
 Open access Book Chapter DOI:10.1007/11494669_121

Input and structure selection for k -NN approximator — Source link

Antti Sorjamaa, Nima Reyhani, Amaury Lendasse

Institutions: Helsinki University of Technology

Published on: 08 Jun 2005 - International Conference on Artificial Neural Networks

Related papers:

 Neural networks for pattern recognition

 Forecasting electric daily peak load based on local prediction

 Gaussian Processes for Classification: Mean-Field Algorithms

 A learning rule to model the development of orientation selectivity in visual cortex

 Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters

Share this paper:

View more about this paper here: https://typeset.io/papers/input-and-structure-selection-for-k-nn-approximator-
zoxqiifxpp

https://typeset.io/
https://www.doi.org/10.1007/11494669_121
https://typeset.io/papers/input-and-structure-selection-for-k-nn-approximator-zoxqiifxpp
https://typeset.io/authors/antti-sorjamaa-5a5442g8ri
https://typeset.io/authors/nima-reyhani-1y761n9fy8
https://typeset.io/authors/amaury-lendasse-7uj4f1htyi
https://typeset.io/institutions/helsinki-university-of-technology-1bdh0lbl
https://typeset.io/conferences/international-conference-on-artificial-neural-networks-1dtx2mgu
https://typeset.io/papers/neural-networks-for-pattern-recognition-34puigiau1
https://typeset.io/papers/forecasting-electric-daily-peak-load-based-on-local-1yov11hrkw
https://typeset.io/papers/gaussian-processes-for-classification-mean-field-algorithms-38rvome35e
https://typeset.io/papers/a-learning-rule-to-model-the-development-of-orientation-28f793nroj
https://typeset.io/papers/preventing-over-fitting-during-model-selection-via-bayesian-2nd2me3mnn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/input-and-structure-selection-for-k-nn-approximator-zoxqiifxpp
https://twitter.com/intent/tweet?text=Input%20and%20structure%20selection%20for%20k%20-NN%20approximator&url=https://typeset.io/papers/input-and-structure-selection-for-k-nn-approximator-zoxqiifxpp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/input-and-structure-selection-for-k-nn-approximator-zoxqiifxpp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/input-and-structure-selection-for-k-nn-approximator-zoxqiifxpp
https://typeset.io/papers/input-and-structure-selection-for-k-nn-approximator-zoxqiifxpp

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 985 – 992, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Input and Structure Selection for k-NN Approximator

Antti Sorjamaa, Nima Reyhani, and Amaury Lendasse

Neural Network Research Centre,
Helsinki University of Technology, P.O. Box 5400,

02015 Espoo, Finland
{asorjama, nreyhani, lendasse}@cis.hut.fi

Abstract. This paper presents k-NN as an approximator for time series predic-
tion problems. The main advantage of this approximator is its simplicity. De-
spite the simplicity, k-NN can be used to perform input selection for nonlinear
models and it also provides accurate approximations. Three model structure se-
lection methods are presented: Leave-one-out, Bootstrap and Bootstrap 632. We
will show that both Bootstraps provide a good estimate of the number of
neighbors, k, where Leave-one-out fails. Results of the methods are presented
with the Electric load from Poland data set.

Keywords: k-NN, Time Series Prediction, Bootstrap, Leave-one-out and Model
Structure Selection.

1 Introduction

In any function approximation, system identification, classification or prediction task
one usually wants to find the best possible model and the best possible parameters to
have good performance. Selected model must be generalizing enough still preserving
accuracy and reliability without unnecessary complexity, which increase computa-
tional load and thus calculation time. Optimal parameters must be determined for
every model to be able to rank the models according to their performances.

Furthermore, in order to select the best model, or model class, one also needs to de-
termine the best input set, to use in the determination of the best parameters for each
structure. When too many inputs are selected, it is possible to get even worse results
than with fewer inputs containing more accurate and valid information. Vice versa,
with only few inputs the accuracy of the model might not be enough and results are
poor and unreliable.

The problems mentioned above occur simultaneously, so it is difficult to find the
right combination of correct attributes. It can be a very tedious and time-consuming
procedure to go through every possible structure to select the best one.

In this paper, we focus in finding the optimal structure for k-Nearest Neighbors (k-
NN) approximator. At the same time we consider the problem of selecting the most
necessary and optimal inputs for the k-NN as well as selecting the structure of the
approximator. The k-NN method is presented in Section 2; Section 3 describes the
selection of the inputs with an exhaustive search and Section 4 the selection of the

986 A. Sorjamaa, N. Reyhani, and A. Lendasse

structure using Leave-one-out (LOO) and Bootstraps. In Section 5 we show some
experimental results with an electric load time series and then derived conclusions
from the results in Section 6.

2 k-Nearest Neighbors

k-Nearest Neighbors approximation method is a very simple, but powerful method. It
has been used in many different applications and particularly in classification tasks [1].

The key idea behind the k-NN is that similar input data vectors have similar output
values. One has to look for a certain number of nearest neighbors, according to
Euclidean distance [1], and their corresponding output values to get the output ap-
proximation. We can calculate the estimation of the outputs by using the average of
the outputs of the neighbors in the neighborhood.

If the pairs (xi, yi) represent the data with xi as an n-dimensional input and yi as a
scalar output value, k-NN approximation is

k

y

y

k

1j

jP

i

∑
=

=

)(

ˆ ,
(1)

where ŷi represents the output estimation, P(j) is the index number of the jth nearest
neighbor of the input xi and k is the number of neighbors that are used.

We use the same neighborhood size for every data point, so we use a global k,
which must be determined.

3 Input Selection

In order to select the best set of inputs, all possible 2n (n is the maximum number of
inputs) input sets are built and evaluated. For each input set the global optimum num-
ber of neighbors is determined and the generalization error estimate (defined in Sec-
tion 4) of the set is calculated as a mean of errors of all data points. In this way it is
possible to compare all different input sets and take the best one to be used in the final
k-NN approximation.

In this case, adding one input doubles the needed calculation time. We have to
make a compromise between the maximum input size to use and the calculation time
available. This kind of exhaustive search for best inputs is usually not preferred, be-
cause of the huge computational load. However, with k-NN the computations can be
performed in a reasonable time, thanks to the simplicity of the k-NN.

4 Model Structure Selection

We consider the problem of determining a model which approximates as accurately as
possible an unknown function g(.). This approximation is chosen among a set of sev-
eral possible models. Models in a set are denoted here by

 Input and Structure Selection for k-NN Approximator 987

))(θ,(qxh
q , (2)

where q represents the qth model in the set, θ(q) are the parameters of the qth model
and x is a n-dimensional input vector. The parameters that define a set of possible
models are called hyper-parameters; they are not estimated by the learning algorithm,
but by some external procedure [4].

In a typical learning procedure, the θ(q) parameters are optimized to minimize the
approximation error on the learning set; the structure is determined as the minimiza-
tion of the generalization error defined as

()

M

yqxh

qE

M

1i

2

ii

q

M
gen

∑
=

∞→

−θ

=θ

))(,(
lim),(,

(3)

where xi are n-dimensional input vectors to the model and yi the corresponding scalar
expected outputs.

According to the definition (3), the generalization error is the mean square error of
the model, computed on an infinite sized test set. Such set is not available in practice,
so we must approximate the generalization error. The best model structure q is the
structure that minimizes the approximation of the generalization error.

In our case the model parameters consist in selecting the number of neighbors to
use in the k-NN approximation. We have used two different methods to select the
global optimal number of neighbors, Leave-one-out (LOO) and Bootstrap 632.

Leave-one-out is a common method used in many statistical evaluation purposes
and we wanted to show that Bootstrap 632 is better than LOO in this case, even [2]
claims that Bootstrap 632 doesn’t work in selecting the number of neighbors.

4.1 Leave-One-Out

Leave-one-out [3] is a special case of k-fold cross-validation resampling method. In k-
fold cross-validation the training data is divided into k approximately equal sized sets.
Then model is trained by using all but one set and the leftover set is used in valida-
tion. The generalization error estimation of k-fold cross-validation is a mean of all k
different validation results.

LOO procedure is the same as k-fold cross-validation with k equal to the size of the
training set N. So, for each different neighborhood size, LOO procedure is used to
calculate its generalization error estimate by removing each neighbor at a time from
the training set, building a model with the rest of the training data and calculating the
validation error with the one taken out. This procedure is done for every data point in
the training set and the estimate of the generalization error is calculated as a mean of
all k, or N, validation errors (4).

()

N

yqxh

qE

N

1i

2

iii

q

gen

∑
=

−θ

=

))(,(
)(ˆ

*

,
(4)

where xi is the i
th input vector from the training set, yi is the corresponding output

and θι*(q) includes the model parameters without using (xi, yi) in the training.

988 A. Sorjamaa, N. Reyhani, and A. Lendasse

Because we want to use the global optimum size of the neighborhood, we have to
calculate the LOO error for each data point and each size of the neighborhood. After
that we can take the mean over all data points to find out, which is globally the opti-
mum number of neighbors. We select the number of neighbors that gives us the small-
est generalization error.

4.2 Bootstrap and Bootstrap 632

Bootstrap [4] is a resampling technique developed to estimate some statistical pa-
rameters (like the mean of a population, its variance, etc). In the case of a model
structure selection, the parameter to be estimated is the generalization error.

When using bootstrap, the generalization error is not estimated directly. Rather the
bootstrap estimates the difference between the generalization error and the training
error, or apparent error according to Efron [2]. This difference is called the optimism.
The estimation of the generalization error will be the sum of the training error and the
estimated optimism.

The training error is computed using all available data on the training set.

()

N

yqxh

qqE

N

1i

2I

i

I

i

q

II

∑
=

−θ

=θ

))(,(
))(,(

*

*, ,
(5)

where hq is the qth model that is used, I denotes the training set, θ*(q) includes the
model parameters after learning, xi

I is the ith input vector from the training set, yi is the
corresponding output and N is the number of elements in the training set.

The optimism is estimated using a resampling technique, based on drawing with
replacement within the training set. This bootstrap set is as large as the training set
with its participants drawn randomly from the training set. Each model is trained
using the bootstrap set and optimism is calculated as the difference between the learn-
ing error (6) and the validation error (7).

Learning error is calculated in the bootstrap set with model trained in the same
bootstrap set.

()

N

yqxh

qqE

N

1i

2A

ij

A

i

q

j

AA

j

jj

jj

∑
=

−θ

=θ

))(,(
))(,(

*

*, ,
(6)

where Aj is the jth bootstrap set, xi
Aj is the ith input vector from the bootstrap set and yi

Aj
is the corresponding output.

Validation error is calculated in the initial training set with model trained on the
same bootstrap set than the learning error.

()

N

yqxh

qqE

N

1i

2I

ij

I

i

q

j

IA

j
j

∑
=

−θ

=θ

))(,(
))(,(

*

*, .
(7)

Above described optimism calculation procedure is repeated as many times, or
rounds, as possible considering linearly increasing computation time. The optimism

 Input and Structure Selection for k-NN Approximator 989

of a model is then calculated, as a mean of the difference of the two error functions
described above

J

qqEqqE

qismmopti

J

j

j

AA

jj

IA

j
jjj∑

=

θ−θ

=
1

,,))(,())(,(

)(ˆ ,
(8)

where J is the number of bootstrap rounds done.
The final generalization error estimate is the sum of the training error and the op-

timism

))(,()(ˆ)(ˆ *, qqEqismmoptiqE II

gen θ+= . (9)

Bootstrap 632 [5] is a modified version of the original Bootstrap. Where the origi-

nal Bootstrap gives biased estimation of the generalization error (3), Bootstrap 632 is
not biased [4] and thus is more comparable with other methods estimating the gener-
alization error. Bootstrap 632 converges towards the correct generalization error in a
reasonable amount of calculation time.

The main difference between standard Bootstrap and Bootstrap 632 is the estima-
tion of optimism. In original Bootstrap the optimism is calculated as difference of the
errors in two sets, in the initial training data set and in the randomly drawn bootstrap
set (8). Bootstrap 632 estimates optimism using the data points not drawn into the
bootstrap set (10). The model is trained using this set of unselected data points and its
error is evaluated on the bootstrap set.

J

qqE

qismmopti

J

1j

j

AA

j

632

jj∑
=

θ

=

))(,(

)(ˆ

*,

,
(10)

where the error function is the same as the learning error (6), except the model is
trained using Āj, the complement of the bootstrap set Aj.

The estimation of the generalization error of the Bootstrap 632 is calculated as
weighted sum of the training error and the new optimism (10).

))(,(632.)(ˆ368.)(ˆ *,632 qqEqismmoptiqE II

gen θ+= . (11)

From equation (11) it gets quite clear to see, that the name of the Bootstrap 632
comes from the weighting coefficient of the training error term. The value 0.632 is the
probability of one sample to be drawn to the bootstrap set from the training set [2, 5].

5 Experimental Results

5.1 Time Series Prediction

Time series forecasting [6] is a challenge in many fields. In finance, one forecasts
stock exchange courses or stock market indices; data processing specialists forecast
the flow of information on their networks; producers of electricity forecast the load of

990 A. Sorjamaa, N. Reyhani, and A. Lendasse

the following day. The common point to their problems is the following: how can one
analyse and use the past to predict the future?

Next section will demonstrate how k-NN can be used to predict future values of a
time series.

5.2 Results of Data Set 1: Electric Load

The dataset used in experiments is a benchmark in the field of time series prediction:
The Poland Electricity Dataset. It represents the electric load of Poland during 2500
days in the 90’s.

In our experiments we used the first half of the data set as a training set and the
other half as a test set in order to evaluate the selected model’s performance between
different methods.

0 500 1000 1500 2000 2500
0.5

1

1.5

Time

E
le

ct
ri

c
lo

ad

Fig. 1. Electric load time series from Poland

Fig. 2 and 3 show the generalization error estimates of all different methods ac-
cording to the number of neighbors, when using the best selected input set.

2 4 6 8 10 12 14
2

2.5

3
x 10

-3

Number of Neighbors

G
en

er
al

iz
at

io
n

er
ro

r

Fig. 2. The generalization error estimate using Leave-one-out according to the number of
neighbors

The Table 1 shows the results of the experiments with three methods in select-
ing the inputs and number of neighbors. We have used n = 8 as a maximum num-
ber of inputs and J = 100 bootstrap rounds in calculations in both, Bootstrap and
Bootstrap 632.

 Input and Structure Selection for k-NN Approximator 991

2 4 6 8 10 12 14
1

1.5

2

2.5
x 10

-3

Number of Neighbors

G
en

er
al

iz
at

io
n

er
ro

r

Fig. 3. The generalization error estimate using Bootstrap (solid line) and Bootstrap 632 (dashed
line) according to the number of neighbors

Table 1. The results using Electric load data set and methods described in this paper

Selected Inputs k Êgen Test error

LOO t - {1, 2, 5, 7, 8} 3 0.0021 0.0011

Bootstrap t - {1, 2, 5, 7, 8} 1 0.0011 0.0007

Bootstrap 632 t - {1, 2, 5, 7, 8} 1 0.0020 0.0007

All three methods select the same inputs but different number of neighbors. Ac-
cording to the test error both, Bootstrap and Bootstrap 632, select the best k. On the
other hand, Bootstrap and Bootstrap 632 use J times more time than LOO.

In Fig. 4 we have used the model selected by bootstrap to predict 300 first test set
values.

1247 1297 1347 1397 1447
0.6

0.8

1

1.2

Time

E
le

ct
ri

c
lo

ad

Fig. 4. Test set from Electric load data. 200 first values predicted and plotted. Solid line repre-
sents the real values and dashed represents the prediction

6 Conclusion

We have shown, that all methods, Leave-one-out and Bootstraps, select the same
inputs. But number of neighbors is selected more efficiently by Bootstraps, according
to the test error; even some studies have proven otherwise [2].

992 A. Sorjamaa, N. Reyhani, and A. Lendasse

It has also been shown, that k-NN is a good approximator for time series. We have
also tested k-NN with a couple of other time series and acquired the same results. As a
conclusion we suggest Leave-one-out to be used in input selection and Bootstrap or
Bootstrap 632 in selection of k.

Acknowledgements

Part the work of A. Sorjamaa, N. Reyhani and A. Lendasse is supported by the project
of New Information Processing Principles, 44886, of the Academy of Finland.

References

1. Bishop C.M.: Neural Networks for Pattern Recognition. Oxford University Press (1995).
2. Efron B., Tibshirani R. J.: An introduction to the bootstrap. Chapman & Hall (1993).
3. Kohavi R.: A study of Cross-Validation and Bootstrap for Accuracy Estimation and Model

Selection. In: Proc. of the 14th Int. Joint Conf. on A.I., Montréal (1995) 2:1137-1143.
4. Lendasse A., Wertz V., Verleysen M.: Model selection with cross-validations and boot-

straps – Application to time series prediction with RBFN models. In: Artificial Neural
Networks and Neural Information Processing – ICANN/ICONIP (2003), Kaynak O., Al-
paydin E., Oja E., Xu L. (eds): Springer-Verlag Lecture Notes in Computer Science 2714,
Berlin (2003) 573-580.

5. Efron B., Tibshirani R. J.: Improvements on cross-validation: The .632+ bootstrap method.
J. Amer. Statist. Assoc. (1997) 92:548–560.

6. Weigend A.S., Gershenfeld N.A.: Times Series Prediction: Forecasting the future and
Understanding the Past. Addison-Wesley, Reading MA (1994).

