow from non-smooth convex analysis and the optimi-

zation literature.

4.1. F is a basis

In this case, F is a bijective bounded linear operator. Algor-

ithm 1 is an EM, which can be solved for the coefficients a,

or equivalently, in terms of the image samples x.

Many sparsity promoting PFs have been proposed in the

literature. Although they differ in convexity, boundedness,

smoothness and differentiability, they generally share some

common features that we state here as general conditions for

a family of PFs considered in our setting. Suppose that:

H1. c is even-symmetric, non-negative and non-decreasing

on [0, þ1), and c(0) ¼ 0.

H2. c is twice differentiable on R\f0g, but not necessarily

convex.

H3. c is continuous on R, it is not necessarily smooth at

zero and admits a positive right derivative at zero

c0þð0Þ ¼ limh!0þ ðcðhÞ=hÞ . 0.

H4. The function a þ lc 0(a) is unimodal on (0, þ1).

Among the most popular PFs satisfying the above require-

ments, we cite c(a) ¼ jajp, 0 , p � 2 (generalized Gaussian

prior), c(a) ¼
p

(a2
þ n), n � 0, the SCAD penalties [52];

see, e.g. [52, 58] for a review of others.

PROPOSITION 1. If c respects H1–H4,

(i) The step has exactly one solution decoupled in each

coordinate zl ¼ fT
l y (t):

âlðzlÞ ¼
0; ifjzlj � ls2c0þð0Þ;
zl � ls2c0ðâlÞ; ifjzlj . ls2c0þð0Þ;

�
ð14Þ

which is continuous in zl.

(ii) The sequence of observed penalized likelihoods con-

verges (actually increases) monotonically to a statio-

nary point of the penalized likelihood.

(iii) All limit points of the EM inpainting sequence fx (t),

t �0g generated by Algorithm 1 are stationary points

of the penalized likelihood.

See Appendix for the proof.

PROPOSITION 2. If c satisfies H1–H4, is coercive and proper

convex.

(i) The inpainting problem has at least one solution.

(ii) The inpainting problem has exactly one solution if c is

strictly convex.

(iii) The instance of iterates fx (t), t � 0g is asymptotically

regular, i.e. kx (tþ1) 2 x (t)
k ! 0, and converges

weakly to a fixed point.

(iv) If c(a) ¼ jajp, 1 � p � 2, the sequence of iterates con-

verges strongly to a solution of the inpainting problem.

See Appendix for the proof.

REMARK 1.

(i) When c(a) ¼ jaj, the shrinkage operator is the popular

soft thresholding rule. The EM inpainting with a basis

is then an iterative soft thresholding, which is strongly

convergent. Strong convergence can also happen with

other penalties thanc(a) ¼ jajp, p [ [1, 2]. For instance,

any strongly convex functioncwill imply strong conver-

gence (see [59, Corollary 5.16 and Proposition 3.6]).

(ii) The sequence of inpainting iterates is asymptotically

regular. This furnishes a simple stopping rule test, typi-

cally kx (tþ1)2 x (t)
k ,d for sufficiently small d . 0.

(iii) If one has additional constraints to be imposed on the

solution such as forcing the image to lie in some closed

convex subset ofH (e.g. positive cone), the iteration in

Equation (A.2) can be easily adapted by incorporating

the projector onto the constraint set, e.g. replace DF,l

by Pþ 8 DF,l, (Pþx)i ¼ max(xi, 0).

4.2. F is a frame

F is no longer a bijective linear operator (surjective but not

injective). Consequently, the EM step will be solved in

terms of the transform coefficients. The inpainted image is

reconstructed after convergence of the EM algorithm. This

is a major distinction with the previous case of a basis.

Indeed, when solving the problem in terms of image (or

signal) samples, the solution x is allowed to be an arbitrary

vector over Rn, whereas the solution image is confined to

the column space of F when solving in terms of coefficients

a. This distinction holds true except when F is orthogonal.

We therefore propose the following proximal Landweber-like

iterative scheme, which summarizes the E and M steps

aðtþ1Þ ¼ Smls2 aðtÞ þ mFT yobs �MFaðtÞ
� �� �

; m . 0;

ð15Þ
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where Smls2 is the componentwise shrinkage operator associ-

ated with Equation (14) with parameter mls2. Again,

the questions we want to answer are, for a general frame,

(i) does this algorithm converge, (ii) what is the convergence

behavior of such an iterative scheme, (iii) can the iteration

be computed efficiently? The answer to the first question is

yes under assumptions similar to the ones stated for the

basis case. This will be summarized shortly in a general

result together with an answer to question (ii). As far as

point (iii) is concerned, a positive answer cannot be given in

general since multiplications by F and FT are involved.

A very interesting case happens when the dictionary is a

tight frame. In such a case, following the discussion in

Section 2 (see also Remark 2), multiplications by F and T

are never explicitly implemented (fast implicit analysis and

synthesis operators are used instead).

We are now ready to state a convergence result for frames

PROPOSITION 3. Suppose that c satisfies H1–H4, is coercive

and proper convex. Moreover, suppose that 0 , m , 2/B,

where B is the frame upper bound. Then the following holds:

(i) The inpainting problem has at least one solution.

(ii) The inpainting problem has exactly one solution if c is

strictly convex.

(iii) The instance of coefficient iterates fa(t), t � 0g is

asymptotically regular and converges weakly to a

solution of the inpainting algorithm.

(iv) If c(a) ¼ jajp, 1 � p � 2, the sequence of coefficient

iterates converges strongly to a solution of the inpaint-

ing problem.

See Appendix for the proof.

REMARK 2.

(i) Again, for c(a) ¼ jaj, the EM inpainting with a frame

is a strongly convergent iterative soft thresholding.

Note also that the strong convexity of c is sufficient

for assertion (iv) in Proposition 3 to remain true.

(ii) Note that with frames, it becomes less straightforward

to impose some side constraints on the solution such as

positivity, compared to the previous case of bases.

(iii) An interesting special case of Equation (15) arises

when F is a tight frame (A ¼ B, Tþ ¼ B21F),

m ¼ B21 (2), and c (a) ¼ jaj. Letting k(t) ¼ Tyobs/B

þ (I 2 TMTþ)a(t), and specializing Equation (14)

to soft thresholding, Equation (15) becomes

aðtþ1Þ
l ¼

0; ifjkðtÞl j � ls2=B;

kðtÞl � signðkðtÞl Þls
2=B; if jkðtÞl j . ls2=B:

(

ð16Þ

Except for the scaling by B, it turns out that this itera-

tion is a simple shrinkage applied to the data recon-

structed at the E step. It embodies an (implicit)

reconstruction step followed by an analysis and a

shrinkage step, and is very efficient to compute.

A similar iteration can be developed for any other

rule corresponding to any other appropriate penalty.

4.3. F is a union of transforms

Let us now assume the general case where the dictionary is a

union of K sufficiently incoherent transforms, that is F ¼ [F1,

. . . , FK]. In this case, the M step of the inpainting becomes

more complicated and computationally unattractive.

However, this maximization becomes much simpler when

carried out with respect to each transform coefficient with

the other coefficients held constant. In the statistical literature,

this generalized version of the EM is termed ECM [56, 60, 61].

Without the E step, this algorithm is also known as (block)

coordinate relaxation in optimization theory [62, 63].

More precisely, ECM replaces each M step of the EM, by a

cyclic sequence of K conditional optimization steps, each of

which minimizes the surrogate functional Q over ak, k [ f1,

. . . , Kg, with the other transform coefficients ak0=k fixed at

their previous value. The M step in Algorithm 1 then

becomes (we omit the update of s for briefness),

Compute the residual r (t) ¼ yobs 2M
P

k¼1
K Fkak

(t),

for Each transform k[ f1, . . . ,Kg in the dictionary do

CM Step: Solve the optimization problem

a
ðtþ1Þ
k ¼ arg min

ak

1

2s2

��� rðtÞ þFka
ðtÞ
k

� �
�Fkak

���
2

2

þ lkCðakÞ ð17Þ

end for

The optimization subproblem for each k can be solved by

adapting results of the previous two sections depending on

whether Fk is a basis or a tight frame. Let us also mention

that a variation of the above ECM, termed multi-cycle ECM

in [56], would be to include an E step before each CM step,

which is equivalent to putting the E and CM steps inside the

loop over transforms.

Under appropriate regularity conditions on the complete

data penalized likelihood, it has been shown that the ECM

extension (which is actually a Generalized EM; see [37])

shares all the appealing convergence properties of the GEM

such as monotonically increasing the likelihood, convergence

(in the weak topology) to a stationary point, local or global

minimum, etc. (see [56, 57] for more details). However, for

many of their results to apply, smoothness and strict convexity

of the PF are again important assumptions (PF must be C1),2See the proof of Proposition 3 for the definition of A and B.

INPAINTING AND ZOOMING USING SPARSE REPRESENTATIONS Page 7 of 16

THE COMPUTER JOURNAL, 2007



which is not the case for the sparsity-promoting penalties

adopted here.

One strategy to circumvent this difficulty is to smooth at

zero the family of PFs we consider. Typically, many PFs ful-

filling requirements H1–H4 may be recast as functions of jaj.

Then, one may operate the change of variable in c(jaj) to

c(
p

(a2
þ n)) with sufficiently small n . 0. For example, the

PF corresponding to the ‘p-norm may be replaced with

(a2
þ n)p/2, or with the function proposed in [55]. The latter

approximation has the advantage of providing a closed-form,

but approximate solution to Equation (14). Note also that

these approximations are strict convexification of the original

‘p PF. Hence, with the latter smooth and strictly convex PF

approximations, by straightforward adaptation of the results

in [56, 57], it can easily be shown that the penalized likelihood

converges monotonically to a stationary point, and that the

sequence of multi-cycle ECM iterates converges (weakly) to

the unique stationary point which is also the global maximizer

of the penalized likelihood.

The other strategy is to extend convergence results of the

ECM to non-smooth PFs. As in the previous sections, this

will be accomplished by exploiting the separable structure of

PF and appealing to more elaborated tools in optimization

theory, namely (block) coordinate relaxation-based minimi-

zation methods for non-differentiable functions [63, 64].

Note that the BCR algorithm has already been used for

‘1- regularized sparse denoising problems with overcomplete

dictionaries, but only for dictionaries which are a union of

bases, while our algorithm stated below will be valid even

for more complicated dictionaries and PFs.

4.3.1. General algorithm and its properties

Here is now our general multi-cycle ECM inpainting algori-

thm for dictionaries that are a union of several (incoherent)

transforms:

Algorithm 2

Require: Observed image yobs and a maskM, t ¼ 0, initial a(0),

8k [ f1, . . . , Kg, 0 , mk , 2/Bk,

1: repeat

2: Select a transform k [ f1, . . . , Kg with a cyclic rule.

3: r (t) ¼ yobs 2M
P

k¼1
K Fkak

(t),

4: for m ¼ 1 to M do

5: Update,

a
ðtþm=MÞ
k ¼ Smklks2 a

ðtþðm�1Þ=MÞ
k þ mkF

T
k

h
rðtÞ þMFka

ðtÞ
k

� ��

�MFka
ðtþðm�1Þ=MÞ
k Þ� ð18Þ

6: end for

7: t ¼ t þ 1,

8: until Convergence.

9: Reconstruct x̂ from â.

Note that for a single transform, this algorithm reduces to

Equations (A.2) and (15) for respective corresponding cases.

The following result establishes the convergence behavior

of the multi-cycle ECM.

PROPOSITION 4 Suppose that c is a coercive proper convex

satisfying H1–H4. Then, the penalized likelihood converges

(increasingly) monotonically, and the sequence of coefficient

iterates fa(t), t � 0g generated by the multi-cycle ECM Algori-

thm 2 is defined, bounded and converges to a solution of the

inpainting algorithm.

See Appendix for the proof.

4.4. Choice of the regularization parameter

In this section, we aim at giving some guidelines for alleviat-

ing the somewhat delicate and challenging problem of choos-

ing the regularization parameter l. So far, we have

characterized the solution for a particular choice of l. In par-

ticular, for sufficiently large l (e.g. l � kTyobsk1/s2 for the

‘1-norm PF), the inpainting solution will coincide with the

sparsest one (i.e. a ¼ 0). But this will be at the price of very

bad data fidelity, and thus l is a regularization parameter

that should not be chosen too large.

One attractive solution is based upon the following obser-

vation. At early stages of the algorithm, posterior distribution

of a is unreliable because of missing data. One should then

consider a large value of l (e.g. þ1 or equivalently l �

kTyobsk1/s2 for the ‘1-norm PF) to favor the penalty term.

Then, l is monotonically decreased (e.g. according to a

linear schedule). For each ls2
� ts (where t is typically 3

to 4 to reject the noise), the ECM inpainting solution is com-

puted and serves as an initialization for the next value of l.

This procedure has a flavor of deterministic annealing [65],

where the role of the regularization parameter parallels that

of the temperature. This procedure is also closely related to

homotopy continuation and path following methods [66] and

[67]. These aspects are now under investigation and will be

deferred to a future paper.

5. EXPERIMENTAL RESULTS

To illustrate the potential applicability of the ECM inpainting

algorithm, we applied it to a wide range of problems including

inpainting, interpolation of missing data and zooming. Both

synthetic and real images are tested. In all experiments, the

convex ‘1 penalty was used. For the case of dictionaries

built from multiple transforms, and with the multi-cycle

ECM Algorithm 2, l was the same for all transforms and

mk ¼ Bk
21, 8k[ f1, . . . , Kg.

The first example is depicted in Fig. 2 with Lena, where

80% pixels were missing, with huge gaps. The dictionary con-

tained the fast curvelet transform (Second generation tight

frame curvelets [42]). The final threshold parameter was

fixed to the value 3s. This example is very challenging, and

the inpainting algorithm performed impressively well. It

managed to recover most important details of the image that
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are almost impossible to distinguish in the masked image. The

visual quality is confirmed by values of the peak

signal-to-noise ratio (PSNR) as reported in Fig. 2.

The algorithm was also applied to a superresolution

problem (see Fig. 3). In this example, the image of Claudia

was regularly downsampled with 50% missing 8 � 8 pixel

blocks (Fig. 3b). The dictionary again included the fast curve-

let transform. The result is shown in Fig. 3c). The image main

features and fine details were recovered with a little distortion,

which is also confirmed by the measures of the PSNR.

To further illustrate the power of the ECM inpainting algori-

thm, we applied it to the challenging Barbara textured image.

As stationary textures are efficiently represented by the local

DCT, the dictionary contained both the fast curvelet (for the

geometry part) and the LDCT transforms. In this experiment,

the Barbara image was masked with an increasing number of

missing pixels in the range 20–80%. The results for 50 and

80% missing pixels are portrayed in Fig. 4. Despite a large

amount of missing pixels, the algorithm is not only able to

recover the geometric part (cartoon), but particularly performs

well inside the difficult textured areas, e.g. trousers (it com-

pares very favorably to [22, Fig. 2] and [68, Figs. 14–16]).

The algorithm was finally tested on two real photographs of

a parrot and a zebra,3 where we wanted to remove the grid of

the cage to virtually free the bird and zebra (i.e. disocclusion

example). The mask of the grid was manually plotted. For

the color image, each of the three color bands (in RGB

space) was processed independently and then re-merged in

the final color result image. The results are shown in Figs. 5

and 6. The dictionary contained the undecimated DWT and

LDCT for the parrot and the fast curvelet transform for the

zebra. For comparative purposes, inpainting results of a PDE-

based method [5] are also reported in each case. For the zebra

example, the curvilinear structures of the black stripes are

better recovered with ECM than with the PDE-based method

(see, e.g. the neck and the back of zebra). In large smooth

regions, both methods are quite equivalent, and neither out-

performs the other. As far as the parrot example is concerned,

as expected, the main differences between the two approaches

are essentially located in the ‘textured’ area in the vicinity of

the parrot’s eye. Indeed, pure diffusion or transport PDE-based

methods have limited performance when dealing with tex-

tures. Nonetheless, one must avoid inferring stronger state-

ments (such as which is better than which in general), as our

comparison was carried out on a small sample of images

with one PDE-based inpainting method. Further comparative

work is needed to answer these questions more precisely.

5.1. Reproducible research

Following the philosophy of reproducible research [69], the

MCALab toolbox is made available freely for download

at http://www.greyc.ensicaen.fr/~jfadili/demos/WaveRestore/

downloads/mcalab.html. MCALab is a collection of Matlab

functions, scripts and graphical user interface for MCA [31]

and ECM inpainting of 1-D signals and 2-D images.

MCALab requires at least WaveLab 8.02 [69] to work prop-

erly. MCALab has been used by the authors to produce

some of the figures included in this paper. A Cþþ library

has also been designed and will be available on the web

very soon.

6. RELATED WORK

In the same vein as [29], the authors [68, 70, 71] have also

formulated the inpainting problem using sparse decompo-

sitions. Although these works share similarities with our

method, they differ in many important aspects. For instance,

in [68, 70], the inpainting problem is stated as a denoising

task in two steps: estimation of the image assuming the

support is known (i.e. set of non-null representation coeffi-

cients), and a progressive estimation of the support. All the

theoretical analysis is carried out assuming the support is

known, which is obviously not the case with real data. In

our work, the inpainting problem is stated as a linear inverse

ill-posed problem, that is solved in a principled Bayesian

framework, and for which the EM mechanism comes as a

FIGURE 2. Example with Lena. Dictionary: curvelets, penalty: ‘1.

(a) Original. (b) Masked with 80% pixel missing (missing pixels

are in black) PSNRdegraded ¼ 6.43 dB. (c) Inpainted PSNRrestored ¼

19.7 dB.

3Further examples and color images may be found at the http://www.greyc.

ensicaen.fr/~jfadili/themes.html and http://jstarck.free.fr/mca.html.
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natural iterative algorithm because of physically missing data.

Note also that our framework is more general as it allows esti-

mation of the hyperparameters associated with the noise

model as a by-product, not to mention that it can be

generalized to handle other noises and other inverse problems

than inpainting as we explained in Section 3.1. Furthermore, in

our work, we give a detailed and theoretically grounded con-

vergence analysis to characterize the type of solutions. Such a

FIGURE 4. Example with Barbara. Dictionary: curvelets þ LDCT, penalty: ‘1. (a) Original image. (b) and (c) Masked images with 50%

(PSNRdegraded ¼ 8.6 dB) and 80% (PSNRdegraded ¼ 6.54 dB) missing pixels. (d) and (e) and Inpainted images corresponding to (b) and (c).

(d) PSNRrestored ¼ 33.4 dB. (e) PSNRrestored ¼ 27.4 dB.

FIGURE 3. Application to superresolution (50% missing 8 � 8 pixel blocks). Dictionary: curvelets, penalty: ‘1. (a) Original image. (b) Low-

resolution image PSNRdegraded ¼ 5.52 dB. (c) Interpolated image PSNRrestored ¼ 30.82 dB.
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convergence study is lacking in the work of [70, 71]. The

method in [70] can only handle dictionaries, which are

union of orthonormal bases, and the one in [71] proposes the

same algorithm as [70] with a dictionary formed by a single

tight frame (framelet). Our method seems to be more

general and naturally deals with any dictionary (union of trans-

forms that correspond to frames or tight frames such as the

curvelet transform). Hence, our algorithm can be used with

richer overcomplete dictionaries (beyond union of bases)

that are able to provide us with sparser representations of a

wide range of images based on their morphological content.

Additionally, we would like to make a connection with the

emerging theory which goes by the name of ‘compressive

sampling’ or ‘compressed sensing’ as recently developed by

Donoho [32] and Donoho and Tsiag [33] and Candés et al.

[34–36]. Roughly speaking, this theory establishes in a prin-

cipled way that it is possible to reconstruct images or signals

accurately from a number of samples which is far smaller

than the number of pixels in the image, if the image or signal

is sparse (compressible) enough in some dictionary. In fact,

accurate and sometimes exact recovery is possible by solving

a simple convex optimization problem. Such a theory, although

directed toward random sensing matrices, provides a theoreti-

cal justification as to why algorithms such as ours work so

well in an application such as image inpainting and zooming.

7. SUMMARY AND CONCLUSION

A novel and flexible inpainting algorithm has been presented.

Its theoretical properties were systematically investigated and

established in various scenarios. To demonstrate potential

applications of the algorithm, examples including inter-

polation, zooming (superresolution) and disocclusion were

considered. Several interesting perspectives of this work are

under investigation. We can cite the formal investigation of

the influence of the regularization parameter (path following/

homotopy continuation). Extension to multi-valued images

FIGURE 5. Free the zebra by removing the cage. (a) Original. (b) Mask (missing pixels are in white). (c) ECM inpainting (dictionary: curvelets).

(d) PDE inpainting.
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(e.g. hyper-spectral data) is also an important aspect that is the

focus of our current research.
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8. APPENDIX

8.1. Proof of Proposition 1

Proof. Proof of (i) follows the same lines as in [52, 53]. When

F is a basis, the solution to Equation (6) is a componentwise

minimization problem. When z ¼ 0, it is clear that the unique

minimizer is â ¼ 0. Moreover, as the functional to be mini-

mized is even-symmetric (owing to H), the solution function

is odd, i.e. â(2z) ¼ 2â(z). Thus, we study the problem

only for z . 0. By differentiating (using H3), we have

â ¼ z� ls2c0ðâÞ: ðA:1Þ

Using a simple contradiction argument, a and z necessarily

have the same sign. Indeed, assume that â � 0 when z . 0.

But, by H1, the right-hand side of Equation (A.1) is positive,

contradicting our initial assumption. Thus, if z � minb�0

b þ ls2c 0(b) ¼ T, the only positive solution to Equation

(A.1) is â ¼ 0. On the other hand, when z . T, Equation

(A.1) may have many solutions. For c convex, it is trivial to

see that a þ ls2c 0(a) is one-to-one for z . T, hence the solu-

tion is unique. Otherwise, owing to H4, the componentwise

derivative written in Equation (A.1) has two possible zero
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crossings on (0, þ 1), but only the larger one is the minimum

occurring at a strictly positive â. Finally, to ensure continuity

of â(z) at T, T is necessarily ls2c 0þ(0).

Assertions (ii) and (iii) follow as a direct application of [57,

Theorem 2], as since the surrogate functional Q(aja(t)) is con-

tinuous in both arguments (see H3). A

8.2. Proof of Proposition 2

Proof. Existence statement (i) is a consequence of coercivity,

which is a sufficient condition for the inpainting problem to

have a solution.

Uniqueness assertion (ii) follows as a consequence of [59,

Proposition 5.15(ii)(a)], as MF is not necessarily bounded

below.

To prove (iii), let us define the sequence of iterates

xðtþ1Þ ¼ DF;l yobs þ ðI�MÞx
ðtÞ

� �
; ðA:2Þ

where DF,l ¼ FSls2FT consists of applying the transform

T ¼ FT, the componentwise shrinkage operator associated

with Equation (14) with a parameter ls2, and then reconstruct.

LEMMA 1. If c 0(.) is non-decreasing, DF,l is a non-

expansive operator.

Proof. Since the ‘2-norm is invariant under orthonormal

transformations (F), it is sufficient to prove that, 8 z, z0 [ R

jâðzÞ � â0ðz0Þj � jz� z0j: ðA:3Þ

This is just checked in all possible cases.

(i) If jzj � T and jz0j � T, jâ(z) 2 â0(z0)j ¼ 0 � j z 2 z0j.

(ii) Conversely, consider z and z0 to have the same sign and

jzj. T and jz0j . T, the function z(a) ¼ a þ ls2c 0(a)

is one-to-one monotonically increasing with derivative

uniformly bounded below by 1, hence verifying

Equation (A.3).

(iii) If z . T and z0 ,2T, jâ(z) 2 â0(z0)j ¼ jz 2 z0 2

ls2(c 0(a) 2 c 0(a0))j, jz 2 z0j.

(iv) If z . T and jz0j, T, by monotonicity of c 0:

jâðzÞj � â0ðz0Þj ¼ jz� ls2c0ðaÞj

� jz� ls2c0þð0Þj

� jz� z0j: ðA:4Þ

A

It is now straightforward to see that

kxðtþ1Þ � xðtÞk2 � k I�Mð ÞðxðtÞ � xðt�1ÞÞk
2

, kxðtÞ � xðt�1Þk2: ðA:5Þ

The last strict inequality holds whenever some data is missing

(i.e. avoiding the trivial identity mask). Furthermore, by stan-

dard properties of the EM (see Proposition 1(ii)), Q(x (tþ1)
jx (t))

and the penalized log-likelihood ‘c increase monotonically.

Therefore, from the definition of the surrogate functional

Q(.j.) in Equation (9):

Qðxðtþ1ÞjxðtÞÞ ¼ ‘‘ðyojx
ðtþ1ÞÞ � lC FTxðtþ1Þ

� �
�

1

2s2
I�MÞð xðtþ1Þ � xðtÞ

� �		 		2

2

¼ ‘‘cðyojx
ðtþ1ÞÞ

�
1

2s2
I�MÞð xðtþ1Þ � xðtÞ

� �		 		2

2

� QðxðtÞjxðtÞÞ ¼ ‘‘cðyojx
ðtÞÞ: ðA:6Þ

Thus,

XN

t¼0

ðI�MÞ xðtþ1Þ � xðtÞ
� �		 		2

2

� 2s2
XN

t¼0

‘‘cðyojx
ðtþ1ÞÞ � ‘‘cðyojx

ðtÞÞ
� �

� 2s2 ‘‘cðyojx
ðNÞÞ � ‘‘cðyojx

ð0ÞÞ
� �

� �2s2‘‘cðyojx
ð0ÞÞ , þ1: ðA:7Þ

It follows that the series
P

t¼0
N
kx (tþ1) 2 x (t)

k
2
2 is bounded uni-

formly in N, so that
P

t¼0
1
kx (tþ1) 2 x (t)

k
2
2 converges. Thus,

the sequence of iterates is asymptotically regular. Finally, as

the set of fixed points is non-empty (coercivity), DF,l is non-

expansive and the sequence x (t) is asymptotically regular. By

application of Opial’s theorem [72], statement (iii) follows.

The proof provided here bears similarities with the one

given in [73].

To prove statement (iv), it is sufficient to identify our

problem with the one considered by Combettes and Wajs

[59, Problem 5.13], and their fixed-point iteration [59, Pro-

blems (5.24) and (5.25)] with ours. It turns out that the shrink-

age operator Sls2 in Equation (14) is the Moreau proximity

operator associated with the convex function c, the lossy

operatorM is a bounded linear operator, and F is a bijective

bounded linear operator. Thus, strong convergence follows

from [59, Corollary 5.19]. A

8.3. Proof of Proposition 3

Proof. The proof for frames is less straightforward that for a

basis. To prove our result, we invoke a theorem due to [59,

Theorem 5.5]. For the sake of completeness and the reader’s

convenience, we here state in full some of their results relevant

to our setting, but without a proof.
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THEOREM 1 (Combettes and Wajs [59]). Consider the optim-

ization problem

minimize
a

1

2
ky� Aak2

2 þ f ðW	aÞ; ðA:8Þ

where A is a bounded linear operator mapping a Hilbert space

to another, W is a bijective bounded linear operator (its

adjoint W* is equal to its inverse) and f (.) is a lower semi-

continuous proper convex function. Let G = ; be the set of

solutions to Problem 26. Let fmt, t [ Ng be a sequence in

(0, þ1) such that 0 , inft mt � supt mt , 2/kAk2
2, let fbt,

t [ Ng be a sequence in (0, 1] such that inft bt . 0, and let

fat, t [ Ng and fbt, n [ Ng be sequences in a Hilbert space

such that
P

tkatk , þ1 and
P

tkbtk, þ1. Fix a0, and

define the sequence of iterates.

aðtþ1Þ ¼ aðtÞ þ bt WW proxmt;f
WW	


 �

� aðtÞ þ mt A	 y� AaðtÞ

� �� �
� bt

� �
þ at � aðtÞ

�
;

ðA:9Þ

where proxmt,f, is the proximity operator of f.4

(i) Problem 26 has at least one solution if f is coercive.

(ii) Problem 26 has at most one solution if f is strictly

convex or A is injective.

(iii) fx (t), t � 0g converges weakly to a point â [ G.

(iv) fx (t), t � 0g converges strongly to â [ G in each of the

following cases.

(a) The interior of G is non-empty.

(b) f satisfies Condition 3.2 in [59].

We now reformulate our inpainting problem as a linear

inverse problem regularized over frames. The problem under

consideration can be stated as

â ¼ arg min
a

1

2s2
kyobs �MFak22 þ l

X
l

cðalÞ: ðA:10Þ

Thus, our inpainting inverse problem is a special case of

Problem (26) with A ¼MF, which is a linear bounded

measurement operator, but not injective, W ¼ I, and f(a) ¼P
lc(al). The first two assertions (existence and uniqueness)

of Proposition 3 then follow from Theorem 1(i) and (ii).

To determine the proximity operator proxmt , f, we first notice

that in our case W : a 7! (aTel)l¼1, . . . ,L, (el)l¼1, . . . ,L is the

canonical basis of RL. Hence, following the same proof as in

Proposition 1, the proximity operator proxmt
, f amounts to the

shrinkage operator Smt
ls2 given in Equation (14), applied

componentwise to each al.

Furthermore, by definition of frames, there exist two con-

stants A, B . 0 such that 8x [H

A �
xTðFFT

Þx

kxk22
� B: ðA:11Þ

That is, any Rayleigh quotient of the frame operator FFT

must lie between A and B. It follows from the Courant–

Fischer theorem that each eigenvalue of the frame operator

lies in the interval [A, B], and its spectral radius r(FFT) ¼

B. Thus,

kAk2
2 ¼ kMFk22 ¼ kMFFT

Mk2

� kMk22kFFT
k2 ¼ rðFFT

Þ ¼ B;
ðA:12Þ

where the inequality becomes an equality for tight frames.

Hence, taking 0 , mt ¼ m , 2/B, bt ; 1, at ; 0 and bt ; 0

in Equation (A.9) our iteration in Equation (15) follows. State-

ment (iii) of Proposition 3 is then a straightforward application

of Theorem 1(iii).

For the inpainting algorithm to converge in a strong sense

with frames, it is sufficient that c be strongly convex (see

[59, Proposition 3.6(vii)]. However, this kind of penalty is

not relevant for producing sparse solutions. If c(a) ¼ jajp,

p [ [1,2], we conclude with the same argument as in Pro-

position 2(iv) for a basis, with (el)l¼1,. . .,L the canonical basis

of RL. A

8.4. Proof of Proposition 4

Proof. Note first that the solution existence and uniqueness

assertions can be stated as before using coercivity and strict

convexity arguments.

The convergence proof follows, after identifying our

problem with the one considered by the author in [64]. Then

using the same notation as in [64]

f0ðaÞ ¼
1

2s2
yobs �M

XK

k¼1

Fkak

					
					

2

2

;

fkðakÞ ¼ lkCðakÞ; 8k ¼ 1; . . . ;K:

It is not difficult to see that f0 has a non-empty open domain

and is continuously differentiable on its domain. Thus, f0
satisfies Assumption A.1 in [64]. Moreover, by assumption

on c, the objective functional f0(a) þ
P

k fk(ak) is continuous

on its effective domain, with bounded level sets, and is convex

(hence pseudoconvex). Thus, by Tseng [64 Lemma 3.1 and

Theorem 4.1], the convergence statement follows. The

accumulation point of the iteration is the unique global mini-

mizer if c is strictly convex. A4See [59, Section 2.3] for more details about proximal calculus.
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