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ABSTRACT

A simulation model is composed of inputs and log
the inputs represent the uncertainty or randomness in
system, while the logic determines how the system rea
to the uncertain elements. Simple input models, consis
of independent and identically distributed sequences
random variates from standard probability distribution
are included in every commercial simulation langua
Software to fit these distributions to data is also availab
In this tutorial we describe input models that are use
when the input modeling problem is more complex.

1 INTRODUCTION

Input modelsare used to represent the uncertainty
randomness in a simulation.Input modeling—choosing
the representation—is often characterized as “picking
probability distribution.” And it may be that simple if th
following approximations are reasonable:

• The input process can be represented as a sequ
of independent random variables having a comm
(identical) distribution; in other words, a sequence
i.i.d. random variables.

• The common distribution is one of the standard fa
ilies that are included in nearly all commercial sim
lation languages: beta, empirical, Erlang, exponent
gamma, lognormal, normal, Poisson, triangular, u
form or Weibull.

• Data are available from which to select and fit t
distribution using methods such as maximum likeliho
or moment matching.

• A standard distribution provides a good fit to the da
as verified by a visual inspection or a goodness-of
test.
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There are a number of software packages to supp
simple input modeling, including ExpertFit, the Arena
Input Processor, Stat::Fit and BestFit. Unfortunatel
simple models often fail for one of the following reasons

• The limited shapes represented by the standard famil
of distributions are not flexible enough to represen
some characteristics of the observed data or som
known aspects of the process.

• The input process is not inherently independent, eith
in time sequence or with respect to other inpu
processes in the simulation.

• The input process changes over time.

• No data are available from which to select a famil
or assess the fit.

This tutorial describes models and techniques that a
useful when simple models fail. We emphasize rece
advances for which there exists some software support, ev
if the software is research software rather than commerc
software. The related issue of random-variate generati
is also discussed.

The paper is organized according to univariate inp
models (Section 3), arrival-counting processes (Section
and multivariate input models (Section 5). Section
defines notation that is used throughout the paper, a
Section 6 gives directions for obtaining the software.

2 NOTATION

The generic univariate input random variable is denote
by X, with cdf FX , and density functionfX or mass
function pX . The mean of a random variable is denote
by µ, variance byσ2, and correlations between random
variables byρ. Subscripts are added as needed.

A sequence of i.i.d. inputs isXi, i = 1, 2, . . . , while a
time-series input process is{Xt; t = 0, 1, 2, . . .}. The
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term “time series” means that the random variable
may be dependent in sequence. If we have a samp
X1, X2, . . . , Xn, then the order statistics (sorted values
are denotedX(1) < X(2) < · · · < X(n).

When the inputs are random vectors, then boldfac
type is used; e.g.,

Xi =


Xi1
Xi2

...
Xik


is a k × 1 random vector with joint cdfFX.

Greek letters, such asβ, θ and α, denote parameters
of input models. We usê to indicate an estimate, or
¯ if the estimate is an average; e.g.,β̂ and X̄.

3 UNIVARIATE INPUT MODELS

In this section we consider alternative input models fo
univariate distributions. These models are useful fo
representing i.i.d. sequencesXi, i = 1, 2, . . . , and are
most often needed when the process data has unus
characteristics (e.g., more than one mode), or when we ha
no data and want to construct a distribution that has certa
properties (e.g., moments or percentiles). The input mode
presented here range from a flexible family (Section 3.1),
a method for modifying any standard family (Section 3.2)
to a method for constructing a distribution with nearly any
desired properties (Section 3.3).

3.1 Johnson Family

In the case of modeling data with an unknown distribution
an alternative to using a standard family of distributions i
to use a more flexible system of distributions, such as th
Johnson translation system (Johnson 1949). One method
fitting target distributions from Johnson’s translation system
is via least-squares estimation, which is implemented
a software program calledFITTR1 developed by Swain,
Venkatraman and Wilson (1988). See Schmeiser an
Deutsch (1977) for another flexible family that is easy to
use in simulation.

The Johnson translation system is defined by the c

F (x) = Φ {γ + δg[(x − ξ)/λ]} , −∞ < x < ∞ (1)

where Φ is the standard normal cdf,γ and δ are shape
parameters,ξ is the location parameter,λ is the scale
parameter, andg is one of the following transformations:

g(x) =


log(x) for the lognormal family
sinh−1(x) for the unbounded family
log[x/(1 − x)] for the bounded family
x for the normal family.
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The appropriate transformation is chosen by estima
ing the skewness and kurtosis from a random samp
X1, X2, . . . , Xn and finding the unique Johnson cdf that
matches the pair.

The basis for the least-squares fitting procedur
implemented in FITTR1 is to minimize a quadratic
form of the differences between each parametricall
approximated uniformized order statistic,Rj , and its
corresponding expected value,ηj , where Rj = F (X(j))
and ηj = j/(n + 1). The E[Rj ] = j/(n + 1) if F is
the true distribution ofX. The transformed variateRj

can be written asRj = ηj + εj , where the{εj} are
translated uniform order statistics with mean zero. The
for ε′ = (ε1, ε2, . . . , εn) and somen × n weight matrix
W, the least squares estimation problem is

min
γ,δ,ξ,λ

ε′Wε

subject to
δ > 0

λ


> 0 unbounded family
> X(n) − ξ bounded family
= 1 lognormal, normal families

ξ

{
< X(1) lognormal, bounded families
= 0 normal family

Swain, Venkatraman and Wilson (1988) investigate variou
choices for the weight matrix, including the identity
matrix (which leads to ordinary least squares), a diagon
matrix with ith diagonal element1/Var[εi] (which leads
to diagonally weighted least squares), and a matrix that
the inverse of the matrix withi, jth elementCov[εi, εj ]
(which leads to weighted least squares). They conclud
that diagonally weighted least squares is a good overa
choice.

The FITTR1 software is available in Fortran or as
an MS-DOS executable. In addition to the various leas
squares fits,FITTR1 will estimate parameters via moment
matching, percentile matching, or minimumL1 or L∞
norm. FITTR1 does not produce graphics, but the use
can export data to generate plots in standard graphi
programs.

Random-variate generation can be accomplished b
transforming a standard-normal variateZ (generated in
any way) intoX = ξ + λg−1[(Z − γ)/δ], where

g−1(a) =


ea for the lognormal family
(ea − e−a)/2 for the unbounded family
1/(1 + e−a) for the bounded family
a for the normal family.

For situations when no data are available, DeBrot
et al. (1989) describeVISIFIT software for matching
a Johnson bounded distribution to subjective information
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Input Modeling Tools

The Johnson bounded distribution provides a more flexib
alternative to the uniform, triangular and beta distribution
often used to represent subjective information about
random quantity. The user providesVISIFIT with an
upper and lower bound, plus any one of the following:

mode and width of central 95% of distribution
mode and standard deviation
mode and percentile (fractile)
mode and median (unless mode = median)
mode and mean (unless mode = mean)
median and width
median and mean (unless median = mean)
median and standard deviation
two percentiles (one of which may be the median)
mean and width
mean and standard deviation
mean and percentile
percentile and width
percentile and standard deviation
two beta parameters

The implied Johnson bounded distribution is then displaye
graphically, and the user may change its shape in a variety
ways until an acceptable model is attained. TheVISIFIT
software is available as an MS-DOS executable.

3.2 Inverse Distribution with a Polynomial Filter

To generate random variates from an unknown continuo
distribution, the inverse cdf, fitted to a sample of data,
often used; i.e.,X = F−1

X (U), where U ∼ U(0, 1) and
FX is the chosen distribution. The philosophy behin
“inverse distribution with a polynomial filter” (IDPF) is
to improve the fit by modifying the transformation to
X = F−1

X (q(U)), whereq is a polynomial inU .
Let Xi, i = 1, 2, ..., n be an i.i.d. sample. The typical

first step in input modeling is to decide what genera
family—such as gamma, exponential or Johnson—provid
the shape that best matches the empirical distribution. T
IDPF method makes no assumption about the initial inp
model FX , called the reference distribution, except tha
it has a continuous density function. Once a referen
distribution is selected, the second step is to establish t
set of parameters that best fit the general family to th
data. The third step is to determine the quality of the fi
If visual inspection or a goodness-of-fit test show eithe
a local or general problem with the fit, then IDPF can b
applied.

The IDPF procedure, as a fourth step, creates
modified F−1

X that improves the fit compared to the
reference distribution. IDPF was developed by Avramid
and Wilson (1994) and is an update to a method original
proposed by Hora (1983). The method is to replaceU
107
with an rth order polynomialq(U),

q(U) = b1U + b2U
2 + · · · + brU

r.

The {bi; i = 1, 2, . . . , r} are chosen in such a way tha
F−1

X (q(U)) remains a legitimate inverse cdf, which is
equivalent to the statement thatq(U) is strictly increasing
in U with the boundary conditionsq(0) = 0 andq(1) = 1.

Estimation of the bi for the IDPF procedure is
formulated as a least squares estimation problem. T
ordinary-least-squares distance is the distance between
empirical inverse cdf—represented by the order statistics
the sample—and the modified inverse reference distributio
Specifically,

ê2
ols = min

b1,...,br

n∑
i=1

{
X(i) − F−1

X

[
q

(
i − 0.5

n

)]}2

.

Avramidis and Wilson (1994) also develop a weighted-leas
squares formulation that compensates for the differenc
in variability of the order statistics.

The IDPF software is available in FORTRAN or
MS-DOS executable. The software assumes the refere
distribution is from the Johnson family, and uses th
techniques described in Section 3.1 to obtain the initi
fit. The key output consists of the four parameters of th
reference distribution from the Johnson family, followe
by the set of b̂is that define therth-order polynomial.
These two sets of parameters provide all that is necess
to generate variates. Variate generation is accomplish
in the obvious way by first generatingU ∼ U(0, 1), then
returningX = F−1

X (q(U)).

3.3 Univariate Bézier Distributions

Univariate B́ezier distributions provide a flexible alternative
to standard distributions (Wagner and Wilson 1996a). T
univariate B́ezier distribution is a special case of a splin
curve and is constructed by fitting a curve to a specifie
number of points called control points. Letpi = (xi, zi)′

be theith control point fori = 0, 1, 2, . . . , n. The control
points are not data points; instead, they act as “ancho
for the B́ezier cdf and can be moved so as to alter th
shape of the distribution. Typically, the Bézier cdf is a
continuous distribution. The B́ezier cdf interpolates the
first and last control points exactly (and is thus a bound
distribution) but might only pass in close proximity to
control points1, 2, . . . , n − 1.

A Bézier distribution withn + 1 control points is
defined as

P(t) =
(

x(t)
FX(x(t))

)
=

n∑
i=0

Bn,i(t)pi
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for t ∈ [0, 1], whereBn,i(t) is the Bernstein polynomial

Bn,i(t) =

{ (
n
i

)
ti(1 − t)n−i, for t ∈ [0, 1]

0, otherwise.

Although the Bernstein polynomial may initially seem
complex, it is helpful to think of it in terms of the probability
mass function (pmf) of a binomial random variable. For
binomial random variableY , the probability ofi successes
in n trials is

Pr{Y = i} =
(

n

i

)
pi(1 − p)n−i

for i = 0, 1, . . . , n, wherep is the probability of success.
The parameterp is fixed, and probability statements ar
made about the random variableY for different values of
i. The Bernstein polynomial differs from the pmf of a
binomial random variable in that it fixesi and variest (the
continuous analog ofp) within the interval [0, 1]. Thus,
for t equal to p, the value of the Bernstein polynomia
is equal to the value of the pmf of a binomial random
variable evaluated ati.

At any value oft in the interval [0, 1], the value of
the B́ezier distribution is simply a weighted average o
the control points. To observe this, notice that the Bézier
distribution can be written as

P(t) =
(

x(t)
FX(x(t))

)
=

n∑
i=0

(
n

i

)
ti(1 − t)n−ipi

for t ∈ [0, 1]. For any fixed value oft the sum of the
weights is1.

Prime is a software tool used to construct univariat
Bézier distributions with or without data. It is an interactive
graphical software program that runs on a PC und
Windows.

Prime’s main workspace is a window displaying the
X and FX coordinate axes along with the Bézier cdf.
The initial starting point forPrime is a cdf consisting of
six control points arranged in a straight line. The sha
of the distribution is changed by repositioning the contr
points within the window. Adjustments to the position of
control point are made by clicking and dragging the poi
to a new location on the screen. Control points can
both added and deleted. As control points are reposition
added, or deleted, the shape of the Bézier distribution is
updated. Furthermore,Prime has the ability to detect
infeasible cdfs (i.e., ones that are not nondecreasing) a
highlights an invalid distribution in red.

Prime also allows the user to view and manipulat
the probability density function. Just like the cdf, the pd
is updated as the control points are moved. Although
is possible to manipulate the pdf, it is not as intuitiv
108
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as adjusting the cdf. Because the total area under
pdf must remain equal to1, adjusting one control point
simultaneously adjusts both adjacent control points (unle
one of the adjacent control points is the last control poin
in order to satisfy this constraint.

Another useful feature ofPrime is that it allows a
comparison between the first four moments of the Bézier
distribution and an empirical data set. In the absence
data, this comparison is useful for constructing an inp
model having any first four moments.Prime also allows
the user to insure that the Bézier distribution has certain
fixed percentiles.

In addition to allowing the user to construct a cd
interactively, Prime has the ability to apply standard
statistical estimation procedures to Bézier distributions.
Specifically, maximum likelihood, moment matching, pe
centile matching, least squares,L1 norm andL∞ norm
estimation can be accessed when data has been impo
Prime will also determine the number of control point
to use by sequentially evaluating the impact on fit of a
additional control point via a likelihood ratio test (Wagne
and Wilson 1996b).

Bézier random-variates are generated via the inve
transform method. Given a random numberU ∼ U(0, 1),
a search procedure is implemented to find the associa
value of the parametert such thatFX(x(t)) = U . Once
t is determined,X = x(t).

4 ARRIVAL-COUNTING PROCESSES

Arrival-counting processes are among the most importa
of all input models because simulations of industrial an
service systems are typically driven by the arrivals
customers, orders, materials, information, etc. Renew
arrival-counting processes, in which the times betwe
arrivals are i.i.d. random variables, are a standard feature
commercial simulation languages. A marginal distributio
that is often chosen is the exponential distribution wi
mean1/λ, which implies that the renewal arrival proces
is a Poisson arrival process with constant arrival rateλ
arrivals per unit time.

In many practical situations there is need for a
arrival process whose rate is a function of time,λ(t). The
nonhomogeneous Poisson process (NHPP) is a well-kno
generalization of the Poisson process that allows a tim
dependent arrival rate. However, fitting the functionλ(t) to
data is a very difficult problem. Lee, Wilson, and Crawfor
(1991) consider fitting an NHPP with an exponential ra
function containing a polynomial component (for long term
trend) and a trigonometric component (for cyclic behavio
Kuhl, Wilson and Johnson (1997) extended these ideas
allow multiple periodicities.
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Let {N(t) : t ≥ 0} be a nonnegative integer valued
stochastic process representing the cumulative number
arrivals up to timet. Consider a sequence ofn arrivals for
this process at timest1 < t2 < · · · < tn over a fixed time
interval (0, S]. A reasonable starting point for modeling
such a process would be an NHPP with a rate function
λ(t), that could capture any cyclic or long term trends in
the data. Kuhl, Wilson and Johnson (1997) consider th
rate function

λ(t) = exp

{
m∑

i=0

αit
i +

p∑
k=1

βk sin(ωkt + φk)

}
. (2)

The vector,Θ, of unknown parameters consists ofm + 1
coefficients for the polynomial component, and thep
amplitudes (βk), frequencies (ωk) and phase shifts (φk)
for the trigonometric component. For ease of exposition
we focus on the casep = 1 cyclic component.

Using the properties of an NHPP gives the following
log-likelihood function ofΘ in the special casep = 1:

L(Θ) =
m∑

i=0

αiTi + β
n∑

j=1

sin(ωtj + φ) −
∫ S

0
λ(z)dz

where Ti =
∑n

j=1 tij . Notice that the degreem of
the polynomial component is also unknown. Sincem
must be a nonnegative integer, it is difficult to determine
via maximum likelihood. Therefore, Lee, Wilson and
Crawford (1991) recommend that estimation ofΘ be
conditioned on a fixed value ofm, and the final value of
m be determined by a likelihood ratio test. Differentiating
the log-likelihood function with respect to each unknown
parameter individually results in a system ofm + 4
nonlinear equations which can be solved numerically. Se
Johnson, Lee and Wilson (1994a) for details on paramet
estimation.

Johnson, Lee, and Wilson (1994b) describe two sof
ware programs to estimate parameters for, and simula
an NHPP with rate function (2) in the special case o
p = 1 cyclic component. The programNPPMLEcomputes
maximum-likelihood estimates for the rate function param
eters given a set of arrival epochs. The program require
additional input from the user regarding the length of th
observation interval, number of arrivals, maximum degre
of the polynomial, significance level for the likelihood
ratio test to selectm, and other items concerning the
trigonometric component. The output provides estimate
values for all parameters.

The programNPPSIM uses rate function parameters
(such as estimates fromNPPMLE) to simulate arrivals by
the method of thinning with a piecewise linear majorizing
function. Inputs required byNPPSIMare the rate function
parameters and the length of the observation interval. Th
output of the program is a series of arrival epochs writte
109
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to a file, and the piecewise linear majorizing functio
which is written to the terminal. This rate function is
displayed with an upper limit, slope, and intercept fo
each interval. Both of the software programs are writte
in FORTRAN 77. For the casep ≥ 1, Kuhl, Wilson and
Johnson (1997) have developedmp3mle and mp3sim ,
extensions ofNPPMLEand NPPSIM that allow multiple
periodicities.

5 MULTIVARIATE INPUT MODELS

In this section we consider input models for depende
random variables, either random vectors or time-seri
processes. Standard models for these two cases are
multivariate normal distribution (denoted MVN) for random
vectors, and the Gaussian autoregressive order-p process
(denoted AR(p)) for time-series input. The univariate
marginal distribution in both cases is normal, limiting
the usefulness of these models in simulation application
Nevertheless, since many alternative input models are ba
on the MVN or AR(p) models, we review each of them
briefly.

The standard multivariate normal distribution defines
k×1 random vectorZ with mean vectorµ = (0, 0, . . . , 0)′

and correlation matrix

Σ =


1 ρ12 · · · ρ1k

ρ21 1 · · · ρ2k

...
...

...
...

ρk1 ρk2 · · · 1


such that theith elementZi is distributedN(0, 1) and
ρij = Corr[Zi, Zj ]. The parametersµ and Σ uniquely
specify a multivariate normal distribution. For multivariate
vectors with other marginal distributions, however, thi
is not enough information to determine a unique join
distribution.

The standard AR(p) process is a time series{Zt; t =
0, 1, 2, . . .} defined by the recursion

Zt =
p∑

h=1

αhZt−h + εt (3)

where{εt} is a sequence of i.i.d.N(0, σ2
ε) random vari-

ables. LetρZ(h) = Corr[Zt, Zt+h], the autocorrelation
at lag h. If this process is appropriately initialized, the
parametersα1, α2, . . . , αp satisfy certain conditions, and
σ2

ε = 1 − ∑p
h=1 αhρZ(h), then eachZt is marginally

N(0, 1) with autocorrelations that are a known function
of α1, α2, . . . , αp. Similar to the case of random vectors
alternative time-series input models with other margin
distributions are not uniquely determined by their autoco
relation structure.
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5.1 Time-Series Input Processes

The goal is to construct a stationary time series{Xt; t =
0, 1, 2, . . .} with given marginal distributionFX and given
first p autocorrelationsρX(h), h = 1, 2, . . . , p. There are
two basic approaches:

1. Construct such a process using properties specific
the particular marginal distribution of interestFX .

2. Construct a process{Ut; t = 0, 1, 2, . . .} with U(0, 1)
marginals and whose autocorrelations are easily co
trolled. Then form the input process via the transfo
mation Xt = F−1

X (Ut).

Because of its generality, we only discuss the seco
approach here. In addition to the method we describ
see Melamed, Hill and Goldsman (1992), Song, Hsia
and Chen (1996) and Willemain and Desautels (1993)
alternatives.

AutoRegressive To Anything (ARTA) processes defin
a U(0, 1) time series via the transformationUt = Φ(Zt),
where{Zt; t = 0, 1, 2, . . .} is a stationary, standard AR(p)
process andΦ is the standard normal cdf. Cario and
Nelson (1996) have shown that the lag-h autocorrelation
of the time-series input process defined by

Xt = F−1
X (Ut) = F−1

X [Φ(Zt)] (4)

is a continuous, nondecreasing function of the la
h autocorrelation of theZt process. Therefore, the
problem of fixing the first p autocorrelations of the
Xt process decomposes intop independent problems of
determining the valueρZ(h) = Corr[Zt, Zt+h] that maps
into the desired autocorrelationρX(h) = Corr[Xt, Xt+h],
for h = 1, 2, . . . , p. Since ρX(h) is a continuous,
nondecreasing function ofρZ(h), these problems are easily
solved numerically (Cario and Nelson 1998). Variat
generation is accomplished by generating a stationa
standard AR(p) processZt by any method, then applying
equation (4).

ARTAFACTS(ARTA Fitting Algorithm for Construct-
ing Time Series) is software available in FORTRAN t
fit ARTA processes for nine marginal distributions (nor
mal, student’st, continuous uniform, exponential, gamma
Weibull, lognormal, Johnson unbounded, Johnson bound
empirical cdf and discrete distribution with finite suppor
and up to 5 autocorrelations. ARTAFACTSwill also
estimate the autocorrelation function of a data set. A
input the user must provide the parameters of the d
sired marginal distribution and the autocorrelations to
matched.ARTAGEN(ARTA GENeration algorithm) takes
the output of ARTAFACTSand generates a stationar
ARTA process as input to a simulation.
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5.2 Random Vectors

A number of methods have been proposed for represent
and generating random vectors with specific distribution
See Devroye (1986) and Johnson (1987) for gene
references. In addition, multivariate extensions to th
Johnson family have been developed (Johnson 198
Chapter 5, Stanfield, et al. 1996), and a bivariate Bézier
distribution has been defined and implemented inPrime
(Wagner and Wilson 1995, 1996b).

A general method for obtaining random vectors wit
arbitrary marginal distributions and correlation matrix i
described by Cario and Nelson (1997). The central ide
is to transform a standard multivariate normal vector int
the desired random vector. These vectors are referred
as having a NORTA (NORmal To Anything) distribution.
Specifically, let

X =



F−1
X1

[Φ(Z1)]

F−1
X2

[Φ(Z2)]

...

F−1
Xk

[Φ(Zk)]


where Z = (Z1, Z2, . . . , Zk)′ is a standard MVN vector
with correlation matrixΣ, andFX1 , FX2 , . . . , FXk

are the
desired marginal distributions. The problem then becom
finding aΣ that implies the desired correlation matrix for
X. The results of Cario and Nelson (1997) suggest th
this is not a difficult numerical problem. The procedur
for finding Σ is an extension of the ARTA method for
time-series input.

The NORTA method provides a general-purpose a
proach for modeling and generating dependent input pr
cesses. The generality, however, comes at the cost
computational efficiency. The fitting process is time con
suming, although this expense is incurred only once f
each input model. And even though the marginal tim
for generating each NORTA variate can be longer tha
the fastest available method for a particular distributio
(as there is a need to evaluate the composite functi
F−1

X [Φ(Z)]), the NORTA method will yield acceptable
results in system simulation environments where eve
processing and animation account for large fraction of th
execution time.

NORTA has been are implemented by Chen and Je
(1998) in theirRandom Vector software package. The
software, which is written in C, generates a given number
k-dimensional random vectors having a desired correlati
structure and given marginals. The inputs to the progra
include the initial random seed, desired number of vecto
to be generated, the dimension of the vectors, margin
for each vector component, and the upper triangular for
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of the correlation matrix excluding the diagonal elements
Marginal distributions can be selected by the user from
eleven commonly used distributions, including normal
lognormal, exponential, beta, gamma, Weibull, uniform
and others. For each distribution, the user is asked
enter the necessary distribution parameters, such as me
and standard deviation for the normal marginal.

Random Vector software uses the method of ret-
rospective optimization in order to match the desired
correlation structure iteratively. Specifically, a stochasti
root-finding algorithm is implemented in this software.

The output of the program consists of the intermediat
output of the stochastic root-finding procedure, as th
sample sizes are being increased, and the final resu
consisting of the desired number of random vectors an
their statistics. Statistics include mean and variance o
each marginal within a vector, as well as the resultin
correlation matrix. The code’s accuracy and efficienc
strongly depend on the dimension of random vectors an
their marginal distributions. Computational complexity
increases greatly as the vector dimension increases.

For a different approach to fitting NORTA distributions
that is useful for obtaining simulation input whose margina
distribution andsample correlation matrixclosely matches
given marginals and correlation matrix, see Lurie an
Goldberg (1998).

6 OBTAINING THE SOFTWARE

FITTR1 , VISIFIT and IDPF may be obtained from
http://
www.ie.ncsu.edu/people/faculty/wilson/ .

Prime may be obtained from Mary Ann Flanigan Wagner
at maflanig@osf1.gmu.edu .

mp3mle and mp3sim may be obtained from
http://
www.ie.ncsu.edu/people/faculty/wilson/ .

ARTAFACTSand ARTAGENmay be obtained from
http://www.iems.nwu.edu/ñelsonb/ARTA/ .

Random Vector software may be obtained from Huifen
Chen athuifen@aries.dyu.edu.tw .

ACKNOWLEDGMENTS

This paper is an update of Nelson, B. L., P. Ware
M. C. Cario, C. A. Harris, S. A. Jamison, J. O. Miller,
J. Steinbugl and J. Yang. 1995. Input modeling whe
simple models fail. InProceedings of the 1995 Winter
Simulation Conference, ed. C. Alexopoulos, K. Kang,
W. R. Lilegdon and D. Goldsman, 93–100. Institute o
Electrical and Electronics Engineers, Arlington, Virginia.
111
.

o
an

lt,
d
f

d

REFERENCES

Avramidis, A. N. and J. R. Wilson. 1994. A flexible
method for estimating inverse distribution functions in
simulation experiments.ORSA Journal on Computing
6:342–355.

Cario, M. C. and B. L. Nelson. 1996. Autoregressive to
anything: Time-series input processes for simulation.
Operations Research Letters19:51–58.

Cario, M. C. and B. L. Nelson. 1997. Modeling and
generating random vectors with arbitrary marginal
distributions and correlation matrix. Technical Report,
Department of Industrial Engineering and Management
Sciences, Northwestern University, Evanston, Illinois.

Cario, M. C. and B. L. Nelson. 1998. Numerical methods
for fitting and simulating autoregressive-to-anything
processes.INFORMS Journal on Computing10:72–
81.

Chen, H. and C. Jeng. 1998. RA algorithms for generation
of multivariate random vectors. Working paper, De-
partment of Industrial Engineering, Da-Yeh University,
Chang-Hwa, Taiwan.

DeBrota, D. J., R. S. Dittus, S. D. Roberts and J. R. Wilson.
1989. Visual interactive fitting of bounded Johnson
distributions.Simulation52:199–205.

Devroye, L. 1986.Non-Uniform Random Variate Genera-
tion. New York: Springer-Verlag.

Hora, S. C. 1983. Estimation of the inverse function for
random variate generation.Communications of the
ACM 26:590–594.

Johnson, M. A., S. Lee and J. R. Wilson. 1994a.
Experimental evaluation of a procedure for estimating
nonhomogeneous Poisson processes having cycli
behavior.ORSA Journal on Computing6:356–368.

Johnson, M. A., S. Lee and J. R. Wilson. 1994b. NPPMLE
and NPPSIM: Software for estimating and simulating
nonhomogeneous Poisson processes having cycli
behavior.Operations Research Letters15:273–282.

Johnson, M. E. 1987.Multivariate Statistical Simulation.
New York: John Wiley.

Johnson, N. L. 1949. Systems of frequency curves generate
by methods of translation.Biometrika36:297–304.

Kuhl, M. E., J. R. Wilson and M. A. Johnson. 1997. Esti-
mating and simulating Poisson processes having trend
or multiple periodicities.IIE Transactions29:201–211.

Lurie, P. M. and M. S. Goldberg. 1998. An approximate
method for sampling correlated random variables from
partially-specified distributions.Management Science
44:203–218.

Lee, S., J. R. Wilson and M. M. Crawford. 1991. Modeling
and simulation of a nonhomogeneous Poisson proces
having cyclic behavior.Communications in Statistics–
Simulation and Computation20:777–809.



Nelson and Yamnitsky

ur

f
s-

,
t

8.

l

l-

-

d

s.

at
f
ed
i-
t
f

t
ts
ic
rk
ly
Melamed, B., J. Hill and D. Goldsman. 1992. The
TES methodology: Modeling empirical stationary time
series. InProceedings of the 1992 Winter Simulation
Conference, ed. J. J. Swain, D. Goldsman, R. C. Crain
and J. R. Wilson, 135–144. Institute of Electrical and
Electronics Engineers, Washington, D.C.

Schmeiser, B. W. and S. J. Deutsch. 1977. A versatile fo
parameter family of probability distributions suitable
for simulation. IIE Transactions9:176–181.

Song, W. T., L. Hsiao and Y. Chen. 1996. Generation o
pseudorandom time series with specified marginal di
tributions.European Journal of Operational Research
93:194–202.

Stanfield, P. M., J. R. Wilson, G. A. Mirka, N. F. Glassock
J. P. Psihogios and J. R. Davis. 1996. Multivariate inpu
modeling with Johnson distributions. InProceedings
of the 1996 Winter Simulation Conference, , ed.
J. M. Charnes, D. J. Morrice, D. T. Brunner and
J. J. Swain, 1457–1464. Institute of Electrical and
Electronics Engineers, Coronado, California.

Swain, J. J., S. Venkatraman and J. R. Wilson. 198
Least-squares estimation of distribution functions in
Johnson’s translation system.Journal of Statistical
Computation and Simulation29:271–297.

Wagner, M. A. F. and J. R. Wilson. 1995. Graphica
interactive simulation input modeling with bivariate
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