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ABSTRACT

An algorithm for filling-in surface holes is introduced in this
paper. The basic idea is to represent the surface of inter-
est in implicit form, and fill-in the holes with a system of
geometric partial differential equations derived from image
inpainting algorithms. The framework and examples with
synthetic and real data are presented.

1. INTRODUCTION

Inpainting is a term used in art to denote the modification of
images (painting, photographs, etc) in a form that can not be
detected by an ordinary observer. It normally refers to the
filling-in of regions of missing information or the replace-
ment of regions by a different kind of information. This
is a very important topic in image processing, with appli-
cations including image coding and wireless image trans-
mission (e.g., recovering lost blocks), special effects (e.g.,
removal of objects), and image restoration (e.g., scratch re-
moval). The basic idea behind the computer algorithms that
have been proposed in the literature is to fill-in these regions
with available information from their surroundings. This
information can be automatically detected as in [5, 10], or
hinted by the user as in more classical texture filling tech-
niques [9, 11, 17]. Several names have been used for this
filling-in operation:disocclusionin [2, 13], or inpainting in
[4, 5, 6]. In the context of this paper, and following [5], we
shall refer to it as digitalinpainting.

It turns out that images are not the only kind of data
where there is a need for digital inpainting. Surfaces ob-
tained from range scanners often have holes, regions where
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the 3D model is incomplete. The main cause of holes are
occlusions, but these can also be due to low reflectance,
constraints in the scanner placement, or simply lack of suf-
ficient coverage of the object by the scanner. This is fre-
quently observed in the scanning of art pieces [12], which
in part due to the complicated geometry have a lot of self-
occlusions and details. Art pieces also impose significant re-
strictions on the scanner placement. Holes are also observed
in common scenarios where LADAR data is collected (e.g.,
a house behind an occluding tree), and in all the major ar-
eas where range scanners are used. With the increasing
popularity of range scanners as 3D shape acquisition de-
vices, with applications in geoscience, art (e.g., archival),
medicine (e.g., prohestetics), manufacturing (from cars to
clothes), and defense (e.g., LADAR), it is very important
to be able to inpaint this missing information. This is often
needed for post-processing as well as for presentation. It is
the goal of this paper to present an algorithm for inpainting
these surface holes.

Our work is inspired by the one reported in [8], and it
is presented as an alternative to this method. This pioneer-
ing work addressed the problem of hole filling via isotropic
diffusion of volumetric data (that is, iterative Gaussian con-
volution of some distance function to the known data). The
approach proposed by these authors addresses holes with
complicated topology, a task very difficult with mesh repre-
sentations. The reader is directed to this paper for an excel-
lent and detailed description of the nature of holes in scan-
ning statues and for a literature review in the subject.

The algorithm here proposed is an extension of our pre-
vious work on image inpainting [2, 3, 5] (see also [4, 6,
7, 13, 15, 16]). In particular, we show how to adapt the
variational formulation we presented in [2, 3] to the prob-
lem of surface hole filling. As in [8], the use of volumetric
data (that is, the surface is represented as the zero level-set
of a function) brings us topological freedom. In contrast
with [8], we use a system of coupled anisotropic (geomet-
ric) partial differential equations designed to smoothly con-
tinue the isophotes of the embedding function, and therefore
the surface of interest (as the zero level isophote). These
equations are based on the geometric characteristics of the
known surface (e.g., the curvatures), and as [8], are ap-
plied only at the holes and a neighboorhood of them (being
these equation anisotropic and geometry based, they lead to



Fig. 1. A rendering of a scanned version of Michelangelo’s
David (Michelangelo’s project)

a slightly slower algorithm than the one reported in [8]). We
present below both the underlying theory and examples for
real data.

2. A VARIATIONAL APPROACH TO INPAINTING
IN N DIMENSIONS

We now describe a variational approach to the joint interpo-
lation of vector fields and gray values. For more details, see
[2, 3]. In the following section we will see how we adapt
this to the problem of hole filling on surfaces.

Let Q be a hyperrectangle inRN and Ω be an open
bounded subset ofQ with smooth boundary. Suppose that
we are given an imageu0 : Q \ Ω → R, whereΩ denotes
the closure ofΩ. Using the information ofu0 on Q \ Ω we
want to reconstruct the imageu0 inside the hole of missing
informationΩ. In our context, the functionu0 is an implicit
representation of the known data. In [2, 3] the authors pro-
posed to fill-in the holeΩ using both the gray level and the
vector field of normals to the level sets of the image outside
the hole. Let̃Ω be an open subset ofQ with smooth bound-
ary such thatΩ ⊂⊂ Ω̃. The band aroundΩ will be the set
B = Ω̃ \ Ω. To fill-in the holeΩ we shall use the infor-
mation ofu0 contained inB, mainly the gray levelu0 and
the vector field of normals (i.e. the gradient directions) to
the level sets ofu0 in B, which we denote byθ0. We shall
assume thatθ0 is a vector field with values inRN satisfying
θ0(x) ·∇u0(x) = |∇u0(x)| and|θ0(x)| ≤ 1. In practice we
takeθ0(x) = ∇u0(x)

|∇u0(x)| when∇u0(x) 6= 0, andθ0(x) = 0
if ∇u0(x) = 0. The basic goal then is to smoothly extend
the pair(u0, θ0) from the bandB = Ω̃ \Ω to a pair of func-
tions (u, θ) insideΩ. For that we attempt to continue the
isosurfaces ofu0 (i.e the hypersurfaces[u0 = λ] or, more

generally, the boundaries of the level sets[u0 ≥ λ], λ ∈ R)
in B insideΩ by taking into account the principle of good
(smooth) continuation. As we already said, we should con-
straint the solution(u, θ) to coincide with the data onB.
The vector fieldθ should satisfy|θ| ≤ 1 onΩ and should be
related tou by θ · ∇u = |∇u|, i.e., we should impose thatθ
is the vector field of directions of the gradient ofu. Finally,
we should impose that the vector fieldθ0 in the bandB is
smoothly continued byθ insideΩ. Note that ifθ represents
the directions of the normals to the level hypersurfaces of
u, thendiv(θ) represents its mean curvature. The smooth
continuation of the levels sets ofu0 insideΩ is imposed by
requiring thatdiv θ ∈ Lp(Ω̃), i.e.,

∫
Ω̃
|div θ|p dx < ∞. For

consistency we shall require thatdiv θ0 ∈ Lp(B).
We propose to interpolate the pair(θ, u) in Ω by mini-

mizing the functional

Minimize
∫

Ω̃

|div(θ)|p(γ + β|∇k ∗ u|)dx

u = u0, θ = θ0 in B, |∇u| − θ · ∇u = 0 in Ω̃

|θ| ≤ 1, ‖ u ‖≤ M

(2.1)

wherep > 1, γ > 0, β ≥ 0, k denotes a regularizing ker-
nel of classC1 such thatk(x) > 0 a.e.,M = ‖u0‖L∞(B).
Let us note that ifu is the characteristic function of a set
A ⊆ R3 (i.e. u(x) = χA(x) = 1 if x ∈ A and = 0
otherwise) with smooth boundary andθ is an smooth exten-
sion of the unit normal to∂A, then

∫
Ω̃
|div(θ)|p|∇u|dx =∫

∂A
|H|p dS whereH(x) is the mean curvature of∂A and

dS denotes the surface area. Let us say that for mathemat-
ical reasons we have convolved the∇u term of (2.1) to be
able to ensure the existence of a minimum for (2.1) [3, 2].
Finally, let us also note that the constantγ has to be> 0,
otherwise we do not get anLp bound ondiv θ. We refer
to [2] for a detailed theoretical analysis of this formulation
and its approximation by smoother functionals. Let us fi-
nally note that the use of smooth continuation using powers
of the curvature as smoothness method was proposed in [14]
with the purpose of image segmentation with depth (recon-
structing then the occluded boundaries), and used as a base
for variational approaches of disocclusion in [2, 3, 13].

The minimization of (2.1) is given by the gradient de-
scent method, thereby obtaining a system of two coupled
PDE’s, one foru and one for the vector fieldθ:

θt = −∇θE(θ, u) ut = −∇uE(θ, u) in Ω̃, (2.2)

(whereE(θ, u) denotes the energy defined in (2.1)) supple-
mented with the corresponding boundary data and initial
conditions. The constraints on(θ, u) can be incorporated
either by penalization or by projection after each time step.
In our experiments, we takek to be a Gaussian kernel with



Fig. 2. From top to bottom and left to right: a) David’s
left hand. b) A detail of its hair. c) A zoomed detail of
a) showing the triangulated surface with the hole. d) The
reconstruction of the hole in c) displayed as a triangulated
surface. e) A zoomed detail of b) showing the triangulated
surface with the hole. f) The reconstruction of the hole in e)
displayed as a triangulated surface.

small variance, say one or two pixels. In practice, one can
also dismiss the kernelk. The initial conditions are ad-hoc
interpolations, for instance, we can takeu insideΩ as the
average value ofu0 in B, θ insideΩ being the direction of
the gradient ofu.

3. SURFACE INPAINTING

The above algorithm can be used whenu0 : Q \ Ω → R
is the characteristic function of a setA ⊆ R3 which is only
known inQ \Ω. In this case, by minimizing (2.1), we want
to reconstruct the setA inside the holeΩ knowing the set
outsideΩ, hence knowing also the unit normalθ0 at the part
of its boundary∂A \ Ω. As noted in [2, 3], the vector field
θ0 can be extended to all the known part ofA, i.e., toA \Ω.

Fig. 3. From top to bottom and left to right: a) David’s
left foot. b) A detail of the fingers with a hole. c) The
reconstruction of b) displayed as a triangulated surface. d)
A rendering of the same result.

Let us describe how to use the above formulation to in-
paint (fill-in) holes (or gaps) on surfacesS, which we as-
sume to be embedded inR3. To avoid any confusion with
our previous use of the word hole, let us use the word gap
of the surface. Assume, to fix ideas, thatS is a smooth
compact connected surface, andM is a part ofS which
is unknown or could not be obtained during scanning. Let
S∗ be the known part ofS. Let us choose a bounding box
Q in R3 strictly containing the gapM and part ofS∗ (see
Figs. 2.a, 2.b, 3.a). If the surfaceS had no gap then we
would consider as the setA the part of the interior ofS in-
sideQ. If S has a gap, then we construct a surfaceT such
thatS ′ := S∗ ∪T separatesR3 into its interior and its exte-
rior, and we defineA as the part of the interior ofS ′ inside
Q. We take as holeΩ a ball containing the gapM and the
added surfaceT , and letB = Q \ Ω be the band where the
known information ofS is used. This information consists
in u0 = χA∩B and the normal vector fieldθ0 to S∗ in B.
We constrainu = u0 andθ = θ0 in B and we also constrain
u to be1 on the part ofS∗ contained inΩ. Then we min-
imize (2.1) by solving the equations (2.2) where the initial
condition foru is χA. The surfaceT can be taken as part
of the surface of the smallest ball containing the boundary
of the gap (hence, the gap). The ballΩ can be taken as a
slight dilation of the smallest ball containing the gap. We
shall assume that this construction is possible for the gaps
considered here. Otherwise, we should produce a similar
construction.



4. EXPERIMENTAL RESULTS

With the purpose of adapting them to our algorithm, the
data, originally given as a triangulated surface, were con-
verted to an implicit representation in a regularly spaced 3D
grid. The result was visualized again as a triangulated sur-
face. Figure 1 displays a rendering of a scanned version of
Michelangelo’s David which has several holes. Figures 2.a,
2.b, 3.a display some particular holes with a bounding box
isolating them. Figures 2.c, 2.e, 3.b display the triangulated
surface (the data) around the hole. The reconstructed sur-
face is displayed in Figures 2.d, 2.f, 3.c. Figure 3.d displays
a rendering of Figure 3.c. These images have been rendered
using the AMIRA Visualization and Modeling System [1].

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this note we have shown how to extend our previous work
on image inpainting to fill-in surface holes. The idea, in-
spired by [8] and [2, 3], is to represent the surface of inter-
est as the zero level-set of a function, and then run a sys-
tem of coupled geometric partial differential equations that
smoothly continue the surface into the hole.

As we see it, this work provides a first step into the use
of geometric (anisotropic) PDE’s for surface hole filling. In
a future work, we plan to investigate the possibility of adapt-
ing to this problem other techniques that have been shown
to be very efficient for image inpainting. As in [8], the line-
of-sight constraints should be introduced into our algorithm
as well to help us in a more automatic initialization.
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