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Abstract

This paper presents the input convex neural net-

work architecture. These are scalar-valued (po-

tentially deep) neural networks with constraints

on the network parameters such that the output

of the network is a convex function of (some

of) the inputs. The networks allow for efficient

inference via optimization over some inputs to

the network given others, and can be applied to

settings including structured prediction, data im-

putation, reinforcement learning, and others. In

this paper we lay the basic groundwork for these

models, proposing methods for inference, opti-

mization and learning, and analyze their repre-

sentational power. We show that many existing

neural network architectures can be made input-

convex with a minor modification, and develop

specialized optimization algorithms tailored to

this setting. Finally, we highlight the perfor-

mance of the methods on multi-label prediction,

image completion, and reinforcement learning

problems, where we show improvement over the

existing state of the art in many cases.

1. Introduction

In this paper, we propose a new neural network architecture

that we call the input convex neural network (ICNN).These

are scalar-valued neural networks f(x, y; θ) where x and

y denotes inputs to the function and θ denotes the param-

eters, built in such a way that the network is convex in (a

subset of) inputs y.3 The fundamental benefit to these IC-

NNs is that we can optimize over the convex inputs to the

network given some fixed value for other inputs. That is,

given some fixed x (and possibly some fixed elements of
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y) we can globally and efficiently (because the problem is

convex) solve the optimization problem

argmin
y

f(x, y; θ). (1)

Fundamentally, this formalism lets us perform inference

in the network via optimization. That is, instead of mak-

ing predictions in a neural network via a purely feedfor-

ward process, we can make predictions by optimizing a

scalar function (which effectively plays the role of an en-

ergy function) over some inputs to the function given oth-

ers. There are a number of potential use cases for these

networks.

Structured prediction As is perhaps apparent from our

notation above, a key application of this work is in struc-

tured prediction. Given (typically high-dimensional) struc-

tured input and output spaces X × Y , we can build a net-

work over (x, y) pairs that encodes the energy function

for this pair, following typical energy-based learning for-

malisms (LeCun et al., 2006). Prediction involves finding

the y ∈ Y that minimizes the energy for a given x, which

is exactly the argmin problem in (1). In our setting, as-

suming that Y is a convex space (a common assumption in

structured prediction), this optimization problem is convex.

This is similar in nature to the structured prediction energy

networks (SPENs) (Belanger & McCallum, 2016), which

also use deep networks over the input and output spaces,

with the difference being that in our setting f is convex in

y, so the optimization can be performed globally.

Data imputation Similar to structured prediction but

slightly more generic, if we are given some space Y we

can learn a network f(y; θ) (removing the additional x in-

puts, though these can be added as well) that, given an ex-

ample with some subset I missing, imputes the likely val-

ues of these variables by solving the optimization problem

as above ŷI = argminyI
f(yI , yĪ ; θ) This could be used

3We emphasize the term “input convex” since convexity in
machine learning typically refers to convexity (of the loss min-
imization learning problem) in the parameters, which is not the
case here. Note that in our notation, f needs only be a convex
function in y, and may still be non-convex in the remaining inputs
x. Training these neural networks remains a nonconvex problem,
and the convexity is only being exploited at inference time.
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e.g., in image inpainting where the goal is to fill in some

arbitrary set of missing pixels given observed ones.

Continuous action reinforcement learning Given a re-

inforcement learning problem with potentially continuous

state and action spaces S × A, we can model the (neg-

ative) Q function, −Q(s, a; θ) as an input convex neural

network. In this case the action selection procedure can

be formulated as a convex optimization problem a⋆(s) =
argmina−Q(s, a; θ).

This paper lays the foundation for optimization, inference,

and learning in these input convex models, and explores

their performance in the applications above. Our main con-

tributions are: we propose the ICNN architecture and a par-

tially convex variant; we develop efficient optimization and

inference procedures that are well-suited to the complexity

of these specific models; we propose techniques for train-

ing these models, based upon either max-margin structured

prediction or direct differentiation of the argmin operation;

and we evaluate the system on multi-label prediction, im-

age completion, and reinforcement learning domains; in

many of these settings we show performance that improves

upon the state of the art.

2. Background and related work

Energy-based learning The interplay between infer-

ence, optimization, and structured prediction has a long

history in neural networks. Several early incarnations of

neural networks were explicitly trained to produce struc-

tured sequences (e.g. (Simard & LeCun, 1991)), and there

was an early appreciation that structured models like hid-

den Markov models could be combined with the outputs of

neural networks (Bengio et al., 1994). Much of this earlier

work is surveyed and synthesized by (LeCun et al., 2006),

who give a tutorial on these energy based learning meth-

ods. In recent years, there has been a strong push to fur-

ther incorporate structured prediction methods like condi-

tional random fields as the “last layer” of a deep network

architecture (Peng et al., 2009; Zheng et al., 2015; Chen

et al., 2015). Several methods have proposed to build gen-

eral neural networks over joint input and output spaces,

and perform inference over outputs using generic optimiza-

tion techniques such as Generative Adversarial Networks

(GANs) (Goodfellow et al., 2014) and Structured Predic-

tion Energy Networks (SPENs) (Belanger & McCallum,

2016). SPENs provide a deep structure over input and

output spaces that performs the inference in (1) as a non-

convex optimization problem.

The current work is highly related to these past approaches,

but also differs in a very particular way. To the best of

our knowledge, each of these structured prediction meth-

ods based upon energy-based models operates in one of two

ways, either: 1) the architecture is built in a very particular

way such that optimization over the output is guaranteed to

be “easy” (e.g. convex, or the result of running some infer-

ence procedure), usually by introducing a structured linear

objective at the last layer of the network; or 2) no attempt is

made to make the architecture “easy” to run inference over,

and instead a general model is built over the output space.

In contrast, our approach lies somewhere in between: by

ensuring convexity of the resulting decision space, we are

constraining the inference problem to be easy in some re-

spect, but we specify very little about the architecture other

than the constraints required to make it convex. In particu-

lar, as we will show, the network architecture over the vari-

ables to be optimized over can be deep and involve multiple

non-linearities. The goal of the proposed work is to allow

for complex functions over the output without needing to

specify them manually (exactly analogous to how current

deep neural networks treat their input space).

Structured prediction and MAP inference Our work

also draws some connection to MAP-inference-based

learning and approximate inference. There are two broad

classes of learning approaches in structured prediction:

method that use probabilistic inference techniques (typi-

cally exploiting the fact that the gradient of log likelihood is

given by the actual feature expectations minus their expec-

tation under the learned model (Koller & Friedman, 2009,

Ch 20)), and methods that rely solely upon MAP inference

(such as max-margin structured prediction (Taskar et al.,

2005; Tsochantaridis et al., 2005)). MAP inference in par-

ticular also has close connections to optimization, as vari-

ous convex relaxations of the general MAP inference prob-

lem often perform well in theory and practice. The pro-

posed methods can be viewed as an extreme case of this

second class of algorithm, where inference is based solely

upon a convex optimization problem that may not have any

probabilistic semantics at all. Finally, although it is more

abstract, we feel there is a philosophical similarity between

our proposed approach and sum-product networks (Poon &

Domingos, 2011); both settings define networks where in-

ference is accomplished “easily” either by a sum-product

message passing algorithm (by construction) or via convex

optimization.

Fitting convex functions Finally, the proposed work re-

lates to a topic less considered in the machine learning lit-

erature, that of fitting convex functions to data (Boyd &

Vandenberghe, 2004, pg. 338). Indeed our learning prob-

lem can be viewed as parameter estimation under a model

that is guaranteed to be convex by its construction. The

most similar work of which we are aware specifically fits

sums of rectified half-planes to data (Magnani & Boyd,

2009), which is similar to one layer of our rectified linear

units. However, the actual training scheme is much differ-
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Figure 1. A fully input convex neural network (FICNN).

ent, and our deep network architecture allows for a much

richer class of representations, while still maintaining con-

vexity.

3. Convex neural network architectures

Here we more formally present different ICNN architec-

tures and prove their convexity properties given certain

constraints on the parameter space. Our chief claim is that

the class of (full and partial) input convex models is rich

and lets us capture complex joint models over the input to

a network.

3.1. Fully input convex neural networks

To begin, we consider a fully convex, k-layer, fully con-

nected ICNN that we call a FICNN and is shown in Figure

1. This model defines a neural network over the input y
(i.e., omitting any x term in this function) using the archi-

tecture for i = 0, . . . , k − 1

zi+1 = gi

(

W
(z)
i zi +W

(y)
i y + bi

)

, f(y; θ) = zk (2)

where zi denotes the layer activations (with z0,W
(z)
0 ≡ 0),

θ = {W
(y)
0:k−1,W

(z)
1:k−1, b0:k−1} are the parameters, and gi

are non-linear activation functions. The central result on

convexity of the network is the following:

Proposition 1. The function f is convex in y provided that

all W
(z)
1:k−1 are non-negative, and all functions gi are con-

vex and non-decreasing.

The proof is simple and follows from the fact that non-

negative sums of convex functions are also convex and that

the composition of a convex and convex non-decreasing

function is also convex (see e.g. Boyd & Vandenberghe

(2004, 3.2.4)). The constraint that the gi be convex non-

decreasing is not particularly restrictive, as current non-

linear activation units like the rectified linear unit or max-

pooling unit already satisfy this constraint. The constraint

that the W (z) terms be non-negative is somewhat restric-

tive, but because the bias terms and W (y) terms can be neg-

ative, the network still has substantial representation power,

as we will shortly demonstrate empirically.

One notable addition in the ICNN are the “passthrough”

layers that directly connect the input y to hidden units in

Figure 2. A partially input convex neural network (PICNN).

deeper layers. Such layers are unnecessary in traditional

feedforward networks because previous hidden units can

always be mapped to subsequent hidden units with the

identity mapping; however, for ICNNs, the non-negativity

constraint subsequent W (z) weights restricts the allowable

use of hidden units that mirror the identity mapping, and

so we explicitly include this additional passthrough. Some

passthrough layers have been recently explored in the deep

residual networks (He et al., 2015) and densely connected

convolutional networks (Huang et al., 2016), though these

differ from those of an ICNN as they pass through hidden

layers deeper in the network, whereas to maintain convex-

ity our passthrough layers can only apply to the input di-

rectly.

Other linear operators like convolutions can be included

in ICNNs without changing the convexity properties. In-

deed, modern feedforward architectures such as AlexNet

(Krizhevsky et al., 2012), VGG (Simonyan & Zisserman,

2014), and GoogLeNet (Szegedy et al., 2015) with Re-

LUs (Nair & Hinton, 2010) can be made input convex with

Proposition 1. In the experiment that follow, we will ex-

plore ICNNs with both fully connected and convolutional

layers, and we provide more detail about these additional

architectures in Section A of the supplement.

3.2. Partially input convex architectures

The FICNN provides joint convexity over the entire input

to the function, which indeed may be a restriction on the

allowable class of models. Furthermore, this full joint con-

vexity is unnecessary in settings like structured prediction

where the neural network is used to build a joint model over

an input and output example space and only convexity over

the outputs is necessary.

In this section we propose an extension to the pure FICNN,

the partially input convex neural network (PICNN), that is

convex over only some inputs to the network (in general

ICNNs will refer to this new class). As we will show, these

networks generalize both traditional feedforward networks

and FICNNs, and thus provide substantial representational

benefits. We define a PICNN to be a network over (x, y)
pairs f(x, y; θ) where f is convex in y but not convex in x.

Figure 2 illustrates one potential k-layer PICNN architec-



Input Convex Neural Networks

ture defined by the recurrences

ui+1 = g̃i(W̃iui + b̃i)

zi+1 = gi

(

W
(z)
i

(

zi ◦ [W
(zu)
i ui + b

(z)
i ]+

)

+

W
(y)
i

(

y ◦ (W
(yu)
i ui + b

(y)
i )

)

+W
(u)
i ui + bi

)

f(x, y; θ) = zk, u0 = x

(3)

where ui ∈ R
ni and zi ∈ R

mi denote the hidden units

for the “x-path” and “y-path”, where y ∈ R
p, and where

◦ denotes the Hadamard product, the elementwise product

between two vectors. The crucial element here is that un-

like the FICNN, we only need the W (z) terms to be non-

negative, and we can introduce arbitrary products between

the ui hidden units and the zi hidden units. The follow-

ing proposition highlights the representational power of the

PICNN.

Proposition 2. A PICNN network with k layers can repre-

sent any FICNN with k layers and any purely feedforward

network with k layers.

Proof. To recover a FICNN we simply set the weights over

the entire x path to be zero and set b(z) = b(y) = 1. We

can recover a feedforward network by noting that a tradi-

tional feedforward network f̂(x; θ) where f : X → Y , can

be viewed as a network with an inner product f(x; θ)T y in

its last layer (see e.g. (LeCun et al., 2006) for more de-

tails). Thus, a feedforward network can be represented as

a PICNN by setting the x path to be exactly the feedfor-

ward component, then having the y path be all zero except

W
(yu)
k−1 = I and W

(y)
k−1 = 1T .

4. Inference in ICNNs

Prediction in ICNNs (which we also refer to as inference),

requires solving the convex optimization problem

minimize
y∈Y

f(x, y; θ) (4)

While the resulting tasks are convex optimization problems

(and thus “easy” to solve in some sense), in practice this

still involves the solution of a potentially very complex op-

timization problem. We discuss here several approaches for

approximately solving these optimization problems. We

can usually obtain reasonably accurate solutions in many

settings using a procedure that only involves a small num-

ber of forward and backward passes through the network,

and which thus has a complexity that is at most a constant

factor worse than that for feedforward networks. The same

consideration will apply to training such networks, which

we will discuss in Section 5.

Exact inference in ICNNs Although it is not a practical

approach for solving the optimization tasks, the inference

problem for the networks presented above (where the non-

linear are either ReLU or linear units) can be posed as as

linear program. We show how to do this in Section B.

4.1. Approximate inference in ICNNs

Because of the impracticality of exact inference, we focus

on approximate approaches to optimizing over the inputs to

these networks, but ideally ones that still exploit the con-

vexity of the resulting problem. We specifically focus on

gradient-based approaches, which use the fact that we can

easily compute the gradient of an ICNN with respect to its

inputs, ∇yf(x, y; θ), using backpropagation.

Gradient descent. The simplest gradient-based methods

for solving (4) is just (projected sub-) gradient descent,

or modifications such as those that use a momentum term

(Polyak, 1964; Rumelhart et al., 1988), or spectral step

size modifications (Barzilai & Borwein, 1988; Birgin et al.,

2000). That is, we start with some initial ŷ and repeat the

update

ŷ ← PY (ŷ − α∇yf(x, ŷ; θ)) (5)

This method is appealing in its simplicity, but suffers from

the typical problems of gradient descent on non-smooth ob-

jectives: we need to pick a step size and possibly use a

sequence of decreasing step sizes, and don’t have an ob-

vious method to assess how accurate of a current solution

we have obtained (since an ICNN with ReLUs is piece-

wise linear, it will not have zero gradient at the solution).

The method is also more challenging to integrate with

some learning procedures, as we often need to differentiate

through an entire chain of the gradient descent algorithm

(Domke, 2012). Thus, while the method can sometimes

work in practice, we have found that other approaches typ-

ically far outperform this method, and we will focus on al-

ternative approximate approaches for the remainder of this

section.

4.2. Approximate inference via the bundle entropy

method

An alternative approach to gradient descent is the bundle

method (Smola et al., 2008), also known as the epigraph

cutting plane approach, which iteratively optimizes a piece-

wise lower bound on the function given by the maximum

over a set of first-order approximations. However, as, the

traditional bundle method is not well suited to our setting

(we need to evaluate a number of gradients equal to the di-

mension of x, and solve a complex optimization problem at

each step) we have developed a new optimization algorithm

for this domain that we term the bundle entropy method.

This algorithm specifically applies to the (common) case

where Y is bounded, which we assume to be Y = [0, 1]n
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(other upper or lower bounds can be attained through scal-

ing). The method is also easily extensible to the setting

where elements of Y belong to a higher-dimensional prob-

ability simplex as well.

For this approach, we consider adding an additional “bar-

rier” function to the optimization in the form of the negative

entropy −H(y), where

H(y) = −
n
∑

i=1

(yi log yi + (1− yi) log(1− yi)). (6)

In other words, we instead want to solve the optimization

problem argminy f(x, y; θ)−H(y) (with a possible addi-

tional scaling term). The negative entropy is a convex func-

tion, with the limits of limy→0 H(y) = limy→1 H(y) = 0,

and negative values in the interior of this range. The func-

tion acts as a barrier because, although it does not approach

infinity as it reaches the barrier of the feasible set, its gra-

dient does approach infinity as it reaches the barrier, and

thus the optimal solution will always lie in the interior of

the unit hypercube Y .

An appealing feature of the entropy regularization comes

from its close connection with sigmoid units in typical neu-

ral networks. It follows easily from first-order optimality

conditions that the optimization problem

minimize
y

cT y −H(y) (7)

is given by y⋆ = 1/(1 + exp(c)). Thus if we con-

sider the “trivial” PICNN mentioned in Section 3.2, which

simply consists of the function f(x, y; θ) = yT f̃(x; θ)
for some purely feedforward network f̃(x; θ), then the

entropy-regularized minimization problem gives a solution

that is equivalent to simply taking the sigmoid of the neural

network outputs. Thus, the move to ICNNs can be inter-

preted as providing a more structured joint energy func-

tional over the linear function implicitly used by sigmoid

layers.

At each iteration of the bundle entropy method, we solve

the optimization problem

yk+1, tk+1 := argmin
y,t

{t−H(y) | Gy + h ≤ t1} (8)

where G ∈ R
k×n has rows equal to

gTi = ∇yf(x, y
i; θ)T (9)

and h ∈ R
k has entries equal to

hi = f(x, yi; θ)−∇yf(x, y
i; θ)T yi. (10)

The Lagrangian of the optimization problem is

L(y, t, λ) = t−H(y) + λT (Gy + h− t1) (11)

and differentiating with respect to y and t gives the opti-

mality conditions

∇yL(y, t, λ) = 0 =⇒ y =
1

1 + exp(GTλ)

∇tL(y, t, λ) = 0 =⇒ 1Tλ = 1

(12)

which in turn leads to the dual problem

maximize
λ

(G1 + h)Tλ− 1T log(1 + exp(GTλ))

subject to λ ≥ 0, 1Tλ = 1.
(13)

This is a smooth optimization problem over the unit sim-

plex, and can be solved using a method like the Projected

Newton method of (Bertsekas, 1982, pg. 241, eq. 97). A

complete description of the bundle entropy method is given

in Section D. For lower dimensional problems, the bundle

entropy method often attains an exact solution after a rela-

tively small number of iterations. And even for larger prob-

lems, we find that the approximate solutions generated by

a very small number of iterations (we typically use 5 iter-

ations), still substantially outperform gradient descent ap-

proaches. Further, because we maintain an explicit lower

bound on the function, we can compute an optimality gap

of our solution, though in practice just using a fixed number

of iterations performs well.

5. Learning ICNNs

Generally speaking, ICNN learning shapes the objective’s

energy function to produce the desired values when opti-

mizing over the relevant inputs. That is, for a given input

output pair (x, y⋆), our goal is to find ICNN parameters θ
such that

y⋆ ≈ argmin
y

f̃(x, y; θ) (14)

where for the entirely of this section, we use the notation

f̃ to denote the combination of the neural network func-

tion plus the regularization term such as −H(y), if it is

included, i.e.

f̃(x, y; θ) = f(x, y; θ)−H(y). (15)

Although we only discuss the entropy regularization in this

work, we emphasize that other regularizers are also possi-

ble. Depending on the setting, there are several different

approaches we can use to ensure that the ICNN achieves

the desired targets, and we consider three approaches be-

low: direct functional fitting, max-margin structured pre-

diction, and argmin differentiation.

Direct functional fitting. We first note that in some do-

mains, we do not need a specialized procedure for fitting

ICNNs, but can use existing approaches that directly fit the

ICNN. An example of this is the Q-learning setting. Given
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some observed tuple (s, a, r, s′), Q learning updates the pa-

rameters θ with the gradient

(

Q(s, a)− r − γmax
a′

Q(s′, a′)
)

∇θQ(s, a), (16)

where the maximization step is carried out with gradient

descent or the bundle entropy method. These updates can

be applied to ICNNs with the only additional requirement

that we project the weights onto their feasible sets after this

update (i.e., clip or project any W terms that are required

to be positive). Section E gives a complete description of

deep Q-learning with ICNNs.

Max-margin structured prediction. Although max-

margin structured prediction is a simple and well-studied

approach (Tsochantaridis et al., 2005; Taskar et al., 2005),

in our experiences using these methods within an ICNN,

we had substantial difficulty choosing the proper mar-

gin scaling term (especially for domains with continuous-

valued outputs), or allowing for losses other than the hinge

loss. For this reason, Section F discusses max-margin

structured prediction in more detail, but the majority of our

experiments here focus on the next approach, which more

directly encodes the loss suffered by the full structured-

prediction pipeline.

5.1. Argmin differentiation

In our final proposed approach, that of argmin differentia-

tion, we propose to directly minimize a loss function be-

tween true outputs and the outputs predicted by our model,

where these predictions themselves are the result of an op-

timization problem. We explicitly consider the case where

the approximate solution to the inference problem is at-

tained via the previously-described bundle entropy method,

typically run for some fixed (usually small) number of iter-

ations. To simplify notation, in the following we will let

ŷ(x; θ) = argmin
y

min
t
{t−H(y) | Gy + h ≤ t1}

≈ argmin
y

f̃(x, y; θ)
(17)

refer to the approximate minimization over y that results

from running the bundle entropy method, specifically at the

last iteration of the method.

Given some example (x, y⋆), our goal is to compute the

gradient, with respect to the ICNN parameters, of the loss

between y⋆ and ŷ(x; θ): ℓ(ŷ(x; θ), y⋆). This is in some

sense the most direct analogue to traditional neural net-

work learning, since we typically optimize networks by

minimizing some loss between the network’s (feedforward)

predictions and the true desired labels. Doing this in the

predictions-via-optimization setting requires that we differ-

entiate “through” the argmin operator, which can be ac-

complished via implicit differentiation of the KKT opti-

mality conditions. Although the derivation is somewhat in-

volved, the final result is fairly compact, and is given by the

following proposition (for simplicity, we will write ŷ below

instead of ŷ(x; θ) when the notation should be clear):

Proposition 3. The gradient of the neural network loss for

predictions generated through the minimization process is

∇θℓ(ŷ(x; θ), y
⋆) =

k
∑

i=1

(cλi∇θf(x, y
i; θ)+

∇θ

(

∇yf(x, y
i; θ)T

(

λic
y + cλi

(

ŷ(x; θ)− yi
)))

)

(18)

where yi denotes the solution returned by the ith iteration

of the entropy bundle method, λ denotes the dual variable

solution of the entropy bundle method, and where the c
variables are determined by the solution to the linear sys-

tem





H GT 0
G 0 −1
0 −1T 0









cy

cλ

ct



 =





−∇ŷℓ(ŷ, y
⋆)

0
0



 .

(19)

where H = diag
(

1
ŷ
+ 1

1−ŷ

)

.

The proof of this proposition is given in Section G, but we

highlight a few key points here. The complexity of com-

puting this gradient will be linear in k, which is the number

of active constraints at the solution of the bundle entropy

method. The inverse of this matrix can also be computed

efficiently by just inverting the k× k matrix GH−1GT via

a variable elimination procedure, instead of by inverting

the full matrix. The gradients ∇θf(x, yi; θ) are standard

neural network gradients, and further, can be computed in

the same forward/backward pass as we use to compute the

gradients for the bundle entropy method. The main chal-

lenge of the method is to compute the terms of the form

∇θ(∇yf(x, yi; θ)
T v) for some vector v. This quantity can

be computed by most autodifferentiation tools (the gradient

inner product ∇yf(x, yi; θ)
T v itself just becomes a graph

computation than can be differentiated itself), or it can be

computed by a finite difference approximation. The com-

plexity of computing this entire gradient is a small constant

multiple of computing k gradients with respect to θ.

Given this ability to compute gradients with respect to an

arbitrary loss function, we can fit the parameter using tra-

ditional stochastic gradient methods examples. Specifi-

cally, given an example (or a minibatch of examples) xi, yi,
we compute gradients∇θℓ(ŷ(xi; θ), yi) and update the pa-

rameters using e.g. the ADAM optimizer (Kingma & Ba,

2014).
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Method Test Macro-F1

Feedforward net 0.396

ICNN 0.415

SPEN (Belanger & McCallum, 2016) 0.422

Table 1. Comparison of approaches on BibTeX multi-label classi-

fication task. (Higher is better.)

6. Experiments

Our experiments study the representational power of IC-

NNs to better understand the interplay between the model’s

restrictiveness and accuracy. Specifically, we evaluate

the method on multi-label classification on the BibTeX

dataset (Katakis et al., 2008), image completion using

the Olivetti face dataset (Samaria & Harter, 1994), and

continuous action reinforcement learning in the OpenAI

Gym (Brockman et al., 2016). We show that the meth-

ods compare favorably to the state of the art in many situa-

tions. The full source code for all experiments is available

in the icml2017 branch at https://github.com/

locuslab/icnn and our implementation is built using

Python (Van Rossum & Drake Jr, 1995) with the numpy

(Oliphant, 2006) and TensorFlow (Abadi et al., 2016) pack-

ages.

6.1. Synthetic 2D example

Though we do not discuss it here, Section I presents a sim-

ple synthetic classification experiment comparing FICNN

and PICNN decision boundaries.

6.2. Multi-Label Classification

We first study how ICNNs perform on multi-label classifi-

cation with the BibTeX dataset and benchmark presented in

(Katakis et al., 2008). This benchmark maps text classifica-

tion from an input space X of 1836 bag-of-works indicator

(binary) features to an output space Y of 159 binary labels.

We use the train/test split of 4880/2515 from (Katakis et al.,

2008) and evaluate with the macro-F1 score (higher is bet-

ter). We use the ARFF version of this dataset from Mu-

lan (Tsoumakas et al., 2011). Our PICNN architecture for

multi-label classification uses fully-connected layers with

ReLU activation functions and batch normalization (Ioffe

& Szegedy, 2015) along the input path. As a baseline, we

use a fully-connected neural network with batch normal-

ization and ReLU activation functions. Both architectures

have the same structure (600 fully connected, 159 (#labels)

fully connected). We optimize our PICNN with 30 itera-

tions of gradient descent with a learning rate of 0.1 and a

momentum of 0.3.

Table 1 compares several different methods for this prob-

lem. Our PICNN’s final macro-F1 score of 0.415 outper-

Figure 3. Example test set image completions of the ICNN with

bundle entropy.

forms our baseline feedforward network’s score of 0.396,

which indicates PICNNs have the power to learn a robust

structure over the output space. SPENs obtain a macro-F1

score of 0.422 on this task (Belanger & McCallum, 2016)

and pose an interesting comparison point to ICNNs as they

have a similar (but not identical) deep structure that is non-

convex over the input space. The difference of 0.007 be-

tween ICNNs and SPENs could be due to differences in

our experimental setups, architectures, and random experi-

mental noise. More details are included in Section J.

6.3. Image completion on the Olivetti faces

As a test of the system on a structured prediction task over

a much more complex output space Y , we apply a convo-

lutional PICNN to face completion on the sklearn version

(Pedregosa et al., 2011) of the Olivetti data set (Samaria &

Harter, 1994), which contains 400 64x64 grayscale images.

ICNNs for face completion should be invariant to trans-

lations and other transformations in the input space. To

achieve this invariance, our PICNN is inspired by the DQN

architecture in Mnih et al. (2015), which preserves this in-

variance in the different context of reinforcement learn-

ing. Specifically, our network is over (x, y) pairs where

x (32x64) is the left half and y (32x64) is the right half of

the image. The input and output paths are: 32x8x8 conv

(stride 4x2), 64x4x4 conv (stride 2x2), 64x3x3 conv, 512

fully connected.

This experiment uses the same training/test splits and min-

imizes the mean squared error (MSE) as in Poon & Domin-

gos (2011) so that our results can be directly compared to

(a non-exhaustive list of) other techniques. We also explore

the tradeoffs between the bundle entropy method and gra-

dient descent and use a non-convex baseline to better un-

derstand the impacts of convexity. We use a learning rate

of 0.01 and momentum of 0.9 with gradient descent for the

inner optimization in the ICNN.

https://github.com/locuslab/icnn
https://github.com/locuslab/icnn


Input Convex Neural Networks

Method MSE

ICNN - Bundle Entropy 833.0

ICNN - Gradient Decent 872.0

ICNN - Nonconvex 850.9

Sum-product (Poon & Domingos, 2011) 942

Table 2. Comparisons of reconstruction error on image comple-

tion.

Table 2 shows the test MSEs for the different approaches.

Example image completions are shown in Figure 3. These

results show that the bundle entropy method can leverage

more information from these five iterations than gradient

descent, even when the convexity constraint is relaxed.

The PICNN trained with back-optimization with the re-

laxed convexity constraint slightly outperforms the network

with the convexity constraint, but not the network trained

with the bundle-entropy method. This shows that for im-

age completion with PICNNs, convexity does not seem to

inhibit the representational power. Furthermore, this exper-

iment suggests that a small number of inner optimization

iterations (five in this case) is sufficient for good perfor-

mance.

6.4. Continuous Action Reinforcement Learning

Finally, we present standard benchmarks in continuous ac-

tion reinforcement learning from the OpenAI Gym (Brock-

man et al., 2016) that use the MuJoCo physics simulator

(Todorov et al., 2012). We model the (negative) Q function,

−Q(s, a; θ) as an ICNN and select actions with the convex

optimization problem a⋆(s) = argmina−Q(s, a; θ). We

use Q-learning to optimize the ICNN as described in Sec-

tion 5 and Section E. At test time, the policy is selected by

optimizing Q(s, a; θ). All of our experiments use a PICNN

with two fully-connected layers that each have 200 hidden

units. We compare to Deep Deterministic Policy Gradient

(DDPG) (Lillicrap et al., 2015) and Normalized Advantage

Functions (NAF) (Gu et al., 2016) as state-of-the-art off-

policy learning baselines.4

Table 3 shows the maximum test reward achieved by the

different algorithms on these tasks. Although no method

strictly dominates the others, the ICNN approach has some

clear advantages on tasks like HalfCheetah, Reacher, and

HumanoidStandup, and performs comparably on many

other tasks, though with also a few notable poor perfor-

mances in Hopper and Walker2D. Nonetheless, given the

strong baseline, and the fact that the method is literally

just a drop-in replacement for a function approximator in

4Because there are not official DDPG or NAF implementa-
tions or results on the OpenAI gym tasks, we use the Simon Ram-
stedt’s DDPG implementation from https://github.com/

SimonRamstedt/ddpg and have re-implemented NAF.

Task DDPG NAF ICNN

Ant 1000.00 999.03 1056.29

HalfCheetah 2909.77 2575.16 3822.99

Hopper 1501.33 1100.43 831.00

Humanoid 524.09 5000.68 433.38

HumanoidStandup 134265.96 116399.05 141217.38

InvDoubPend 9358.81 9359.59 9359.41

InvPend 1000.00 1000.00 1000.00

Reacher -6.10 -6.31 -5.08

Swimmer 49.79 69.71 64.89

Walker2d 1604.18 1007.25 298.21

Table 3. Maximum test reward for ICNN algorithm versus alter-

natives on several OpenAI Gym tasks. (All tasks are v1.)

Q-learning, these results are overall positive. NAF poses

a particularly interesting comparison point to ICNNs. In

particular, NAF decomposes the Q function in terms of

the value function an an advantage function Q(s, a) =
V (s) + A(s, a) where the advantage function is restricted

to be concave quadratic in the actions, and thus always

has a closed-form solution. In a sense, this closely mir-

rors the setup of the PICNN architecture: like NAF, we

have a separate non-convex path for the s variables, and an

overall function that is convex in a; however, the distinc-

tion is that while NAF requires that the convex portion be

quadratic, the ICNN architecture allows any convex func-

tional form. As our experiments show, this representational

power does allow for better performance of the resulting

system, though the trade-off, of course, is that determining

the optimal action in an ICNN is substantially more com-

putationally complex than for a quadratic.

7. Conclusion and future work

This paper laid the groundwork for the input convex neural

network model. By incorporating relatively simple con-

straints into existing network architectures, we can fit very

general convex functions and the apply optimization as an

inference procedure. Since many existing models already

fit into this overall framework (e.g., CRF models perform

an optimization over an output space where parameters are

given by the output of a neural network), the proposed

method presents an extension where the entire inference

procedure is “learned” along with the network itself, with-

out the need for explicitly building typical structured pre-

diction architectures. This work explored only a small sub-

set of the possible applications of these network, and the

networks offer promising directions for many additional

domains.

https://github.com/SimonRamstedt/ddpg
https://github.com/SimonRamstedt/ddpg
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