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Abstract

We present evidence on the existence of productivity spillovers at the workplace.
Workers produce output combining effort with inputs of heterogeneous quality.
Exploiting quasi-random variation in the productivity of inputs assigned to work-
ers, we find evidence of a negative causal effect of an increase in coworkers’ produc-
tivity on own output and its quality. We show both theoretically and empirically
that the effect captures free riding among workers, which originates from the way
the management informs its decisions on whether and who to dismiss. Evidence
also suggests that the provision of incentives can offset negative productivity
spillovers. Exploiting differential exposure to piece rate pay, we find no effect of
coworkers’ productivity when workers are exposed to monetary incentives. Us-
ing elicited information on the friendship network among workers, we also find
no effect for those working along friends. Our study and results show that pro-
duction arrangements and human resource management practices interact in the
generation of externalities at the workplace. Keeping everything else constant,
counterfactual analyses suggest productivity gains from the implementation of
alternative termination policies and input re-allocation to be up to 20%.
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1 Introduction

Differences in management practices explain a considerable amount of variation in firms’

productivity and performance. Given the same inputs, better managed firms achieve

higher sales value and growth, capital returns and survival probabilities compared to less

well-managed ones, both within and across sectors and countries (Bloom and Van Reenen

2007, 2010; Bloom, Mahajan, McKenzie, and Roberts 2010; Bloom, Eifert, Mahajan,

McKenzie, and Roberts 2013).

A number of studies show how human resource management practices may affect produc-

tivity through the externalities they generate among coworkers in their choice of effort.

In their pioneering work, Bandiera, Barankay, and Rasul (2005) use personnel data from

a leading fruit producer in the UK to show how fruit picking workers internalize the

negative externalities generated by a relative performance evaluation pay scheme. As a

result, average productivity increases by at least 50% when piece rate pay is introduced.

More recently, Mas and Moretti (2009) investigate productivity spillovers among cashiers

in a large US supermarket chain. Social pressure from working peers is there shown to

be strong enough to offset the negative externalities that the worker evaluation and firing

policy is assumed to generate. These studies show how, even in the absence of technolog-

ical externalities, personnel policies can make coworkers’ choices of effort interdependent

and generate productivity spillovers. Nonetheless, in many production environments,

workers produce output combining effort with inputs of heterogeneous quality. From

raw textiles in garment factories to chemicals in biological research labs, the quality of

inputs affects the productivity of workers. In the presence of any source of externalities,

the quality of inputs individually assigned to workers also triggers productivity spillovers

among them. In these contexts, the overall result of the organization will be affected by

the way inputs are allocated among workers.

This paper investigates whether and how the productivity of workers is affected by peers’

productivity when workers are assigned inputs of heterogeneous quality. Answering this

question is challenging for three main reasons. First, firms often do not maintain records

on the productivity of individual workers. Second, even when such data exist, input

quality is often hard to measure. Finally, identification of productivity spillovers from

heterogeneous inputs requires that the quality of inputs is good as randomly assigned to

workers.

We overcome these issues by studying the case of a leading egg producing company in

Peru. The production technology and arrangements at its plant are particularly suit-

able for our analysis. Workers are grouped in several sheds. Each worker is assigned a

given batch of laying hens. Hens’ characteristics and worker’s effort determine individual
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productivity as measured by the daily number of collected eggs. In particular, variation

in the age of hens assigned to the worker induces variation in his productivity. Using

daily personnel data, we exploit quasi-random variation in the age of hens assigned to

coworkers in order to identify the causal effect of an increase in coworkers’ productivity

on the productivity of a given worker, conditional on his own hens’ age.

We find evidence of negative productivity spillovers. Conditionally on own input qual-

ity, workers’ productivity is systematically lower when the productivity of neighboring

coworkers is exogenously raised by the assignment of higher quality inputs. A positive

shift in average coworkers’ inputs quality inducing a one standard deviation increase in

their daily output causes a given worker’s output to drop by almost a third of a standard

deviation. In other words, if all workers are assigned the same number of laying hens,

an increase in average coworkers’ daily output of 500 eggs is associated with a decrease

of own output of 150 eggs in the same day. We also find output quality to decrease

significantly, with the effect in standard deviation units being similar in magnitude to

the effect on quantity.

What is the mechanism behind such effects? We build upon Mas and Moretti (2009),

and provide a simple conceptual framework to characterize the worker’s optimal effort

choice. Daily productivity is a signal of workers exerted effort, which is unobservable to

the management. The latter combines information on individual and coworkers’ produc-

tivity in evaluating employees and making employment termination decisions. When the

management attaches a positive weight to overall or average productivity, an increase in

the productivity of coworkers increases a given worker’s probability of keeping the job.

As a result, workers free ride on each other: when coworkers’ productivity increases, in-

dividual marginal returns from effort in terms of increased probability of keeping the job

decrease for a given worker, and her optimal effort supply falls accordingly.

Workforce turnover information in the data allows us to see how dismissal probabilities

correlate with individual and coworkers’ productivity, validating the specific mechanism

identified by theory. The probability for a given worker to keep the job is positively and

significantly correlated with own productivity measures. Furthermore, conditionally on

the latter, the same probability is positively and significantly correlated with coworkers’

productivity as well. In line with the previous results, we find that returns from own

productivity in terms of increased probability of keeping the job are systematically lower

when coworkers’ productivity is higher. Coworkers’ productivity thus decreases the opti-

mal amount of effort exerted by the worker, yielding negative production externalities.

In the second part of the paper, we study whether and how the provision of incentives

can counteract the workers’ tendency to free ride and offset negative spillovers at the

workplace. Rather than asking whether incentives increase workers’ productivity, we in-
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vestigate their effect on the size and sign of productivity spillovers. In our conceptual

framework, monetary incentives provide extra marginal benefits from own effort, lever-

aged by the probability of keeping the job and earn the corresponding salary. By the

same token, working along friends is more likely to induce peer pressure in the form of

diminished marginal cost of effort (Kandel and Lazear 1992; Falk and Ichino 2006; Mas

and Moretti 2009). As a result, both types of incentives bring about positive externalities

among coworkers’ in their optimal choice of productive effort, mitigating the previously

identified negative effect of coworkers’ productivity.

We use elicited information on the friendship network among workers to test whether the

average effect of coworkers’ productivity is heterogeneous according to the workers’ friend-

ship status. Consistently with the above reasoning, we do not find any significant effect

of average coworkers’ daily output when the given worker identifies any of his coworkers

as friends. This finding also allows us to rule out the possibility that the observed aver-

age negative effect of coworkers’ productivity on own productivity captures cooperative

behavior among coworkers. Indeed, workers who are assigned highly productive inputs

may benefit from the help of neighboring coworkers, with negative productivity spillovers

on the latter. We would expect such cooperative strategy to be more sustainable among

friends. The absence of any significant effect in this case speaks against this hypothesis.

Finally, we exploit the specific features of the pay incentive regime in order to evaluate

effect heterogeneity according to piece rate incentive exposure. Workers receive extra pay

for every egg box they produce above a given threshold. Hens’ age affects productivity,

so that the probability of reaching the threshold and being exposed to piece rate pay

changes for a given worker depending on the age of own assigned hens. Consistently with

the previously outlined theoretical arguments, we find no effect of coworkers’ productivity

when the worker is assigned highly productive hens, meaning he is more likely to reach

the piece rate threshold and to be exposed to piece rate pay. On the contrary, the effect

of coworkers’ productivity is negative and significant when the same worker is assigned

either young or old hens, meaning he is less likely to reach the piece rate threshold.

Evidence thus suggests that both monetary and social incentives to push the sign of

productivity spillovers towards positive values.

Causal estimates are further validated by several robustness checks. First, we investigate

whether variation in the average input quality of workers in non-neighboring production

units or different sheds relates systematically to individual productivity. The structure

of the production plant is such that workers not located one next to the other cannot

observe each other. Therefore, we do not expect to find any significant relationship

between the two. We thus frame this empirical exercise as a placebo test, which indeed

provides non-significant results and estimates close to zero. Second, we replicate our
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main analysis employing an alternative measure of exogenous input quality, that is, the

expected productivity of hens as reported by an independent bird supplier company. The

estimates based on this alternative measure match closely with the previous ones.

Our case study provides empirical evidence of free riding among coworkers, imputable

to the teamwork-type externalities generated by the firm’s worker evaluation and termi-

nation policy. In this respect, our results add to the literature which investigates the

externalities generated by human resource management practices. Bandiera, Barankay,

and Rasul (2005) explicitly explore the role played by social ties among coworkers in the

internalization of negative externalities under relative performance evaluation, and their

impact on productivity under individual performance pay (Bandiera, Barankay, and Rasul

2010). Bandiera, Barankay, and Rasul (2007, 2008, 2009) provide the first comprehensive

analysis of managerial incentives, investigating their impact on productivity through en-

dogenous team formation, and the consequences for lower-tier workers who are socially

connected to managers. More recently, Bandiera, Barankay, and Rasul (2013) provide

a theoretical and empirical investigation of team-based incentives and their relationship

with social connections.

The conceptual framework in our paper builds upon Mas and Moretti (2009). They study

peer effects and productivity among cashiers in a large US supermarket chain, exploiting

variation in team composition across ten-minutes time intervals. This allows them to show

how the productivity of a given worker changes with coworkers’ permanent productivity,

with variation in the latter being due to the entry and exit of peers into shifts. The

empirical results of the study show that social pressure from observing high-ability peers

is the central mechanism generating positive productivity spillovers, and speak against

other potential explanation such as prosocial preferences or knowledge spillovers.

Our contribution is novel in that we explicitly consider the role of inputs and their alloca-

tion to working peers. Indeed, our paper shows how production arrangement - in its spe-

cific aspect of input allocation - and human resource management - workers’ evaluation,

termination and incentive policies - interact in determining the total amount of external-

ities in the system and thus overall productivity. Therefore, our study complements the

existing contributions to the literature on human resource management and externalities

at the workplace. The features of the specific setting we focus on and the richness of our

data allow us to credibly identify spillovers exploiting quasi-random variation in workers’

assigned inputs characteristics. We also perform a structural estimation exercise based on

our conceptual framework in order to estimate the unobserved exogenous parameters of

the model and perform counterfactual policy analyses. Holding everything else constant,

productivity gains from input re-allocation are estimated to be up to 20%. Moreover,

by providing direct evidence on both the firm’s dismissal decisions as well as on the het-
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erogeneity of impacts with respect to incentive exposure, our results have implications

in terms of termination and incentive regime policies. The implementation of alternative

termination policies is estimated to yield productivity gains still around 20%. Finally,

the firm under investigation employs a relatively more labor intensive technology com-

pared to firms in the same sector, but operating in developed countries. Our analysis and

results are thus relevant in the microfoundation of productivity-enhancing management

practices in developing countries.

A number of other studies investigate the issue of productivity spillovers in a variety

of settings. Gould and Winter (2009) focus on production externalities which are built

in the technology of baseball teams. They show the sign of effort externalities among

players in substitute or complement roles to be consistent with theoretical expectations.

Arcidiacono, Kinsler, and Price (2013) estimate spillovers in basketball teams, highlight-

ing the role of heterogeneity in the positive spillovers generated by individual players, and

discussing its implications for workers’ evaluation and team performance. Brown (2011)

exploits instead variation in the presence of superstars in professional golf tournaments

to identify competition externalities. She finds the presence of superstars to negatively

affect the effort exerted by contestants. However, Guryan, Kroft, and Notowidigdo (2009)

previously found no average effect of other players’ ability on own effort among profes-

sional golf players, attributable to the incentives determined by the steep prize structure.

Cornelissen, Dustmann, and Schönberg (2013) use German social security data and ex-

ploit variation in one’s working peers throughout her working life in order to identify

productivity spillovers. They find only small peer effects on wages. More generally, and

in terms of the identification challenges we face, our paper contributes to the literature

on empirical identification of externalities and peer effects. After the seminal work of

Manski (1993), a number of studies have delved into the empirics of social interactions

mechanisms.1 For example, Ichino and Maggi (2000) show evidence of peer effects in ab-

senteeism and shirking behavior in a large Italian firm through exploiting variation in peer

group composition induced by workers moving across firm branches. Sacerdote (2001)

uses instead random assignment of peer college students to dorms and shows evidence

of peer effects in academic achievement. An alternative identification approach based on

variance decomposition is developed and adopted by Graham (2008) in providing evidence

of peer effects among students involved in the Project STAR. More recently, a growing

number of contributions exploit the variation induced by overlapping peer groups and

identify peer effects adopting network-based strategies (Lee 2007; Bramoullé, Djebbari,

and Fortin 2009; De Giorgi, Pellizzari, and Redaelli 2010; Blume, Brock, Durlauf, and

Jayaraman 2013).

1For a recent survey of the empirics of social interactions, see Ioannides and Topa (2010) and Blume,
Brock, Durlauf, and Ioannides (2011).
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The rest of the paper is organized as follows. Section 2 provides the details of the setting.

The data and the relevant baseline statistics are presented in Section 3. Section 4 shows

the results from the empirical analysis, together with robustness checks and estimates of

effect heterogeneity. The relevant mechanism and conceptual framework are presented in

Section 5, together with the corresponding empirical analysis. The impact of monetary

and social incentives is discussed in Section 6. Counterfactual analysis of alternative

input allocation and termination policies are presented in Section 7. Section 8 concludes.

2 The Context

Our aim is to investigate whether coworkers’ productivity affects individual effort when

workers are assigned inputs of heterogeneous quality. We take these questions to the data

in the context of an egg production plant in Peru. The establishment belongs to a leading

poultry firm having egg production as its core business. In the plant under investigation,

production takes place in several sectors. An aerial photograph of a given production

sector is shown in Figure 1. Each sector is divided into several different long-shaped

sheds, as pictured in Figures 1 and 2. Each shed hosts one to four production units which

constitute the basic site of operations in the plant. A given shed hosting four production

units is pictured in Figure 3.

Each production unit is defined by one worker and a given batch of laying hens assigned

to him. Hens in a batch are all of the same age. After birth, birds in the same batch

are raised in a dedicated sector. The entire batch is then moved to production when

hens are around 20 weeks old, and discarded altogether when reaching around 80 weeks

of age. The productive life of laying hens is thus approximately 60 weeks long. During

that time, the batch is always assigned to the same production unit. The position of the

worker is fixed over time as well. Worker’s main tasks are: (i) to collect and store the

eggs, (ii) to feed the hens and (iii) to maintain and clean the facilities.2 Egg production

establishments in developed countries are typically endowed with automatic feeders and

automated gathering belts for egg handling and collection.3 The production technology

in the plant under investigation is thus more labor intensive relative to the frontier.

In the present context, output is collected eggs. These are classified into good, dirty,

broken and porous, so that measures of output quality can be derived accordingly. Hens

2The worker’s typical daily schedule is reported in Table A.1 in the Appendix A. Figure A.1 in the
same Appendix shows the distribution of the estimated worker fixed effects as derived as described at
the end of Section 4. The variance of the distribution is indicative that, conditional on input quality,
workers can have a substantial impact on productivity.

3American Egg Board, Factors that Influence Egg Production, http://www.aeb.org, accessed on
December 27, 2013.
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represent the main production input. High quality hens increase the marginal product of

effort for the worker. As we show later, hens’ productivity varies with age, which generates

both cross-sectional and time variation in input quality across workers. Production units

are independent from each other and no complementarities nor substitutabilities arise.

Indeed, each worker independently produces eggs as output combining effort and the hens

assigned as input to him. Egg storage and manipulation (selection, cleaning, etc.) is also

independent across production units. As shown in Figure 3, each production unit is

endowed with an independent warehouse for egg and food storage. Nonetheless, workers

in neighboring production units in the same shed are likely to interact and observe each

other. In particular, the productivity of working peers can be easily monitored as they

take boxes of collected eggs to the warehouse located in front of each production unit.

On the contrary, workers located in different sheds can hardly interact or see each other.

Workers in the firm are paid a fixed wage every two weeks. On top of this, a bonus

is awarded to the worker when his productivity on a randomly chosen day within the

same two weeks exceeds a given threshold. In this case, a piece rate pay for each egg

box exceeding the threshold is awarded. For simplicity, the piece rate component of pay

will be ignored in the first part of the analysis. In the second part, the impact of both

incentive pay and social incentives on productivity and externalities will be explored and

tested.

3 Data and Descriptives

The basis of our empirical analysis is daily production data from one sector of the plant

from March 11 to December 17 of 2012. The data comprise 99 production units, grouped

into 41 different sheds. The majority of sheds (21) is indeed composed of 2 production

units. A total of 100 workers are at work in the sector for at least one day, while 171

different batches of laying hens are identified. As a result, each production unit hosted

in the period an average of 1.73 batches and 1.01 workers. Batch replacement and hens’

age represent the main sources of variation for identification of productivity spillovers.

For each production unit on each day, the assigned worker and hen batch are identified.

The total number of hens and their age in weeks are provided as well, together with

a number of additional batch quality measures derived before the same was moved to

production, such as mortality and weight distribution moments. Furthermore, the data

provide a measure of expected productivity of hens per week of age as reported by an

independent bird supplier company. Notice that these variables are predetermined and

thus exogenous to anything specific of the egg production phase, including workers’ char-

acteristics and their effort choice. In terms of output, we have precise information on the
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total number of collected eggs. The daily average number of eggs per hen collected in

each production unit can thus be derived accordingly. The number of good, dirty, broken

and porous eggs is reported as well, together with the daily number of dead hens. Finally,

the data provide information on the daily amount of food handled and distributed among

the hens by the worker as measured by the number of 50kg food sacks distributed.

Summary statistics for the variables of interest are shown in Table 1. Given the focus

on productivity spillovers, observations belonging to sheds with one production unit only

are excluded from the study sample, leading to a final sample size of 20,915 observations,

one per production unit and day. The chosen productivity measure is the daily number of

eggs per hen. Its average across the whole sample is equal to 0.78. Consistently with the

setting description above, hens’ age varies between 19 and 86 weeks, while the average

batch counts around 10,000 laying hens. Workers distribute an average amount of 112g

of food per hen. Derived output quality measures include the fraction of good, broken

and dirty eggs over the total. On average, 0.1% of hens in a batch die every day.

For every given production unit, the structure of the data allows to derive productivity

and input quality measures for neighboring production units in the same shed. This

allows us to compute a measure of coworkers’ average daily output and the average age

of hens assigned to coworkers. Not surprisingly, coworkers’ average variables share the

same support of individual measures, but standard deviations are lower.

Production data are complemented with those belonging to an original survey we admin-

istered in March 2013 to all workers employed at the time in the production sector under

investigation. The purpose of the questionnaire was to elicit demographic and personal

information about the workers, and the friendship and social relationship among them.

For this purpose, we asked the workers to list those among their coworkers who they

identify as friends, who they would talk about personal issues or go to lunch with. We

will say that worker i recognizes worker j as a friend if the latter appears in any of worker

i’s above lists. 63 of the interviewed workers were already employed in the period for

which production data are available, so that relevant worker information can be merged

accordingly. The corresponding figures will be investigated when addressing the role of

monetary and social incentives in Section 6.
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4 Empirical Analysis of Productivity Spillovers

4.1 Preliminary Evidence and Identification Strategy

Together with worker’s effort, the batch of laying hens is the main production input in this

context. The worker is assigned the same batch of equally aged hens from the moment

they are moved to production until they are discarded. Crucially, hens’ productivity

varies with age. Figure 4 plots the average daily number of eggs per hen against hens’

age in weeks. Smoothed average values and the corresponding 95% confidence interval

are reported, together with the value per bin as defined by each week of age. Productivity

is typically low when hens are young and have been recently moved to production, but

starts to increase thereafter, reaching its peak when hens are around 40 weeks old. From

that age onwards, productivity starts decreasing first slowly and then more rapidly once

hens are over 70 weeks old.

Hens’ age exogenously shifts input quality and thus productivity as measured by daily

output yi. This source of variation can be exploited in order to identify productivity

spillovers. Specifically, we start by considering the following regression specification

yigt = ϕ+ γ ȳ−igt + α ageigt + β age2
igt +

t−1∑
s=t−3

λs food igs + εigt (1)

where yigt is the daily number of eggs per hen collected by worker i in shed g on day t.

ȳ−igt captures the corresponding average value for coworkers in neighboring production

units on the same day. The variable ageigt is the age in weeks of hens assigned to

worker i. Its square is included as well to capture the inverted U shape relationship

between hens’ age and productivity previously shown in Figure 4. Lags of total amount

of food distributed food igs are also included. Finally, εigt captures idiosyncratic residual

determinants of worker’s productivity. Notice that, by conditioning on both own hens’

age and food distributed, we aim at investigating any systematic relationship between

coworkers’ productivity and individual unobserved effort ei.

Our goal is to identify the causal effect of peers’ productivity on own output, conditional

on own input quality. OLS estimates of the parameter of interest γ in the above equation

are likely to be biased. The proposed specification defines productivity simultaneously for

all workers, leading to the so-called reflection problem first identified by Manski (1993).4

Furthermore, sorting of hens or workers with the same unobserved characteristics into

4The suggested specification differs from the basic treatment in Manski (1993) in that it adopts a leave-
out mean formulation, as the average productivity regressor is computed excluding worker i. Nonetheless,
the simultaneous nature of the equation makes the reflection problem still relevant (Bramoullé, Djebbari,
and Fortin 2009; Blume, Brock, Durlauf, and Ioannides 2011; Angrist 2014).
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sheds or the presence of idiosyncratic shed-level shocks may push in the same direction the

productivity of peers on the same day, generating a spurious correlation between cowork-

ers’ outcomes (Manski 1993; Blume, Brock, Durlauf, and Ioannides 2011). Nonetheless,

hens’ age represents a powerful source of variation. Indeed, changes in the age of hens

assigned to working peers induces exogenous variation in their productivity, so that any

systematic relationship between the former and own outcomes can be interpreted as evi-

dence of productivity spillovers. However, in order to identify a causal effect, the age of

coworkers’ hens needs to be as good as randomly assigned and have no direct effect on

own outcomes.

Given the assigned batches, coworkers’ and own hens’ age in weeks are both a function

of time. We thus explore the correlation between the two variables conditional on the

full set of day fixed effects. Even conditionally on the latter, own hens’ age in weeks

is found to be positively correlated with the corresponding average value for coworkers

in neighboring production units on the same day, as reported in the top panel of Table

2. The corresponding correlation coefficient is equal to 0.896, significantly different from

zero. This is because the management allocates batches to production units in a way

to replace those in the same shed approximately at the same time. It follows that hen

batches in neighboring production units have approximately the same age. However,

there is still residual variation to exploit. The second column in the top panel of Table

2 shows how the same correlation between coworkers’ and own hens’ age falls to zero

when computed conditional on the full set of shed-week fixed effects.5 The p-value from

the test of the null hypothesis of zero correlation between the two variables is equal to

0.53. In other words, daily deviations in the age of hens in each production unit from

the corresponding shed-week and day average are orthogonal to each other. This same

hypothesis can be tested by means of the regression specification proposed by Guryan,

Kroft, and Notowidigdo (2009), which in our case becomes

ageigwt = π1 age−igwt + π2 age−igw + ψgw + δt + uigwt

where ageigt is the age in weeks of hens assigned to worker i in shed g in week w on day

t. age−igwt is the corresponding average value for coworkers in neighboring production

units on the same day, while age−igw is the average value for peers in the same shed in all

5Since every hen batch in the sample is neighbor of some other batch, within-group correlation
estimates using the whole sample suffer from mechanical downward bias, a problem already noted by
Bayer, Ross, and Topa (2008) and discussed extensively in Guryan, Kroft, and Notowidigdo (2009) and
Caeyers (2014). The bias in this case is of the same nature as the so-called Nickell-Hurwicz bias arising in
fixed effects panel estimations with short time series (Nickell 1981). In order to overcome this problem,
when estimating conditional correlations we follow Bayer, Ross, and Topa (2008) and randomly select
one production unit per group as defined by the shed-week interaction (g, w). Estimates are computed
using the same resulting subsample.
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days of the week. The hypothesis of daily random assignment of age of coworkers’ hens

within each shed-week group is equivalent to the null H0 : π1 = 0. Regression results

are shown in the bottom panel of Table 2. Standard errors are clustered along the two

dimensions of shed and day. According to our results, the H0 cannot be rejected.

Evidence shows that, conditioning on the whole set of day δt and shed-week fixed effects

ψgw, the age of hens assigned to coworkers is as good as randomly assigned to a given

worker and his own hens’ age. It follows that the age of coworkers’ hens can be used

as a source of exogenous variation in order to identify the causal effect of an increase in

coworkers’ productivity on own productivity.6 Nonetheless, before showing the results,

it is important to understand whether the variation we exploit for identification is mean-

ingful. Conditional on day fixed effects, within-shed-week variation accounts for 5.4% of

the total variation in the age of coworkers’ hens in the sample, measured in weeks. The

same fraction goes up to 35% for observations belonging to those weeks in which any

batch replacement took place in the shed.7

4.2 Baseline Results

The first set of regression results is reported in Table 3. In the first column, the daily

average number of eggs per hen collected by the worker is regressed over the age of hens in

weeks and its square. The full set of day fixed effects are included as well. The proposed

specification yields a quadratic fit of the dependent variable as a function of hens’ age

which is consistent with the evidence in Figure 4. Coefficient estimates are significant at

the 1% level and confirm the existence of a concave relationship between hens’ age and

productivity. Standard errors are still clustered along the two dimensions of shed and day

in all specifications. Idiosyncratic residual determinants of productivity are thus allowed

to be correlated both in time and space, specifically among all observations belonging to

the same working day and all observations belonging to the same shed. In its quadratic

specification, together with day fixed effects, hens’ age explains 0.41 of the variability in

the dependent variable. The same number rises to 0.43 when lags of the amount of food

distributed are included in column 2. The full set of shed-week dummies is included in

column 3. Notice that, despite its measurement in weeks, the age variable still induces

6Several contributions in the literature exploit within-group random variation in peer characteristics
in order to identify peer effects (see for instance Sacerdote 2001; Ammermueller and Pischke 2009;
Guryan, Kroft, and Notowidigdo 2009). They aim at finding evidence of a systematic relationship
between own outcomes and peer predetermined characteristics, leaving aside the issue of differentiating
between endogenous and exogenous peer effects (Manski 1993). In this context, the parameter γ can be
correctly identified under the additional assumption of no direct effect of the age of coworkers’ hens on
own productivity, as discussed in the next section.

7We estimated separately the effect of interest for observations belonging to weeks with and without
any batch replacement, finding similar results. Results are shown in Table A.3 of Appendix A.

12



significant variation in productivity as measured by the average number of eggs per hen

collected: coefficients are almost unchanged with respect with those estimated in column

2. The fraction of total variability explained is now up to 0.86.

The average age of hens assigned to coworkers in neighboring production units is included

in column 4 of Table 3, together with its square.8 Consistently with the conditional

correlation result in Table 2, the coefficients of the own hen’s age variables experience

almost no change in magnitude, confirming the absence of any systematic relationship

between own and coworkers’ hens’ age within each shed-week group.9 Any systematic

relationship between the average age of coworkers’ hens and own productivity can thus be

interpreted as reduced-form evidence of productivity spillovers. Indeed, the corresponding

coefficients are highly significant and opposite in sign with respect to the ones of own

hens’ age.10 This result is confirmed in column 5 of Table 3, which also includes worker

fixed effects. The latter allow to detect systematic differences in the outcome of the same

worker according to differences in the average age of coworkers’ hens. The corresponding

R2 is now equal to 0.88. Consistently with regression results, Figure 5 shows how, once

own hens’ age, day and shed-week fixed effects are controlled for, the relationship between

residual productivity and the age of coworkers’ hens is u-shaped: the opposite with respect

to the one between productivity and own hens’ age. Therefore, conditional on own hens’

age, workers’ productivity is systematically higher when coworkers’ assigned hens are

on average either young or old, and thus of low productivity. The opposite holds when

the age of coworkers’ assigned hens is close to the productivity peak. In other words,

conditional on own input quality, workers’ productivity is systematically lower (higher)

when coworkers are assigned inputs of higher (lower) quality. We interpret this result as

reduced-form evidence of negative productivity spillovers.

Hens’ age induces meaningful variation in workers’ productivity. Quasi-random variation

in the average age of coworkers’ hens can thus be exploited in order to identify the

parameter γ from the main specification above. However, in order to do so, the age

of coworkers’ hens needs to have no direct effect on own outcomes. If the exclusion

restriction is met, the effect of coworkers’ productivity can be correctly identified by

means of a 2SLS estimator.11 In this respect, the specific features of the production

environment under investigation suggest the absence of any effect of the characteristics

of coworkers’ hens on own productivity. In particular, the production technology is

8Caeyers (2014) shows that no mechanical downward bias arises in the estimation of the parameters
of interest in this reduced form specification.

9The coefficients of the own hen’s age variables do not change even adding coworkers’ hens’ age and
its square separately as controls one by one, as shown in Table A.2 in the Appendix A.

10Notice that residual correlation between coworkers’ and own hens’ age would let the coefficient of
the corresponding variables be of the same sign.

11Again, Caeyers (2014) shows that no mechanical downward bias arises in the estimation of the
parameters of interest in the specification of interest using 2SLS.
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independent among production units. One possible concern is that hens may be more

prone to experience transmittable diseases as they get old, and the disease may spread

to neighboring production units. However, notice that coworkers’ productivity would be

positively correlated in this case, while results from Table 3 already suggest the effect of

interest to be negative. The true value of the parameter of interest would be even more

negative than its estimate in this case.

Figure 6 plots the distribution of own productivity separately for those workers whose

coworkers’ average productivity is above or below the median in the same day. Pro-

ductivity is still measured by the daily average number of eggs per hen collected by the

worker. The left figure shows the resulting distributions for unconditional productivity.

The distribution for workers whose coworkers are highly productive is found to be on

the right of that for workers whose coworkers are of low productivity. This is consistent

with the unconditional correlation results on own and coworkers’ hens age as reported in

Table 2. Nonetheless, once shed-week averages are netted out, the picture reverses. The

distribution of residual productivity for workers whose coworkers have residual average

productivity above the median is now on the left of that for workers in the other group,

consistently with the negative correlation results in Table 3.

The first column in Table 4 reports OLS parameter estimates of the main regression

specification above. As mentioned before, the parameter estimate γ̂OLS is likely to be

biased in this case. Column 2 provides 2SLS estimates of the parameter of interest. Using

both the average age of hens assigned to coworkers and its squared as instruments for

coworkers’ productivity, the value of the F-statistic of a joint test of significance of the

instruments in the first stage regression is equal to 43.68. The two instruments together

are thus relevant in inducing variation in the regressor of interest.12 More importantly,

the 2SLS estimate γ̂2SLS is negative and significant at the 1% level. OLS and 2SLS

estimates are of very similar magnitude. One possible explanation for this result is that

the different sources of bias of OLS estimate in this case work both in the positive (sorting,

correlated effects) and negative direction (reflection, mechanical bias from the inclusion

of group fixed effects as discussed in Guryan, Kroft, and Notowidigdo 2009 and Caeyers

2014), and they may cancel each other out. One other possibility is that the inclusion

of a full set of day, shed-week and worker fixed effects already solves for the bias due to

unobserved common shocks and sorting to a large extent, while the relatively high large

number of observations per shed-week group makes the reflection and mechanical bias

problems less salient. Estimates imply an increase of average coworkers’ daily output of

one standard deviation to be associated with a decrease in own daily output of almost

12The p-value from the Sargan-Hansen test of overidentifying restrictions is higher than 0.10. We
thus cannot reject the null hypothesis that both instruments being exogenous once one is assumed to be
exogenous.

14



a third of its standard deviation. If all workers are assigned the same number of hens,

an increase of average coworkers’ daily output of 500 eggs causes the number of own

collected eggs to fall by 150.

The use of hens’ age and its square as predictors of daily output imposes a precise

functional form to the relationship between the two variables. The parameter of interest

can instead be identified more precisely using the full set of own and coworkers’ hens

week-of-age dummies respectively as regressors and instruments. Column 3 shows the

2SLS parameter estimates from this alternative regression specification, which do not

change with respect to the previous. The F-statistic of a joint test of significance of all

the instrument dummies in the first stage is equal to 27.19, and the R2 turns out to

be equal to 0.92. Finally, in the last column, the full set of assigned hen batch fixed

effects is included. This allows to exploit variation in hens’ age over time within assigned

batch and thus net out time-invariant batch characteristics which can be correlated with

productivity. The first-stage F-statistic is now equal to 251.29, and the 2SLS estimate

of the effect of interest remains unchanged and significant at the 1% level. Overall, the

evidence supports the hypothesis of negative productivity spillovers among coworkers in

neighboring production units.

In order to correctly interpret the above results, it is important to understand whether

the effect we find is plausible, meaning whether the variation in the productivity of

coworkers induced by change in their hens’ age is actually detectable by a given worker.

The average difference between own and coworkers’ hens’ age is 3.22 weeks, corresponding

to an average productivity difference of 0.06 daily eggs per hen. Figure 4 suggests that

the same 3-weeks difference in age can amount to large or small productivity differences,

depending on the hens’ stage of life. For example, the average daily number of eggs per

hen is 0.06 when hens are 19 weeks old, but is more than 8 times larger at age 22, being

equal to 0.50: a 0.44 productivity difference, equal to 4,400 eggs more for a batch of

10,000 hens. A similar but opposite pattern holds when productivity starts to decrease

in the last stages of a hen’s life. This means that even a small variation in hen’s age can

have a sizable and observable impact on daily output, at least when hens are far from

their productivity peak age.

The previous results show how, conditional on own input quality, workers’ productivity is

systematically lower (higher) when the productivity of neighboring coworkers exogenously

increases (decreases). We claim that such negative spillover effect is due to changes in

the level of effort exerted by the worker. In this respect, hens’ feeding represents one

observable dimension of effort which is worth investigating. For this purpose, the average

amount of food per hen distributed by the worker can be replaced as outcome in the

main specification. 2SLS estimates of the coefficient of average coworkers’ output are
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shown in the first column of Table 5. The coefficient of interest is estimated as negative,

consistently with the interpretation of previous results. However, the estimated parameter

is not significantly different from zero. We thus claim the effect of coworkers’ productivity

to work through changes in the unobservable dimensions of effort.

Going beyond the negative effect on own output, the structure of the data allows to derive

a wide range of output quality measures. The effect of average coworkers’ productivity

on own output quality can be investigated accordingly. 2SLS estimates are shown in

column 2 to 5 of Table 5, where again the full set of own and coworkers’ hens week-of-age

dummies are included as regressors and instruments respectively. The F-statistic of a

joint test of significance of all the instrument dummies in the first stage is sufficiently

high in all specifications. An increase in coworkers’ average output is associated with a

systematic decrease in the own fraction of good eggs over the total. The coefficient of

interest is equal to -0.15 significant at the 1% level. A one standard deviation increase in

coworkers’ productivity causes a 2.85 percentage points decrease in the own fraction of

good eggs over the total. The estimated coefficient of interest is instead positive when the

own fraction of broken eggs over the total is investigated as outcome in column 3, even

if not statistically significant. An increase in average coworkers’ productivity is instead

found to significantly increase the own fraction of dirty eggs over the total. Indeed,

the estimated coefficient in column 4 is significant at the 5% level and equal to 0.06: a

one standard deviation increase in average coworkers’ output is associated with a 1.24

percentage point increase in the own fraction of dirty eggs over the total. Finally, the

fraction of hens dying in the day is considered as outcome in column 5. The estimated

coefficient of interest is negative, but not statistically different from zero. Overall, results

from Table 5 suggest coworkers’ productivity to negatively affect not only own output

but its quality as well.

4.3 Robustness Checks and Effect Heterogeneity

Workers in non-neighboring production units can hardly interact or observe each other.

This specific feature of the production environment can be exploited to further validate

previous results by means of a placebo test. First, the average number of eggs per hen

collected by workers in the adjacent shed can be replaced as regressor in the main spec-

ification, and age of their hens can be again used as a source of exogenous variation for

their productivity. Column 1 of Table 6 reports the 2SLS estimate of the corresponding

coefficient using as instrument the full set of coworkers’ hens week-of-age dummies. In

this case, coworkers’ variables are the same for all workers in a shed, so no daily within-

shed variation is exploited. Therefore, the strength of the first stage relationship is lower

than in the main specification, but the corresponding F-statistic of a joint test of sig-
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nificance of the instruments is still high and equal to 21.65. As expected, the resulting

2SLS point estimate is negligible in magnitude and not significantly different from zero.

The same holds when restricting the sample to workers located in sheds with more than

two production units, and considering as main regressor the average number of eggs per

hen collected by workers in non-neighboring production units in the same shed. Results

are reported in column 2. Taken together, we interpret these findings as evidence that

observability between workers plays a crucial role for the effect we find.13

Furthermore, the natural logarithm of the daily average number of eggs per hen collected

can be replaced as outcome in the main specification.14 Adopting the same identification

strategy, as shown in column 3 of Table 6, the coefficient of coworkers’ productivity is

found to still be significant at the 1% level and equal to -1.48. In other words, an increase

in coworkers’ average output of one standard deviation is associated with a 29% decrease

in own output. Finally, in column 4 of Table 6, we implement an alternative identifica-

tion strategy where the expected hens’ productivity is used as instrument for coworkers’

average result. Such expected productivity measure is elaborated by an independent bird

supplier company, which sells the animals to the firm under investigation. The variable is

thus exogenous to anything peculiar of the firm and its production process. The measure

gives the average number of eggs per week each hen is expected to produced at every week

of its age. We divided it by 7 in order to derive the expected daily productivity. In the

causal framework under investigation, expected productivity can be interpreted as the

assignment-to-treatment variable, with the treatment being actual coworkers’ productiv-

ity. The first-stage F-statistic turns out to be equal to 29.61. The estimated parameter

of interest is highly significant and remarkably similar to the ones derived before.15

The average result of negative productivity spillovers can be further explored along one

specific dimension of heterogeneity: workers’ ability. Similarly to Bandiera, Barankay,

and Rasul (2005) and Mas and Moretti (2009), we estimate the full set of worker fixed

effects in a regression specification where hens’ week-of-age dummies, batch and day

fixed effects are also included as regressors.16 We then split the workers into high and low

13We find the same results when using the age of own and coworkers’ hens and their square as controls
and instruments respectively as in the first proposed specification.

14Such transformation is needed in order to match the conceptual framework proposed in Section 5.
Indeed, if effort ei and input quality si are complements and yi = eisi, then ln yi = ln ei + ln si. Variable
values are augmented by 0.01 before taking the log. Implementing a log-log specification we can estimate
the elasticity of own productivity with respect to coworkers’ productivity, equal to 0.35, with the estimate
being significant at the 1% level.

15We also perform two additional robustness checks. First, we address the identification concerns
in Angrist (2014) by explicitly separating the subjects who are object of the study from their peers.
Specifically, we randomly select one production unit per each shed-week and run the main identifying
regression over the restricted sample only. Second, we drop out all observations belonging to those days
in which the worker assigned to a given production unit was listed as absent. Results are in line with
previous estimates in both cases, as shown in Table A.3 in the Appendix A.

16The distribution of workers’ ability is shown in Figure A.1 in the Appendix A.
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ability according to their position relative to the median in the estimated fixed effects

distribution, and assign observations belonging to the worker’s assigned production unit

to two corresponding subsamples. The parameter of interest is estimated separately and

results reported in column 5 and 6 of Table 6. Estimated coefficients are negative and

highly significant in both cases. Low and high ability workers seem thus to be equally

responsive to changes in coworkers’ productivity.

5 The Mechanism

Results from the previous section provide evidence of negative productivity spillovers.

The productivity of coworkers in neighboring production units is found to negatively

affect individual daily output and its quality. Our claim is that externalities in this

context are generated by the features of the worker evaluation and termination policy

implemented by the management. Throughout the 9 months of observations in our sam-

ple, we observe 26 terminations of employment relationship. Figure 7 plots the survival

probability in the firm for the average worker over time, computed separately accord-

ing to his initial productivity. Workers whose initial productivity is above average have

higher survival probabilities compared to those whose initial productivity is below the av-

erage. Perhaps more importantly, Figure 8 shows how survival probabilities relate with

the initial productivity of coworkers in neighboring production units. The probability

of survival is higher when coworkers’ productivity is higher over most of the support.

This suggests that, conditional on own productivity, coworkers’ productivity affects the

survival probability of workers in the firm.

5.1 Conceptual Framework

The main features of the production environment can be formalized by means of a simple

analytical framework. N workers independently produce output yi ≥ 0 combining effort

ei ≥ 0 with a given input of quality si ≥ 0, with i ∈ {1, 2, ., N}. Effort cost is positive

and convex, so that C(ei) = ce2
i /2 with c > 0. Output at a moment in time is given by

yi = f(ei, si) (2)

Effort and input quality are regarded as complements in production. In particular, let

f(ei, si) = eisi. Input quality si can be thought of as a function of both observable and

unobservable input characteristics. Effort is unobservable to the management, so that yi
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is a signal of worker’s exerted effort.17

As for now, let each worker earn a fixed salary ω from which she derives utility U(ω).

Similarly to Mas and Moretti (2009), with probability Qi the worker keeps her job and

earns the corresponding fixed salary. In case the employment relationship terminates, the

worker does not earn any salary and derives zero utility. Qi is set by the management as a

function of both individual and coworkers’ average output, meaning Qi = q(yi, ȳ−i). The

shape of the q(·) function captures the features of the implemented termination policy,

together with the externalities it generates among coworkers. Unlike Mas and Moretti

(2009), we do not rely on any specific functional form, and only assume q1(·) > 0 and

continuously differentiable, q11(·) ≤ 0 and that q12(·) exists. As shown later, this allows

taking into consideration several alternative termination policies.

Each worker chooses the effort level ei ≥ 0 which maximizes her expected utility

max
ei

U(ω) q(yi, ȳ−i)− c
e2
i

2
(3)

Taking the corresponding first order condition yields

U(ω) q1(yi, ȳ−i) si = cei (4)

With q1 continuously differentiable, the implicit function theorem can be applied to the

above equation in order to derive how the worker’s optimal effort level changes with

coworkers’ average output, meaning

∂e∗i
∂ȳ−i

=
U(ω) q12(yi, ȳ−i) si

c− U(ω) q11(yi, ȳ−i) s2
i

(5)

Notice that the denominator is always positive, and the sign of the above derivative

is uniquely determined by the sign of q12(·). The cross derivative of the q(·) function

captures how marginal returns from own output in terms of increased probability of

keeping the job change with coworkers’ average output. Such relationship is built into

the termination policy specified by the management.

For instance, forced-ranking procedures or relative performance evaluation schemes in

general may let an increase in coworkers’ average output affect marginal returns from

own output positively. Still under the assumptions of q1(·) > 0 and q11 ≤ 0, this is the

case if, for example, Qi = q (αyi − βȳ−i) with 0 < β < α, which implies q12(·) > 0. In

this case, the worker’s optimal level of effort will increase with an increase in coworkers’

17One specific example is given in Appendix B.

19



average output. On the contrary, if total output matters to some extent, teamwork-

type externalities will arise. An increase in coworkers’ average output decreases marginal

returns from own output in this case. At the extreme, one can think at Qi as being a

function of total output only and thus equal for all i, meaning Qi = q (yi + (N − 1)ȳ−i).

This implies q12(·) < 0. The worker’s optimal effort level will thus fall with an increase

in coworkers’ average output.

In this framework, the termination policy implemented by the management generates

externalities among coworkers in their optimal choice of effort. Workers best-respond to

each other in equilibrium.18 It is worth highlighting that the proposed conceptual back-

ground departs from the one in Mas and Moretti (2009) along two relevant dimensions.

First, we explicitly model the role of production inputs other than effort. Heterogeneity

in their productivity induces variation in both own and coworkers’ productivity. Second,

we leave the probability of keeping the job function q(·) unspecified along the relevant

margin of its cross derivative. We thus consider a priori a large family of implementable

policies linking own and coworkers’ results to termination probabilities.

5.2 Termination Policy: Empirics

In light of the above conceptual framework, evidence of negative productivity spillovers

is consistent with the hypothesis that a positive shift in coworkers’ productivity decreases

the marginal benefits from own effort in terms of increased probability of keeping the job.19

We already showed in Figure 8 how survival probability in the firm for a given worker

is higher when coworkers’ productivity is higher, consistent with the hypothesis that

the management attaches to the latter a positive weight in the evaluation of individual

workers.

We investigate these issues further through implementing a logistic hazard model and

study the relative odds of the probability 1− q(·) of losing the job in period t as defined

by
1− q(t)
q(t)

=
h(t)

1− h(t)
= exp{ γt + α yit + β ȳ−it + κ yit × ȳ−it } (6)

where, yit is daily average number of eggs per hen collected by worker i at time t or, alter-

natively, its moving average in period [t− τ, t], while ȳ−it is average output of coworkers

in neighboring production units in the same period. γt captures the baseline hazard

18Notice that utility functions are quasi-concave with respect to ei, the strategy space of workers
is convex and the continuous differentiability of q1(·) > 0 ensures best-reply function to exist and be
continuous. Hence, the Kakutani fixed-point theorem applies and equilibrium exists.

19Notice that, in our conceptual framework, an increase in input quality si increases productivity yi

if and only if the elasticity of effort with respect to input quality is sufficiently low in absolute value,
meaning ηes = ∂ei

∂si

si

ei
> −1.
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function. The interaction term aims at disclosing any relationship between changes in

coworkers’ productivity and marginal returns from own effort. In particular, the latter

would decrease with coworkers’ daily output if α < 0 and κ > 0.

Maximum likelihood estimated coefficients are reported in Table 7. Two alternative

definitions of baseline hazard are specified across columns. Daily productivity measures

are considered as regressors in columns 1 to 3, while 7-days moving averages are used

in columns 4 to 6.20 Furthermore, in columns 3 and 6 we again rely on the age of

coworkers’ hens as an exogenous source of variation for their productivity. Given the

non-linear nature of the second stage, we follow Terza, Basu, and Rathouz (2008) and

adopt a two-stage residual inclusion (2SRI) approach. As before, we use the age of

coworkers’ hens age−it and its square as instruments for coworkers’ productivity ȳ−it, and

their interaction with own productivity as instruments for yit× ȳ−it. Identification of the

effect of coworkers’ productivity on termination probabilities is here achieved through

exploiting the variability induced by the age of coworkers’ hens, consistent with the

previous analysis.

Table 7 shows that an increase in own productivity is significantly associated with a de-

crease in the odds of the probability of employment termination. Furthermore, the same

holds for coworkers’ productivity, with the point estimate being lower in magnitude with

respect to the former. Shed-level output thus seems to matter to some extent for individ-

ual termination probabilities. More importantly, the coefficient of the interaction term

is positive and highly significant across specifications. Returns from own productivity in

terms of the probability of keeping the job are thus lower at the margin when coworkers’

productivity increase, consistent with the proposed conceptual framework and evidence

of negative productivity spillovers.

The adoption of such a policy on behalf of the management can be explained by the

impossibility for the latter to completely net out inputs’ contribution to output and

perfectly infer worker’s effort. In this case, coworkers’ productivity conveys relevant

information about the workers’ effort distribution. We provide a specific example of this

kind in Appendix B, where we present a modified version of the conceptual framework

in Mas and Moretti (2009). We describe the learning process of the principal, who

computes the expected workers’ effort choice on the basis of available information on both

output levels and observable input characteristics. This leads her to attach a positive

20We also estimated the same specification using different time windows τ for computing the produc-
tivity moving averages, keeping the function γt the same. Coefficient signs are found to be stable across
specification. In order to evaluate the goodness-of-fit across specifications with different choice of τ ,
we calculated a modified pseudo R2, equal to 1 − ln LUR

ln LR
, where LUR is the likelihood of the estimated

logistic model with all regressors, while LR is the likelihood of the model where only γt is included as
explanatory variable. The proposed measure of goodness-of-fit is found to decrease monotonically with
τ . Furthermore, we estimated the same specification after collapsing data by pay period. Results are
qualitatively similar to previous ones. Additional results are available upon request.
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weight to the average of productivity signals. The same holds when all information

about individual productivity and input quality is sufficiently costly to process. Limited

managerial attention can then lead managers to process and rely positively on information

about shed-level productivity in the evaluation of workers’ performance (Kahneman 1973;

Gifford 1998; Hirshleifer and Teoh 2003). As a result, the more productive coworkers are,

the less likely is the shed to be targeted by the management for termination measures.

In both cases, positive teamwork-type externalities arise in the probability of keeping the

job, leading to free riding among workers.

Finally, notice that some of the results from Section 4 allow us to rule out alternative ex-

planations for the effect we find. Suppose that workers were to be monitored on the job by

the management, that such monitoring efforts were limited, and targeted disproportion-

ally more towards workers whose hens are highly productive. The negative causal effect

of an increase in coworkers’ productivity on own productivity could then be attributed

to shirking, following a reallocation of monitoring efforts on behalf of the management.

However, if this was the case, a negative effect would also have been found when using as

explanatory variable the average productivity of coworkers in non-neighboring production

units in the same shed. Results from the placebo exercise in Column 2 of Table 6 show

that this is not the case. Even in absence of monitoring, one could imagine that workers

can steal eggs from each other. If this was the case, though, we should expect an increase

in coworkers’ input quality to increase own productivity, as stealing opportunities would

increase with coworkers’ productivity. The effect we find goes instead in the opposite

direction.

6 Monetary and Social Incentives

6.1 Extended Conceptual Framework

Does incentive provision shape externalities in this context? Can sufficiently strong in-

centives offset the negative productivity spillovers as previously identified? Peer pressure

mechanisms decrease the marginal cost of own effort, while monetary incentives increase

its marginal returns. How does this affect the response of individual effort to coworkers’

productivity?

We first investigate these arguments in light of the suggested conceptual framework. The

impact of social incentive can be incorporated as peer pressure. In its original formulation

by Kandel and Lazear (1992), peer pressure operates through the effort cost function:

coworkers’ effort diminishes the marginal cost of effort for the worker. Falk and Ichino

(2006) and Mas and Moretti (2009) adopt the same approach in the conceptual framework
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of their empirical contributions. In the context of this paper, output is not only a function

of worker’s effort, but also of the quality of the assigned input. We thus adopt a slightly

modified approach and model peer pressure as operating through a decrease in the cost

of effort following an increase in coworkers’ productivity ȳ−i. Starting from the same

framework presented above, the worker’s problem becomes the one of choosing effort

level ei ≥ 0 which maximizes the expected utility

max
ei

U(ω) q(yi, ȳ−i)− c
ei
2

(ei − λ ȳ−i) (7)

where λ > 0 is a generic parameter capturing the intensity of peer pressure mechanisms.

Deriving the corresponding first order condition and applying the implicit function the-

orem yields
∂e∗i
∂ȳ−i

=
U(ω)q12(·)si + λ c

2

c− U(ω)q11(·)s2
i

(8)

While the denominator of the above remains unchanged with respect to the correspond-

ing result in the original formulation, the numerator is now ambiguous when q12 < 0.

While the firm’s implemented termination policy still generates positive teamwork-type

externalities, peer pressure pushes the same in the opposite direction, possibly changing

the sign of productivity spillovers.

The impact of monetary incentives can also be incorporated in the original framework.

For simplicity, let utility U(·) be linear in its argument. We depart from the previous

formulation in that the wage now incorporates a piece rate component related to own

daily output, meaning ω = F + κyi. As before, the worker chooses the effort level ei ≥ 0

which maximizes her expected utility

max
ei

(F + κyi)q(yi, ȳ−i)− c
e2
i

2
(9)

The corresponding first order condition is now

(F + κyi)q1(·)si + κq(·)si = cei (10)

Compared to the fixed-wage case, piece rate incentives provide extra motivation for effort,

as captured by the second term on the left-hand side. In particular, notice that monetary

incentives are leveraged by the probability q(·) of keeping the job. Applying the implicit

function theorem we can see how optimal effort responds to coworkers’ productivity in

this case
∂e∗i
∂ȳ−i

=
(F + κyi)q12(·)si + κq2(·)si

c− (F + κyi)q11(·)s2
i − 2κq1(·)s2

i

(11)
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Provided that c is high enough, the denominator of the above expression is positive.21

More importantly, the sign of the numerator is no longer uniquely determined by the sign

of the cross derivative q12(·). If the firm’s implemented termination policy is such that the

latter is negative, own optimal effort may still increase with coworkers’ productivity if the

second term in the numerator is high enough. In other words, if total output matters to

some extent, coworkers’ productivity increases the probability of keeping the job. Even

if this lowers the marginal impact of own productivity on the probability of keeping the

job, it leverages the power of monetary incentives, as these are earned only if the job is

kept. The latter effect may dominate the former, yielding positive productivity spillovers.

6.2 Empirics

The implications above can be taken to the data, exploiting differential exposure to piece

rate pay and social incentives. In the period under consideration, workers are paid every

two weeks. Workers’ payment is such that an additional amount of money is awarded

depending on the number of box of eggs collected by the worker in a randomly chosen day

within the two weeks. Specifically, wage is calculated according to the following formula

wi = ω + δ + max { 0 , γ × [ 2Yi − r ] } (12)

where ω is the base pay and Yi is the amount of boxes of eggs collected by the worker in

the randomly chosen day. This quantity is multiplied by 2 and, if the resulting quantity

exceeds a given threshold r, a piece rate pay γ is awarded for each unit above the thresh-

old. On top of base pay, almost all workers are awarded an extra amount δ. Table 8

shows the corresponding summary statistics for the base pay, the bonus component and

total pay. Average base pay (ω) is equal to 505 PEN (Peruvian Nuevo Sol), equal to

around 190 USD. The average of the bonus component of pay (δ+max{0, γ× [ 2Yi−r ]})
is instead equal to 82 PEN, around 30 USD (δ=40 PEN). The bonus component is thus

on average equal to 15% of the base pay. As a result, average total pay in the two-weeks

period is equal to the equivalent of 220 USD.

As shown before, a strong relationship exists between hens’ age and worker’s productivity,

which in turns affect the probability for the worker of earning extra pay. Figure 9 plots the

distribution of the average number of daily egg boxes collected by the worker within each

pay period per quartiles of the hens’ age distribution. For each quartile, the boundaries

of each box indicate the 10th and 90th percentile of the egg boxes distribution, while

the horizontal lines within each box correspond to the mean. The ends of the vertical

lines indicate the 1st and 99th percentile. The straight horizontal line corresponds to

21In particular, a sufficient condition for this to happen is c > 2κq1(yi, ȳ−i)s2i for all si, yi, ȳ−i.
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the normalized bonus threshold r/2. First, notice that the inverted U shape relationship

between hens’ age and productivity can be still observed when considering egg boxes

as a measure of productivity. Second, the probability of reaching the threshold and be

exposed to incentive pay is higher for those workers whose hens are of high productivity,

meaning they belong to the second and third quartiles of the hens’ age distribution. On

the contrary, the average worker whose hens belong to the first or fourth quartile of the

hens’ age distribution does not reach the bonus threshold.

Table 9 shows the average base pay, bonus pay and total pay for the average worker across

the assigned hens’ age distribution, confirming the existence of a strong relationship

between hens’ productivity and bonus pay. Notice that small variations in base pay are

observed across productivity categories. Base pay is indeed variable according to workers’

age, tenure and base contract. Nonetheless, most of the variation in total pay is due to

variations in the bonus pay component. Finally, Figure 10 shows the distribution of bonus

pay for workers in each quartile of the assigned hens’ age distribution. Consistently with

the previous description of the pay scheme, a more pronounced peak is observed around

the value of δ in the distribution for workers whose assigned hens are either young or old,

meaning that few of them make it to the threshold and gain the piece rate component of

bonus pay.

In order to provide suggestive evidence on the role of monetary and social incentives, we

explore effect heterogeneity through implementing the following regression specification

yigwt = ϕgw +
∑

d ψd Ddigwt

+
∑

d

{
γd ȳ−igwt + αd ageigwt + βd age

2
igwt

}
× Ddigwt

+
∑t−1

s=t−3 λs food igsw + µigwt

(13)

where ϕgw are the shed-week fixed effect and Dd are dummy variables which identify

the heterogeneous categories of interest. The same dummy is interacted with both own

hens’ age variables and coworkers’ productivity. With the additional inclusion of worker

fixed effects, this specification allows to exploit within-worker variation and separately

estimate the effect of coworkers’ productivity for the same worker across heterogeneous

categories. In order to solve for the endogeneity of the variable of interest, both age−i

and age2
−i are multiplied by Dd, and the resulting variables are used as instruments for

the two endogenous interaction variables ȳ−igwt ×Dd.
22

22We also estimate the main regression specification using 2SLS separately for each subsample as
identified by the dummy Dd. Results are shown in Table A.4 in the Appendix A. Even if still consistent
with the extended model’s prediction, they are somewhat weaker with respect to what we find by
implementing the proposed specification with interaction variables. The difference can be explained
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We first focus on monetary incentives and define two categories according to the dis-

tribution of assigned hens’ age. As previously shown, workers whose assigned hens are

either young or old are less likely to make it to the productivity threshold and thus to

be exposed to piece rate pay. We thus define a first low productivity age subsample of

production units whose hens’ age is in the first or the fourth age distribution quartile,

and group the rest of observations in a second high productivity age subsample. As shown

in Table 1, around 48% of the observations in the overall sample correspond to workers

whose assigned hens are in the first or the fourth age distribution quartile. Column 1 of

Table 10 provides the corresponding 2SLS estimates from the above specification, with

Dd identifying the two resulting subsamples. The Table reports the F-statistic from the

Angrist-Pischke multivariate F test of excluded instruments (Angrist and Pischke 2009),

which confirms the first stage relationship to be strong enough. Consistently with the

modified conceptual framework, no significant effect of coworkers’ productivity on own

productivity is found when the worker is assigned highly productive hens. The effect is

instead negative and highly significant for the same worker when assigned hens are less

productive and the piece rate threshold is less likely to be achieved. However, since most

of the variation in productivity belongs to this region, the result can only be interpreted

as suggestive evidence.

In order to explore the role of social incentives, we use information about the friendship

network among coworkers as elicited through the administered questionnaire. Linking

the relevant information with productivity data, we identify those workers working along

someone they recognize as a friend. We thus define two separate categories accordingly

and let dummy variables Dd identify the corresponding subsamples. We then implement

the above regression specification and get two separate estimates of the effect of coworkers’

productivity, according to workers’ friendship status. As reported in Table 1, 24% of the

observations in the overall sample correspond to workers we interview in March 2013 who

recognize at least one of their coworkers in neighboring production units as their personal

friend. 2SLS estimates are reported in Column 2 of Table 10.23 Productivity spillovers

are estimated to be negative and significant only for those workers who do not work along

friends. Consistently with the peer pressure argument outlined before, a positive point

estimate is instead found for the coefficient of coworkers’ productivity when the worker

recognizes any of his coworkers as a friend, even if the 2SLS estimate is not statistically

significant. Perhaps more importantly, this result allows to rule out the possibility that

the negative effect we find is the result of some cooperative behavior workers are engaged

in. For instance, workers whose hens are at their age productivity peak could benefit from

by the fact that the latter constrains the fixed effects estimates and coefficients of food variables to be
the same across categories.

23Notice that the number of observation is reduced. This is because we are forced to restrict the sample
to only those observations which we can merge with workers’ information elicited in March 2013.
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the help of neighboring coworkers, with negative productivity spillovers on the latter.

Such cooperative strategy would be sustainable in a repeated interaction framework. In

particular, we expect such strategy to be even more sustainable among friends, due to

the supposedly higher costs of deviation from the cooperation path. The absence of any

significant effect in this case speaks against this hypothesis.

Questionnaire data can further be explored to study effect heterogeneity according to

workers’ experience. We again implement the same specification as above, but define the

two dummies Dd as capturing whether the worker’s experience in the firm is above or

below the median. 52% of observations in the overall sample to belong to workers with

on-the-job experience above the median, as shown in Table 1. Estimation results are

shown in Column 3 of Table 10. Negative highly significant estimates of the coefficient of

coworkers’ productivity are found for more experienced workers, while the same estimated

parameter is positive but non-significant for less experienced workers. Results can be

interpreted in light of the termination policy mechanism originating negative productivity

spillovers. Indeed, it is reasonable to think of experienced workers as being more aware

of management policies. It is thus not surprising to find that the effect is prevalent in

this category.

Finally, we investigate the effect heterogeneity according to the difference (in absolute

value) between the age of own and coworkers’ hens. In particular, we now define the

two dummies Dd depending on whether such difference is higher or lower than the mean

difference in the sample, equal to 3.22 weeks. We estimate the corresponding equation

with 2SLS for the low productivity age and the high productivity age subsamples sepa-

rately, where the latter are defined as in Column 1. If the free riding mechanism in the

absence of piece rate incentives is responsible for the average effect we find, we should

expect the negative effect to be the highest in magnitude when the worker is assigned

lowly productive hens and coworkers are assigned highly productive ones. The size of the

effect should then be lower when both workers are assigned lowly productive hens. The

same magnitude should be even lower when both workers are assigned highly productive

hens, and the lowest when the worker is assigned highly productive hens and his cowork-

ers are assigned lowly productive ones. Evidence from Column 5 and 6 is supportive of

this hypothesis. The effect is only statistically significant when workers’ hens are lowly

productive (i.e., drawn from the first or fourth quartile of the hens’ age distribution) and

the absolute difference in age with coworkers’ hens is high, meaning coworkers’ hens are

more likely to be in their high productivity age. Point estimates are ordered as suggested

above, even if none of the three other 2SLS estimates is statistically significant.
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7 Counterfactual Policy Analysis

7.1 Termination Policy

We will now turn to evaluate counterfactual productivity outcomes under alternative ter-

mination policies implementable by the management. In other words, our objective is to

estimate workers’ average productivity under different specifications of the q(·) function.

We start by recalling the first order condition of the worker’s effort maximization problem

U(ω)

c
q1(yi, ȳ−i) si = ei (14)

Multiplying both sides of the expression by the input productivity variable si and taking

logarithms we get

ln yi = ln
U(ω)

c
s2
i + ln q1(yi, ȳ−i) (15)

Assuming such relationship holds at equilibrium, our objective is to simulate daily pro-

ductivity yit for all workers under a new alternative policy q̃(·). In particular, we are

interested in the productivity effect of shutting down the externalities among coworkers

generated by and built in the current policy. It is thus reasonable to evaluate productivity

counterfactuals under a policy of the form

q̃(yit) = α0 + α1 yit + α2 y
2
it (16)

with q̃1(·) > 0 and q̃11(·) ≤ 0. We can thus substitute the first derivative of the alternative

policy function q̃1(·) in the above equation and get

ln yit = ln
U(ω)

c
s2
it + ln(α1 + 2α2 yit) (17)

where input quality sit is now allowed to vary over time.

However, notice that the first term on the RHS of the above equation is not observable

in the data, so that the policy counterfactual cannot be computed directly by solving the

above for yit. In order to overcome this issue, we start from estimating the actual termi-

nation policy function q(·) by regressing a dummy qit equal to one when the worker is not

dismissed (and thus observed to be at work the day after) over a third order polynomial

time trend t + t2 + t3 and a third order polynomial of own and coworkers’ productivity

(yit, ȳ−it). We then use the corresponding parameter estimates and actual productivity

values to compute the derivative of the function with respect to yit. We obtain an estimate
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q̂1,it of the marginal returns from own productivity in terms of probability of keeping the

job, which can be replaced in the rearranged expression of worker’s first order condition.

Splitting further the first term of the RHS we get

ln yit = lnU(ω) + ln s2
it + ln q̂1,it − ln ci (18)

where the effort cost parameter ci is allowed to vary across workers. This equation can

be estimated through the following regression specification

ln yit = α + ψwi + β ln q̂1,it + θi + εit (19)

where we use the full set of hens’ week-of-age dummies ψwi as a proxy for ln s2
it and let

worker fixed effects θi capture the variability in ln ci. It follows that

l̂n yit − β̂ ln q̂1,it = α̂ + ψ̂wi + θ̂i = m̂it (20)

where mit = ln U(ω)
ci
s2
it. Following (17), worker’s productivity under the alternative policy

q̃(·) can finally be estimated through solving the following equation for yit

ln yit = m̂it + ln(α1 + 2α2 yit) (21)

We provide numerical solutions to the above equation, thus estimating the daily number

of eggs per hen collected by the worker over the period under q̃(·). Table 11 shows coun-

terfactual productivity gains and losses as predicted under the alternative termination

policy, following the procedure described above. For each parameter values, each entry

shows the simulated percentage change in productivity as measured by average daily

number of eggs per hen collected by the worker over the period. The table also reports

95% confidence intervals as computed by repeating the above estimation procedure 200

times using bootstrapped samples. As the the coefficient α1 in the alternative termi-

nation policy function gets high enough, productivity gains are remarkably stable and

as high as 20%. A visual representation of such gains can be find in Figure 11, which

plots the smoothed average of daily productivity values over time in the sampling period.

The continuous line reports the smoothed average of actual daily productivity, while the

dashed line shows its value as predicted under α1 = 5 and α2 = −1.

7.2 Input Allocation

So far we have shown that an increase in coworkers’ input quality and thus productivity

causes own output and its quality to fall significantly. Therefore, we expect the way
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inputs are allocated among workers to affect overall productivity. Notice that, in our basic

regression specification, coworkers’ productivity enters linearly in the equation defining

worker’s productivity. As a result, in this framework, the effect of input reallocation on

overall productivity will only operate through pairwise exchanges between production

units both within and across sheds of different size. In order to understand this, think

about the extreme case of a given number of sheds each hosting two production units.

In this specific case, input reallocation would not affect the total amount of externalities

and aggregate productivity would not be affected. If instead some sheds host one or

more than two production units, input reallocation within and between sheds will affect

the total amount of externalities generated in the system. Aggregate productivity will

respond accordingly.

The impact of input allocation in our setting can be evaluated by means of a counter-

factual simulation exercise. We first implement a fully specified reduced-form regression

model where the daily average number of eggs per hen yit is regressed over the full sets

of own and coworkers’ hens’ week-of-age dummies, together with shed-week fixed effects.

Starting with the hen batches in production in the first week of the sample and keeping

their allocation fixed, we then simulate their age profiles over the sampling period, as-

suming hens were replaced after the 86th week of life. Using parameter estimates from

the previously specified regression specification, we then predict the daily productivity of

workers in each production unit. The dash-dot red line in Figure 12 shows the smoothed

average of daily productivity as predicted following the procedure described above. The

continuous blue line is instead the smoothed average of actual daily productivity. The

two curves match closely, except for some weeks in the second half of the sampling period,

when, according to the management, some sheds were affected by bird disease.

The same parameter estimates used to predict daily productivity of workers under the

actual input allocation can be used to predict productivity under alternative input allo-

cations. For example, taking the batches in production in the first week of the sample, it

is possible to reallocate them among production units following a hierarchical clustering

procedure which minimizes the variance of the age of hens within the same shed, which

seems to be the goal the management tries to achieve. We simulate hens’ age profiles

over the period under the alternative allocation (assuming the same replacement policy

as before), and predict worker’s daily productivity using the same parameter estimates

derived at the beginning. The smoothed average of estimated productivity is depicted

by the dashed green line in Figure 12. Productivity gains are substantial, up to 20% in

a given day, even though counterfactual productivity values are also more volatile than

actual ones. When averaged throughout the period, the difference between the counter-

factual and actual productivity is equal to 0.08, which corresponds to a 10% increase.
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Counterfactual productivity can be also estimated under alternative scenarios. In par-

ticular, the same batches in production in the first week of the sample can be randomly

allocated to production units. Simulated hens’ age profiles and predicted worker’s daily

productivity can be derived accordingly with the same procedure described above. Figure

13 shows the distribution of the average productivity difference throughout the sample

period between the actual productivity and the productivity estimated under 100 alter-

native scenarios of this kind, where hen batches are randomly allocated to production

units. The difference is always positive, with the average being equal to 0.0136 and

significantly different from zero. Results confirm that, helding everything else constant,

lowering the variance of the age of hens within the same shed has a positive impact on

average productivity.

8 Conclusion

Production arrangements and human resource management practices interact and gen-

erate externalities among coworkers in their choice of productive effort. When workers

produce output using both effort and inputs of heterogeneous productivity, and workforce

management brings about externalities among workers, input allocation determines the

total amount of externalities in the system, and matters for aggregate productivity. In the

specific case of worker evaluation and termination policies, if these generate teamwork-

type externalities, input allocation triggers free riding and negative productivity spillovers

among neighboring working peers.

Thanks to the peculiarities of the setting under consideration, we exploit quasi-random

variation in the productivity of workers’ assigned inputs in order to identify and measure

the effect of an increase of coworkers’ productivity on own output and its quality. We

find evidence of negative productivity spillovers. A one standard deviation increase in

coworkers’ average daily output causes a given worker’s output to drop by almost a third of

a standard deviation. We also find negative and equally sizable effects on output quality.

This evidence is contrasted with the results from the analysis of workforce turnover data,

which validate the specific mechanism identified by theory. A given worker’s probability

of keeping the job is positively associated with both own and coworkers’ productivity,

with the latter diminishing marginal returns own productivity. Workers thus free ride

on each other and lower their effort supply when coworkers’ productivity increases. In

the second part of the paper, we also provide suggestive evidence that both monetary

and social incentive provision can offset negative productivity spillovers. Indeed, we find

no effect of coworkers’ productivity when workers are exposed to piece rate pay or work

along friends. Finally, counterfactual policy analysis derived from structural estimations
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reveal the impact of both input allocation and termination policy on overall productivity

to be up to 20%.

This paper shows that the analysis of relatively more complex production environments

may uncover additional aspects of human resource management practices in their inter-

action with production arrangements. In this respect, our focus on production inputs

and their allocation to working peers represents the main innovation with respect to the

previous literature on the topic. What is also crucial for the external validity of our study

is the absence of any technological externality among workers within the same organiza-

tional tier. This allows to isolate productivity spillovers of alternative origins. We here

focus on the way the management informs its decisions on whether and who to dismiss

as the mechanism behind the negative productivity spillovers we find, and how incentive

provision can neutralize them. Nonetheless, the same logic can be applied in the empiri-

cal study of other types of spillovers. In a companion paper still work in progress, we aim

at investigating both theoretically and empirically how workers influence each other in

their choice of inputs while updating information on the productivity of the latter from

own and coworkers’ experience.
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Tables and Figures

Table 1: Summary Statistics

Variable Obs. Mean St. Dev. Min Max

Daily Eggs per Hen, yi 20915 0.784 0.2 0 1
Hens’ Age (weeks) 20915 45.274 16.944 19 86
No. of Hens 20915 9974.023 3884.469 44 17559
Food (50kg sacks) 20915 22.416 8.967 0 40
Food per Chicken (g) 20915 112.067 50.495 0 5947.137

Good/Total 20755 0.857 0.093 0 1
Broken/Total 20755 0.024 0.037 0 0.357
Dirty/Total 20755 0.059 0.049 0 1
Deaths/No. of Hens 19343 0.001 0.017 0 0.782

Daily Eggs per Hen 20915 0.784 0.197 0 0.999
Coworkers’ Average, ȳ−i

Hens’ Age 20915 45.194 16.526 19 86
Coworkers’ Average (weeks)

Dummies:
Low Productivity Hens’ Age 20915 0.476 0.499 0 1
Working Along Friend 16318 0.24 0.427 0 1
Experience Above Median 16318 0.522 0.5 0 1

Notes. The table reports the summary statistics for all the variables used throughout the empirical
analysis. The unit of observation is the production unit in the sector under investigation in each
day from March 11 to December 17 of 2012. Sheds hosting only one production units are excluded
from the sample.
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Table 2: Coworkers’ and Own Hen’s Age: Conditional Correlation

Correlation Coefficients
(1) (2)

Corr (ageigwt, age−igwt) 0.8964 0.0067
p-value (0.0000) (0.5285)

Day FEs Y Y
Shed-Week FEs N Y

Observations 8745 8745

Own Hens’ Age, ageigwt

age−igwt 0.061
(0.047)

age−igw -0.397
(0.399)

Day FEs Y
Shed-Week FEs Y

Observations 20907

Notes. The top panel reports estimates of the correlation between the age
of hens assigned to workers ageigwt and the average of hens assigned to
coworkers in neighboring production units in the same shed on the same
day age−igwt. Age variable is in weeks. When estimating conditional cor-
relations, in order to solve for the mechanical negative bias discussed in the
paper, one production unit per shed-week is randomly selected and included
in the estimation sample (Bayer, Ross, and Topa 2008). Regression results
in the bottom panel are based on Guryan, Kroft, and Notowidigdo (2009) as
discussed in the paper. As before, age−igwt is average age of hens assigned to
coworkers in neighboring production units on the same day, while age−igw is
the average value for peers in the same shed in all days of the week. Two-way
clustered standard errors are estimated, with residuals grouped along both
shed and day. Sample is restricted to all production units in sheds with at
least one other production unit.
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Table 3: Own and Coworkers’ Hens’ Age and Productivity

Daily Number of Eggs per Hen, yi

(1) (2) (3) (4) (5)

agei 0.04076*** 0.03903*** 0.03859*** 0.03803*** 0.03249***
(0.0024) (0.0023) (0.0059) (0.0058) (0.0058)

age2
i -0.00040*** -0.00038*** -0.00038*** -0.00038*** -0.00032***

(0.0000) (0.0000) (0.0001) (0.0001) (0.0001)

age−i -0.00387*** -0.00646***
(0.0013) (0.0024)

age2
−i 0.00003** 0.00005*

(0.0000) (0.0000)

foodt−1 0.00184* 0.00139*** 0.00143*** 0.00460***
(0.0009) (0.0005) (0.0004) (0.0012)

foodt−2 0.00093* 0.00079** 0.00082*** 0.00304***
(0.0005) (0.0003) (0.0003) (0.0011)

foodt−3 0.00074 -0.00000 -0.00002 0.00316**
(0.0010) (0.0004) (0.0004) (0.0012)

Day FEs Y Y Y Y Y
Shed-Week FEs N N Y Y Y
Worker FEs N N N N Y

Observations 20915 20915 20907 20907 20907
R2 0.411 0.434 0.857 0.858 0.885

Notes. (* p-value<0.1; ** p-value<0.05; *** p-value<0.01) Ordinary Least Square estimates. Sample is re-
stricted to all production units in sheds with at least one other production unit. Two-way clustered standard
errors, with residuals grouped along both shed and day. Dependent variable is the average number of eggs per
hen collected by the worker. agei is own hens’ age in weeks, while age−i is average age of coworkers’ hens
in neighboring production units. foodt−s are lags of amount of food distributed as measured by 50kg sacks
employed.

38



Table 4: Coworkers’ and Own Productivity

Daily Number of Eggs per Hen, yi

(1) (2) (3) (4)
OLS 2SLS 2SLS 2SLS

Coworkers’ -0.29539*** -0.30258*** -0.28877*** -0.29019***
Eggs per Hen, ȳ−i (0.0765) (0.0689) (0.0697) (0.0984)

agei 0.03067*** 0.03059***
(0.0057) (0.0060)

age2
i -0.00030*** -0.00030***

(0.0001) (0.0001)

foodt−1 0.00431*** 0.00431*** 0.00404*** 0.00408***
(0.0012) (0.0012) (0.0011) (0.0012)

foodt−2 0.00277*** 0.00276*** 0.00252*** 0.00261***
(0.0011) (0.0011) (0.0009) (0.0010)

foodt−3 0.00268** 0.00268** 0.00214** 0.00217**
(0.0011) (0.0011) (0.0010) (0.0011)

1st Stage F-stat n.a. 43.68 27.19 251.29

Shed-Week FEs Y Y Y Y

Age Dummies N N Y Y

Day FEs Y Y Y Y
Worker FEs Y Y Y Y
Batch FEs N N N Y

Observations 20907 20907 20907 20907
R2 0.891 0.891 0.918 0.927

Notes. (* p-value<0.1; ** p-value<0.05; *** p-value<0.01) (1), OLS estimates; (2)-(4) 2SLS estimates.
Sample is restricted to all production units in sheds with at least one other production unit. Two-way
clustered standard errors, with residuals grouped along both shed and day. Dependent variable is the
average number of eggs per hen collected by the worker. Main variable of interest is average daily
number of eggs per hen collected by coworkers in neighboring production units, ȳ−i. agei is own
hens’ age in weeks. In (2) average age of coworkers’ hens and its square (age−i, age

2
−i) are used as

instruments in the first stage. The full set of coworkers’ hens’ age dummies is used in the first stage
in (3) and (4). foodt−s are lags of amount of food distributed as measured by 50kg sacks employed.
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Table 5: Observable Effort and Output Quality

Food (gr) Good/Total Broken/Total Dirty/Total Deaths/Total

(1) (2) (3) (4) (5)

Coworkers’ -40.79075 -0.15111*** 0.01154 0.06285** -0.01586
Eggs per Hen, ȳ−i (61.9546) (0.0415) (0.0131) (0.0318) (0.0169)

foodt−1 0.39094 0.00173*** -0.00030*** -0.00095*** 0.00003
(0.6379) (0.0005) (0.0001) (0.0003) (0.0001)

foodt−2 1.12516** 0.00107** -0.00012 -0.00069** -0.00020**
(0.5456) (0.0005) (0.0001) (0.0003) (0.0001)

foodt−3 0.33582 0.00003 -0.00005 -0.00018 -0.00003
(0.2791) (0.0005) (0.0001) (0.0003) (0.0001)

1st Stage F-stat 251.29 42.48 42.48 42.48 116.79

Shed-Week FEs Y Y Y Y Y

Age Dummies Y Y Y Y Y

Day FEs Y Y Y Y Y
Worker FEs Y Y Y Y Y
Batch FEs Y Y Y Y Y

Outcome Mean 22.416 0.875 0.024 0.059 0.001
Observations 20907 20746 20746 20746 19398
R2 0.238 0.845 0.909 0.714 0.269

Notes. (* p-value<0.1; ** p-value<0.05; *** p-value<0.01) 2SLS estimates. Sample is restricted to all production units
in sheds with at least one other production unit. Two-way clustered standard errors, with residuals grouped along
both shed and day. Dependent variable are: average daily amount of food in grams distributed (1), fraction of good
eggs over the total (2), fraction of broken eggs over the total (3), fraction of dirty eggs over the total (4), fraction of
hens dying in the day (5). Main variable of interest is average daily number of eggs per hen collected by coworkers
in neighboring production units, ȳ−i. The full set of own hens’ age dummies are included as controls, while the full
set of coworkers’ hens’ age dummies is used in the first stage in all specifications. foodt−s are lags of amount of food
distributed as measured by 50kg sacks employed.

40



Table 6: Robustness Checks and Effect Heterogeneity

Daily Number of Eggs per Hen, yi

(1) (2) (3) (4) (5) (6)
ln yi High Ability Low Ability

Other Shed Workers’ 0.01170
Eggs per Hen, ỹ−i (0.0390)

Non-neighboring Workers’ -0.01822
Eggs per Hen, ỹ−i (0.05726)

Coworkers’ -1.48038*** -0.28735*** -0.47082*** -0.32137***
Eggs per Hen, ȳ−i (0.3688) (0.0661) (0.1671) (0.0631)

foodt−1 0.00409*** 0.00459*** 0.01250*** 0.00408*** 0.00438*** 0.00441***
(0.0012) (0.00123) (0.0043) (0.0012) (0.0016) (0.0012)

foodt−2 0.00274*** 0.00300*** 0.01131*** 0.00261*** 0.00153* 0.00394***

(0.0010) (0.00081) (0.0038) (0.0010) (0.0008) (0.0012)
foodt−3 0.00236** 0.00220*** 0.00964** 0.00217** 0.00061 0.00444***

(0.0011) (0.00081) (0.0040) (0.0011) (0.0009) (0.0011)

1st Stage F-stat 21.65 85.03 251.29 29.61 31.60 193.21

Shed-Week FEs Y Y Y Y Y Y

Age Dummies Y Y Y Y Y Y

Day FEs Y Y Y Y Y Y
Worker FEs Y Y Y Y Y Y
Batch FEs Y Y Y Y Y Y

Observations 19936 8294 20907 20907 10917 9980

R2 0.925 0.888 0.899 0.927 0.9164 0.948

Notes. (* p-value<0.1; ** p-value<0.05; *** p-value<0.01) 2SLS estimates. Sample is restricted to all production units
in sheds with at least one other production unit. Subsamples in (5) and (6) are derived as discussed in Section 4.3.
Two-way clustered standard errors, with residuals grouped along both shed and day. Dependent variable is average
number of eggs per hen collected by the worker in all columns but (3), where the log of its value augmented by 0.01 is
considered. Main variable of interest in (1) is average daily number of eggs per hen collected by coworkers in adjacent
shed; in (2) is average daily number of eggs per hen collected by coworkers in the same shed, but in non-neighboring
production units; in (3) to (6) is average daily number of eggs per hen collected by coworkers in neighboring production
units, ȳ−i. The full set of own hens’ age dummies are included as controls. The full set of coworkers’ hens’ age dummies
is used in the first stage in all columns but (4), where expected hens’ productivity per week of age as reported by bird
producer is used as instrument. foodt−s are lags of amount of food distributed as measured by 50kg sacks employed.
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Table 7: Termination Policy

Logit of Termination Probability
(Coefficients)

Values at time t Moving Averages [t− 7, t]
(1) (2) (3) (4) (5) (6)

yit -6.598*** -8.287*** -13.322*** -8.489*** -11.505*** -15.983***
(2.247) (2.497) (4.288) (3.226) (3.365 ) (4.894)

ȳ−it -4.537*** -5.515*** -7.245*** -1.520 -2.574 -6.532***
(1.615) (1.736) (1.785) (1.498) (1.583) (2.371)

yit × ȳ−it 8.277*** 10.755*** 14.126*** 7.770** 11.449*** 15.986***
(2.597) (2.736) (4.932) (3.501) (3.533) (5.500)

γt ln t t+ t2 + t3 t+ t2 + t3 ln t t+ t2 + t3 t+ t2 + t3

Observations 17981 17981 17981 15939 15939 15939

Notes. (* p-value<0.1; ** p-value<0.05; *** p-value<0.01) Logit estimates. Sample is restricted to all production
units in sheds with at least one other production unit. Dependent variable is dummy equal to 1 if employment
relationship terminates on day t. ȳit is own daily number of eggs per hen collected on day t or its 7-days moving
average in (4) to (6), while ȳ−it is the corresponding value for coworkers in neighboring production units in the
same shed. (3) and (6) are Two-stage residual inclusion estimates with bootstrapped standard errors from 100
repetitions (Terza, Basu, and Rathouz 2008).

42



Table 8: Pay: Summary Statistics

Variable N Mean St. Dev. Min Max

Base Pay (PEN) 1470 505.34 66.42 26 704

Bonus Pay (PEN) 1470 81.77 50.28 0 442

Total Pay (PEN) 1470 588.42 89.34 29 972

Notes. The Table reports summary statistics for the pay data. Workers are paid
every two weeks. The wage formula is presented and discussed in Section 6 of
the paper. The bonus component is calculated using the number of eggs boxes
produced in a randomly chosen day within the same two weeks. 1 PEN = 0.38
USD (June 30, 2012).

Table 9: Hens’ Age and Bonus Pay

Averages across Hens’ Age Distribution

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Base Pay (PEN) 509.43 519.84 522.09 515.20

Bonus Pay (PEN) 87.64 107.53 89.45 67.42

Total Pay (PEN) 598.77 625.61 612.93 583.72

Notes. Average bonus pay per quartiles of hens’ age distribution. 1 PEN = 0.38 USD (June 30,
2012).

43



Table 10: Incentive Heterogeneity

Daily Number of Eggs per Hen, yi

(1) (2) (3) (4) (5)
High Low

Prod. Age Prod. age

ȳ−i × High Productivity Age -0.09785
(0.3148)

ȳ−i × Low Productivity Age -0.21834**
(0.1071)

ȳ−i × Friend 0.22713
(0.1747)

ȳ−i × No Friend -0.43580**
(0.2104)

ȳ−i × Experienced -0.60567***
(0.1189)

ȳ−i × Not Experienced 0.23650
(0.1587)

ȳ−i × Low Age Difference -0.13943 -0.38903
(0.4793) (0.3628)

ȳ−i × High Age Difference -0.02430 -0.48440**
(0.1338) (0.2241)

foodt−1 0.00491*** 0.00594*** 0.00494** 0.00072*** 0.00405***
(0.0015) (0.0019) (0.0020) (0.0003) (0.0012)

foodt−2 0.00322** 0.00366** 0.00306** -0.00010 0.00285***
(0.0013) (0.0016) (0.0015) (0.0001) (0.0010)

foodt−3 0.00317** 0.00389** 0.00305** -0.00027 0.00194*
(0.0013) (0.0016) (0.0015) (0.0002) (0.0012)

1st Stage F-stat 17.16 32.39 21.36 5.45 4.90
20.78 13.22 24.71 5.95 28.13

Shed-Week FEs Y Y Y Y Y

Day FEs Y Y Y Y Y
Worker FEs Y Y Y Y Y
Batch FEs Y Y Y Y Y

Observations 20907 16313 16313 10950 9950

R2 0.902 0.915 0.935 0.839 0.933

Notes. (* p-value<0.1; ** p-value<0.05; *** p-value<0.01) 2SLS estimates. Sample is restricted to all production
units in sheds with at least one other production unit. Two-way clustered standard errors, with residuals grouped
along both shed and day. Dependent variable is the average number of eggs per hen collected by the worker. Main
variable of interest is average daily number of eggs per hen collected by coworkers in neighboring production units
ȳ−i and its interactions. In all specifications, the average age of coworkers’ hens and its square (age−i, age

2
−i) are

interacted with dummy categories and used as instruments for the corresponding endogenous interaction regressor
in the first stage. foodt−s are lags of amount of food distributed as measured by 50kg sacks employed.
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Table 11: Termination Policy Counterfactual: Results

α2

-0.25 -0.5 -0.75 -1 -1.25

α1

2 16.66 1.75 -15.91 -28.33 -37.52
[13.62;18.11] [-2.65;4.47] [-19.10;-14.05] [-30.72;-26.93] [-39.38;-36.42]

3 20.06 19.39 18.06 7.50 -6.28
[19.17;20.86] [18.45;20.30] [15.72;19.26] [3.92;9.60] [-9.07;-4.63]

4 21.45 21.11 20.69 20.18 19.04
[20.67;22.19] [20.32;21.86] [19.89;21.45] [19.27;20.96] [17.10;20.08]

5 22.40 22.15 21.88 21.58 21.20
[21.74;23.15] [21.48;22.89] [21.18;22.62] [20.86;22.32] [20.47;21.92]

6 23.20 22.96 22.73 22.50 22.25
[22.48;23.96] [22.28;23.72] [22.08;23.47] [21.88;23.23] [21.62;22.97]

Notes. The Table shows productivity gains and losses from counterfactual termination policy as discussed
and implemented in Section 7.2. 95% Confidence Intervals in square brackets, computed using bootstrapped
samples from 200 repetitions. Productivity is measured as average daily number of eggs per hen over the
period. Entries are percentage change with respect to actual data, with counterfactual productivity being
derived using the corresponding parameter values.
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Figure 1: One Sector

Notes. The picture shows a given production sector in the plant under investigation. Each one
of the long-shaped building is a shed.

Figure 2: Sheds

Notes. The picture of a shed in the plant under investigation.
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Figure 3: Production Units

Notes. The picture of a particular shed hosting four production units. Each production
unit is defined by one worker and the batch of laying hens assigned to him. We can
distinguish in the picture the four production unit’s warehouses located across the
street from the shed.
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Figure 4: Hens’ Age and Productivity
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Notes. The average daily number of eggs per hen collected by the worker is plotted against the
age of hens in week. Recall that hens in a given batch are all of the same age. The graph shows
the smoothed average together with its 95% confidence interval and its value per bin as defined
by week of age. The productivity-age profile has the shape of an inverted U.
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Figure 5: Residual Productivity and Age of Coworkers’ Hens
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Notes. Once own hens’ age, day and shed-week fixed effects are controlled for, residual pro-
ductivity is plotted against the age of coworkers’ hens in weeks. Productivity is measured as
the average daily number of eggs per hen collected by the worker. Recall that hens in a given
batch are all of the same age. The graph shows the smoothed average and its 95% confidence
interval, together with the quadratic fit. Conditional on own hens’ age, day and shed-week
fixed, workers’ residual productivity is higher (lower) when coworkers are assigned hens of low
(high) productivity.
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Figure 6: Own and Coworkers’ Productivity
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Notes. The figure plots the distribution of own productivity separately for those workers whose coworkers’ average productivity
is above and below the median. Productivity is measured as the average daily number of eggs per hen collected by the worker.
The left figure refers to unconditional productivity. The right figure plots instead the distributions of residual productivity net
of shed-week fixed effects. While own and coworkers’ productivity appear to be positively correlated, conditioning on the full
set of shed-week fixed effects yields the opposite result.
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Figure 7: Survival Probability and Productivity
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Notes. The figure plots the survival probability in the firm for the average worker over
time throughout the sample period. The survival probability is computed separately
for workers whose initial productivity (measured as daily average number of eggs per
hen) is above and below the average productivity in the sample. Workers with higher
initial productivity have higher survival probabilities.
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Figure 8: Survival Probability and Coworkers’ Productivity
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Notes. The figures plot the survival probability in the firm for the average worker over time throughout the sample
period. In the left figure the sample is restricted to workers whose initial productivity (measured as daily average
number of eggs per hen) is below the average productivity in the sample. The survival probability is shown separately
for workers whose neighboring coworkers have productivity above and below the average. The probability of survival
is higher when coworkers’ productivity is higher over most of the support. The right figure shows instead the
corresponding figures for workers whose initial productivity is above the average. Again, their probability of survival
is higher when coworkers’ productivity is higher.
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Figure 9: Hens’ Age and Number of Egg Boxes
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Notes. The figure plots the distribution of the average number of boxes collected by the worker in
each two-weeks pay period. Within each age quartile, the bottom and top of the box correspond
to the 10th and 90th percentile respectively, while the horizontal line corresponds to the mean.
The ends of the vertical lines indicate the 1st and 99th percentile. The probability of reaching
the bonus threshold is higher for workers whose assigned hens belong to the 2nd or 4th quartile
of the age distribution, meaning of high productivity.
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Figure 10: Productivity and Bonus Pay
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Notes. The figure plots the distribution of bonus pay for workers in different quartiles of the hens’
age distribution. A more pronounced peak can be observed in the distribution of workers whose
assigned hens are either young or old, and hence less productive. The first peak corresponds
to the value of the fixed component δ of bonus pay. Density at this value is higher for workers
whose assigned hens are in the 1st or 4th quartile of the hens’ age distribution, meaning of low
productivity. 1 PEN = 0.38 USD (June 30, 2012).
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Figure 11: Termination Policy Counterfactual
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Notes. The figure plots the true and counterfactual average worker’s productivity over time
in the period under investigation. Counterfactual productivity estimates are derived under an
alternative termination policy which does not carry externalities among coworkers, as explained
in full details in Section 7.2. Average counterfactual productivity is always higher than the
actual one.
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Figure 12: Input Allocation and Productivity
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Notes. The figure plots the true, predicted and counterfactual average worker’s productivity
over time in the period under investigation. Predictions are derived starting with the batches
in production in the first week of the sample, and simulating their age profiles over the period,
assuming that hens were replaced after the 86th week of life. Reduced-form estimates from
a fully specified model where the full sets of own and coworkers’ hen’s week-of-age dummies
and shed-week fixed effects are included are then used to predict average daily productivity.
Counterfactual productivity is derived using the same estimates, but reallocating hen batches
in production in the first week of the sample among production units following a hierarchical
clustering procedure which minimizes the variance of the age of hens within sheds. Average
counterfactual productivity is higher than the actual one, and up to 20% higher than the
predicted one.
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Figure 13: Random Input Allocation and Productivity
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Notes. The figure plots the distribution of the difference between the average productivity of
workers throughout the sample period and the counterfactual average productivity obtained
under 100 alternative scenarios where hen batches in production in the first week of the sample
are randomly assigned to production units. Their age profiles are then simulated over the
period assuming that hens were replaced after the 86th week of life. The difference is always
positive, with a mean of 0.0136 and a standard deviation of 0.003. The average difference is
thus significantly different from zero at the 5% level.
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Appendix A

Table A.1: Worker’s Typical Working Day

6.20am Breakfast at the cafeteria, a truck takes them to the assigned production unit

7.00am Hens’ feeding, food distribution and even up

9.00am Egg collection

11.30am Egg classification (good, dirty, porous and broken) and cleaning

12.30am Truck arrives to collect egg baskets

1.00pm Lunch at the cafeteria

1.30pm Eggs moved to boxes

2.30pm Truck takes them back to production unit

3.00pm Cleaning of cages and facilities

3.30pm Hens’ feeding, food distribution and even up

5.00pm End of working day
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Table A.2: Own and Coworkers’ Hens’ Age and Productivity:
Additional Results

Daily Number of Eggs per Hen, yi

(1) (2) (3) (4)

agei 0.03859*** 0.03870*** 0.03899*** 0.03803***
(0.0059) (0.0058) (0.0058) (0.0058)

age2
i -0.00038*** -0.00038*** -0.00039*** -0.00038***

(0.0001) (0.0001) (0.0001) (0.0001)

age−i -0.00136*** -0.00387***
(0.0005) (0.0013)

age2
−i -0.00001** 0.00003**

(0.0000) (0.0000)

foodt−1 0.00139*** 0.00141*** 0.00140*** 0.00143***
(0.0005) (0.0005) (0.0005) (0.0004)

foodt−2 0.00079** 0.00082*** 0.00082*** 0.00082***
(0.0003) (0.0003) (0.0003) (0.0003)

foodt−3 -0.00000 -0.00002 -0.00002 -0.00002
(0.0004) (0.0004) (0.0004) (0.0004)

Day FEs Y Y Y Y

Shed-Week FEs Y Y Y Y

Worker FEs N N N N

Observations 20907 20907 20907 20907
R2 0.857 0.858 0.858 0.858

Notes. (* p-value<0.1; ** p-value<0.05; *** p-value<0.01) Ordinary Least Square estimates.
Sample is restricted to all production units in sheds with at least one other production unit. Two-
way clustered standard errors, with residuals grouped along both shed and day. Dependent variable
is the average number of eggs per hen collected by the worker. agei is own hens’ age in weeks,
while age−i is average age of coworkers’ hens in neighboring production units. foodt−s are lags of
amount of food distributed as measured by 50kg sacks employed.
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Table A.3: Batch Replacement and Further Robustness Checks

Daily Number of Eggs per Hen, yi

(1) (2) (3) (4)
Non-replacement Replacement

Weeks Weeks

Coworkers’ -0.31800*** -0.32766** -0.18025* -0.28353***
Eggs per Hen, ȳ−i (0.0737) (0.1665) (0.0968) (0.0972)

agei 0.02927*** -0.00683
(0.0070) (0.1332)

age2
i -0.00029*** -0.00027

(0.0001) (0.0013)

foodt−1 0.00440*** 0.00037 0.00534*** 0.00412***
(0.0012) (0.0017) (0.0013) (0.0012)

foodt−2 0.00260** -0.00036 0.00415*** 0.00249**
(0.0011) (0.0163) (0.0016) (0.0010)

foodt−3 0.00256** 0.02167 0.00391** 0.00219**
(0.0011) (0.0235) (0.0012) (0.0011)

1st Stage F-stat 16.43 30.81 119.72 76.13

Shed-Week FEs Y Y Y Y

Age Dummies N N Y Y

Day FEs Y Y Y Y
Worker FEs Y Y Y Y
Batch FEs Y Y Y Y

Observations 20773 134 8726 20594
R2 0.893 0.978 0.967 0.926

Notes. (* p-value<0.1; ** p-value<0.05; *** p-value<0.01) 2SLS estimates. Sample is restricted to all
production units in sheds with at least one other production unit. Two-way clustered standard errors,
with residuals grouped along both shed and day. Subsample in (1) contains observations belonging to
weeks with no replacement in the correspondent shed. Subsample in (2) contains observations belonging
to weeks with any replacement in the correspondent shed. A random sample of production units per
shed-week is considered in column (3). Subsample excluding observations belonging to days where
worker was listed as absent is considered in column (4). Dependent variable is the average number of
eggs per hen collected by the worker. Main variable of interest is average daily number of eggs per hen
collected by coworkers in neighboring production units, ȳ−i. agei is own hens’ age in weeks. In (1) and
(2) average age of coworkers’ hens and its square (age−i, age

2
−i) are used as instruments in the first

stage. The full set of coworkers’ hens’ age dummies is used in the first stage in (3) and (4). foodt−s

are lags of amount of food distributed as measured by 50kg sacks employed.
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Table A.4: Incentives Heterogeneity: Estimation across Subsamples

Daily Number of Eggs per Hen, yi

(1) (2) (3) (4) (5) (6)
Low High Coworker is Coworker is Experience Experience

Prod. Age Prod. Age Friend Not Friend > Median < Median

Coworkers’ -0.26615*** -0.12017 -0.19371** -0.30046*** -0.47681*** -0.33110***
Eggs per Hen, ȳ−i (0.0639) (0.1043) (0.0892) (0.0956) (0.0717) (0.1034)

foodt−1 0.00388*** 0.00063** 0.00253** 0.00592*** 0.00315** 0.00484***
(0.0011) (0.0003) (0.0012) (0.0017) (0.0014) (0.0018)

foodt−2 0.00268*** -0.00011 0.00197** 0.00312** 0.00088 0.00333***
(0.0009) (0.0001) (0.0008) (0.0013) (0.0009) (0.0008)

foodt−3 0.00170* -0.00026 0.00169* 0.00307** 0.00170* 0.00144
(0.0009) (0.0002) (0.0009) (0.0013) (0.0009) (0.0009)

1st Stage F-stat 139.87 24.04 135.53 248.03 238.44 33.82

Shed-Week FEs Y Y Y Y Y Y

Age Dummies Y Y Y Y Y Y

Day FEs Y Y Y Y Y Y
Worker FEs Y Y Y Y Y Y
Batch FEs Y Y Y Y Y Y

Observations 9950 10950 3913 12399 8519 7790
R2 0.949 0.851 0.969 0.937 0.949 0.969

Notes. (* p-value<0.1; ** p-value<0.05; *** p-value<0.01) 2SLS estimates. Sample is restricted to all production units in sheds
with at least one other production unit. Subsamples for each column are derived as discussed in Section 5. Two-way clustered
standard errors, with residuals grouped along both shed and day. Dependent variable is average number of eggs per hen collected
by the worker. Main variable of interest is average daily number of eggs per hen collected by coworkers in neighboring production
units, ȳ−i. The full set of own hens’ age dummies are included as controls. The full set of coworkers’ hens’ age dummies is used in
the first stage in all columns. foodt−s are lags of amount of food distributed as measured by 50kg sacks employed.
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Figure A.1: Distribution of Estimated Worker Fixed Effects
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Notes. The figure plots the distribution of worker fixed effects as estimated from a regression
specification where hens’ week-of-age dummies, batch and day fixed effects are also included as
regressors. Conditional on input quality, workers have a substantial impact on productivity.
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Appendix B

B.1 Termination Policy and Observable Input Quality

In this section, we further extend the conceptual framework in Mas and Moretti (2009)

in order to incorporate additional features of the production environment under inves-

tigation. We describe the learning process of the principal, who computes the expected

workers’ effort choice on the basis of available information on both output levels and

observable input characteristics.

Let input quality si be a function of both observable and unobservable input character-

istics. In particular, let

si = g(ai)
ηi (1)

where g(ai) is a deterministic function of hens’ age whose domain is in the (0, 1) interval,

while ηi is an idiosyncratic random shock. The latter is independent across workers and

identically distributed on the [0, 1] interval according to a uniform distribution. It follows

that output in a moment in time is equal to

yi = g(ai)
ηiei (2)

The principal computes the expected value of individual workers’ effort choices condi-

tionally on the observed productivity yi and the age of hens ai assigned to the worker.

The principal knows the shape of the g(·) function, and can thus partially net out the

observable component of input contribution to output by calculating

E {g(ai)
ηi |ai} =

∫ 1

0

g(ai)
ηidηi =

g(ai)− 1

ln g(ai)
> 0 (3)

It follows that the principal divides productivity yi by the expected input contribution

in order to derive a signal zi of the effort exerted by the worker

zi =
yi

g(ai)−1
ln g(ai)

=
g(ai)

ηi ln g(ai) ei
g(ai)− 1

> 0 (4)

Taking logs we get

ln zi = ln ei + φ(ηi, ai) (5)
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where noise φ(ηi, ai) is a function of both hens’ age ai and the idiosyncratic shock ηi

φ(ηi, ai) = ln

{
g(ai)

ηi ln g(ai)

g(ai)− 1

}
(6)

Let fi = ln(ei) and vi = ln(zi). The principal computes

E {fi|v} = b(vi − v̄) + v̄ (7)

where b = Cov(zi,ei)
V ar(zi)

< 1. In case the noise φ(ηi, ai) was normally distributed, the condi-

tional expectation above would be the most accurate estimate of fi. Simulations in Table

B.1 and Figure B.1 show that this is indeed a reasonable assumption. Nonetheless, even

when that is not the case and φ(ηi, ai) was not normally distributed, the above expression

for E {fi|v} would still return the predictor of fi which minimizes the squared sum of

prediction errors.

Following the conceptual framework in the paper, the probability for a given worker to

keep the job is an increasing and concave function of her expected level of effort, of which

fi is a monotonic transformation. We thus have

q [E {fi|v}] = q[ b(vi − v̄) + v̄ ] (8)

with q′(·) > 0 and q′′(·) < 0.

Notice that, since b < 1, the probability of keeping the job increases with both the

individual signal vi and any coworkers’ signal v−i. Furthermore, consistently with the

empirical analysis, it can be shown that, given the expected idiosyncratic random shock

E(ηi) = 1
2
, signals vi are also increasing with observable input quality g(ai).

This is because, given the idiosyncratic unobservable component in input quality ηi, the

principal cannot perfectly net out the input contribution to output. As a result, even

observable increases in input quality increase the value of the signal the principal uses to

calculate the expected level of effort exerted by the worker.
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Table B.1: Simulated Distributions

Variable N Mean St. Dev. Min Max

ηi 1000 0.51 0.288 0 1

ai 1000 54.222 19.776 20.005 89.895

g(ai) 1000 0.837 0.163 0.363 1

φ(ηi, ai) 1000 0.002 0.085 -0.476 0.386

Notes. The Table reports summary statistics for the distributions used
in the simulation exercise. In order to match the conceptual framework,
ηi is generated as independently and uniformly distributed on the [0, 1]
interval. The hens’ age variable ai is calibrated to the data and gener-
ated as independently and uniformly distributed on the [20, 90] interval.
Following the results in Table 3 and assuming ei = 1, the input quality
variable is set as equal to g(ai) = 0.04ai − 0.0004a2

i . The noise variable
φ(ηi, ai) is defined as in equation 6 of Appendix B.

Figure B.1: Simulated Distribution of φ(ηi, ai)
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Notes. The figure plots the distribution of φ(ηi, ai) as derived from the values of ηi, ai and g(ai)
reported in Table B.1, together its the smoothed kernel density.
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