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Abstract: An MEMS resonant accelerometer is a temperature-sensitive device because temperature
change affects the intrinsic resonant frequency of the inner silicon beam. Most classic temperature
compensation methods, such as algorithm modeling and structure design, have large errors under
rapid temperature changing due to the hysteresis of the temperature response of the accelerometer.
To address this issue, we propose a novel reservoir computing (RC) structure based on a nonlinear
silicon resonator, which is specifically improved for predicting dynamic information that is referred to
as the input–output-improved reservoir computing (IOI-RC) algorithm. It combines the polynomial
fitting with the RC on the input data mapping ensuring that the system always resides in the rich
nonlinear state. Meanwhile, the output layer is also optimized by vector concatenation operation for
higher memory capacity. Therefore, the new system has better performance in dynamic temperature
compensation. In addition, the method is real-time, with easy hardware implementation that can
be integrated with MEMS sensors. The experiment’s result showed a 93% improvement in IOI-RC
compared to raw data in a temperature range of −20–60 ◦C. The study confirmed the feasibility of
RC in realizing dynamic temperature compensation precisely, which provides a potential real-time
online temperature compensation method and a sensor system with edge computing.

Keywords: reservoir computing; nonlinear MEMS resonator; algorithm optimization; dynamic
temperature compensation; MEMS resonant accelerometer

1. Introduction

The MEMS resonant accelerometer has emerged as a powerful inertial sensors owing
to its advantage of small size, low cost, and low power consumption [1–3]. However,
temperature affects the performance of silicon-based sensors, so temperature compensation
is crucial for providing reliable output. It is now commonly established that temperature
compensation can be realized by device structure optimization at the hardware level [4–6],
and frequency-temperature (f-T) modelling at the software level [7–9]. The hardware com-
pensation methods usually require special structural topology and sophisticated fabrication
technology [10], which suffer from high cost and power consumption. Thus, temperature
compensation at the software level possesses broad application prospects. However, soft-
ware compensation generally needs a complicated network with a mass of parameters for
higher accuracy [11]. Moreover, rapid changing of ambient temperature causes hysteresis
of temperature response of the accelerometer, but this dynamic case has received little
attention in the literature so far.

To this end, surveys have shown that adding derivative terms in polynomial or using
echo state network (ESN) can improve the precision to some extent [12,13]. Inspired by
this view, combined with the characteristics of reservoir computing (RC) that is simple in
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structure and well-suited for temporal processing [14], we proposed a dynamic temperature
compensation for an MEMS resonant accelerometer based on an improved RC structure
with a single duffing resonator to realize a high-accuracy compensation. Evolved from
recurrent neural network (RNN), RC is a brain-inspired computational algorithm that
is best-in-class for processing information generated by dynamic systems. Even when
systems display complex spatiotemporal behaviors, which are considered the hardest
problems, an optimized RC can predict them easily. With the proposal of a time-delayed
structure, which reduces the difficulty of hardware implementation [15], physical RC in
diverse fields has been studied [16–18], among which the RC based on MEMS resonator has
a simpler system and lower cost [19]. Many optimization methods of diverse RC structures
based on MEMS resonators have also been discussed in recent studies [20–22]. Benefiting
from these advantages, numerous tasks with various datasets, such as chaotic system [23],
handwritten digit [22], and IMU signal [20], can be processed by RC, which inspires us
to handle the signal processing of sensors via RC. This method is suitable for addressing
the hysteresis phenomenon. Moreover, the physical RC with a single resonator makes this
temperature compensation method easier to integrate with an MEMS accelerometer and IC.

This paper sets out to investigate a novel real-time compensation method and an appli-
cation of physical RC system based on MEMS resonator. We apply RC to the temperature
compensation for MEMS accelerometer for the first time, which not only realizes a dynamic
temperature compensation, but also lays a foundation for the disruptive applications of
physical RC in the field of sensor temperature compensation technology and provides a
new insight for sensory–computation integration. Our method is universal and hardware
implementation is easy, as the RC can be trained for different devices and environments,
and our physical RC based on a single MEMS resonator is simple to operate with an
MEMS accelerometer. It is hoped that this research will contribute to a new generation of
temperature compensation for all kinds of MEMS sensors.

2. Materials and Methods
2.1. Input–Output-Improved Reservoir Computing

A traditional RC (T-RC) is shown in Figure 1a. In the input layer, the original data u(ti)
are normalized to (0,1), because the resonator is amplitude-detected and the output data
only reflects positive information. The original data are broadcast to the reservoir by the
N-dimensional mask in order to increase linear richness. It acts as the input connection
weight of ESN and is randomly chosen to avoid the vanishing gradient problem during
training [24]. The mask in our algorithm is a vector of random numbers in the range
of (−1, 1) with zero mean and unit variance. Then, linear feature vector xi is fed to the
reservoir layer with an input gain β. The reservoir layer is the most vital part of RC, which
increases the nonlinear richness of the system and is sensitive to its optimizable architecture
properties. The nonlinear node, as shown in the center yellow NL square in Figure 1a, maps
xi into a nonlinear feature vector ri. Each element of the vector represents a virtual node,
which contains high-dimensional features deriving from the nonlinearity of the duffing
function [25], described as:

m
..
x+c

.
x + k1x + k3x3= Fcos(ωt). (1)

where m is the lumped effective mass, x is the displacement of silicon beam, c is the
damping coefficient, k1 is the linear spring stiffness, k3 is the nonlinear spring stiffness
that determines the nonlinear behavior, F is the electrostatic drive force, and ω is the drive
frequency. The time interval θ between each element in feature vectors is the duration of
each virtual nodes. It decides the duration time Nθ of a single input data u(ti) as well as
the data sampling time before modulation in hardware experiment [22]. Through the delay
loop, as illustrated by the yellow arrow in Figure 1a, previous data are added to the present
data element by element and then sent to the nonlinear node, so the dynamic system is
able to remember its previous states. We chose the delay time of the delay loop τ = Nθ. The
feedback gain α affects the memory capacity (MC), which is crucial to accuracy. By adding
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delay loops (the gray arrows), we can enhance the MC of the RC system. Optimization
method of those parameters can be referred to in our previous work [21]. The output
layer yields the RC output by linearly weighting the reservoir feature vector: ŷ(ti)= wri,
where w is the output weight vector. For the RC system, only the w is trained via ridge
regression algorithm:

w = yXT(XX T +λI)
−1

. (2)

where X is the feature matrix by stacking up ri, y is the target value, λ is regularization
parameter to prevent overfitting and I is the identity matrix.
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Figure 1. The T-RC and IOI-RC. (a) The T-RC structure: the mask signal broadcasts the original data,
and the delay loop adds correlation of adjacent time data. (b) The IOI-RC structure: input layer
increases nonlinear richness and output layer enhances long-term MC.

The main characteristic of RC is the feature mapping effect obtaining linear richness
and nonlinear richness. Meanwhile, the delay loop increases the MC to improve the
forecasting performance. Our proposed algorithm further enriches the nonlinearity of
the data in the input layer by adding simple nonlinear node, inspired by the nonlinear
vector autoregression (NVAR) machine. Additionally, in order to make our network more
suitable for temperature compensation tasks, we increased the MC in the output layer by
time multiplexing, presenting a new structure called input–output-improved reservoir
computing (IOI-RC).

As shown in Figure 1b, the input u(ti) first goes through a polynomial nonlinear
node (quadratic in this paper) before being broadcast by the mask. We put the nonlinear
transform before the mask to ensure masking consistency. In other words, if we square the
xlin,i after masking, the mask is multiplied twice in the nonlinear vector xnl,i, which is not
the interested data and reduces system performance. The total input feature vector xi is
2N-dimensional, and the time interval between each element stays the same θ, matching
with the resonator decay time (Td). The reservoir layer of IOI-RC is similar to traditional
RC. After two nonlinear transformations, the system obtains reservoir feature vector ri with
huge linear and nonlinear richness so that the regression process catches more dynamic
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information. As the ri consists of single-nonlinear elements rin and double-nonlinear
elements riqn, we found that adding the two different kinds of elements through the delay
loop would enhance the system’s performance, which is calculated by:rin = DF

(
αr(i−1)qn + βxin

)
, 1 ≤ n ≤ N.

riqn= DF
(
αrin + βxiqn

)
, 1 ≤ n ≤ N.

(3)

where DF represents the duffing transform, subscript i represents the ti moment, subscript
n represents the element position, α is the feedback gain, and β is the input gain. In this
way, the delay time remains: τ = Nθ. In order to achieve real-time compensation, the data
sampling interval should be small, much shorter than the hysteresis time. As a result, the
system can only receive short-term MC. As illustrated in Figure 1b, present mapping feature
vector ri is concatenated by several previous vectors ri-sk, where s is a positive integer and
k is the time step. The product sk is matched with the correlation length of adjacent data,
which represents the needed MC. While the choose of s is quite flexible, which selects how
many past data points are needed, time step k is determined by how long ago the data
most relevant to the present occurs (lagging time of hysteresis for dynamic temperature
compensation), which is related to a specific task. Initially, the total output feature oi has a
length of 2(s + 1)N as well as the weight vector w, but we can retain a part of element of
oi, which balances processing speed and accuracy. The training method remains a ridge
regression, with the same target value of a traditional RC.

IOI-RC is theoretically more time-consuming with an extra nonlinear transform and
MC reinforce, but brings much more accuracy. It combines features of NVAR and RC and
has the same number of parameters as traditional RC to be optimized. For temperature
compensation, as the input temperature data directly flows into the resonator during the
experiment and the RC takes almost no time (far less than sampling time), we can obtain
real-time compensation.

2.2. Temperature Compensation Method

The schematic of our MEMS resonant accelerometer is shown in Figure 2. The length
of our encapsulated device is 6950 µm, the width is 5300 µm and the thickness is 450 µm.
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accelerometer sensor, which is driven and sensed by capacitors. The proof mass has four structural
supports and a pair of micro-levers.
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It is fabricated by standard silicon processing. There is a double-ended tune fork
resonator with one end connected to a proof mass by a pair of micro-lever force amplifier. It
has a scale factor of 860 Hz/g. Our device is capacitive driven and sensed by electrodes at
two sides of the resonator. The proof mass has four suspended cantilevers around it acting
as structural supports. When an acceleration is applied to the proof mass, inertial force is
generated and amplified by the micro-lever. The resonator is stretched or compressed by
the inertial force, causing stiffness change and resulting in frequency drift (FD).

When the ambient temperature changes rapidly, the thermal gradient generated
by the uneven temperature distribution on the accelerometer causes the hysteresis of
its temperature response, which brings the classic f-T modelling methods unacceptable
measurement error. This dynamic error that contains a temporal and logical relationship
could not be expressed as a fitting function directly. Therefore, we innovatively introduced
RC, which is best-in-class for predicting chaotic systems, combined with classic polynomial
fitting to deal with this complicated prediction task. Considering that the FD caused by
the change in scale factor of our home-made accelerometer is negligible under changing
temperature, only the zero-bias FD for the whole acceleration range is supposed to be taken
into account in our compensation model, which is calculated by:

∆f
f0
= cT + d(T). (4)

where cT represents the static polynomial fitting, and d(T) is the residual dynamic drift
that would be predicted by RC. We chose T rather than ∆T because of the desired positive
normalized input data for the RC system, as the effective information for amplitude
modulation is the absolute value.

Figure 3 illustrates our compensation method for the corresponding f-T model. The
system respectively yields static FD (FDs), and dynamic FD (FDd). They are added up as
the total estimated FD. This two-step method better accords with our intuition, as it first
finds the static operation point of the resonator in a given temperature, and then predicts
the dynamic characteristics of the whole system. Furthermore, the RC based on MEMS
is hardware implemented with a similar fabrication to the accelerometer, which may be
possible to integrate, affording a sensor system with online compensation.
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to polynomial and reservoir simultaneously. The polynomial fitting yields FDs and the reservoir
computing predicts the FDd. The total estimated FD is the sum of FDs and FDd.

2.3. Experiment

Figure 4a shows the schematic of our temperature experiment’s setup. Briefly, the
MEMS accelerometer was fixed horizontally with zero acceleration in the probe station
(Lakeshore Model TTPX, Lake Shore Cryotronics, Inc., Westerville, OH, USA). Heating was
controlled using a temperature controller (Lakeshore Model 336, Lake Shore Cryotronics,
Inc.) with a heater and a temperature sensor placed near the accelerometer. Cooling was
carried out by liquid nitrogen and the flow rate is fixed so that the equivalent cooling
power was about half of the max heating power. The temperature controller can set the
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temperature value and implement stabilization using a PID algorithm. It can also set
temperature ramping rate up to 50 ◦C/min, achieving various temperature changes. The
accelerometer interface circuit was connected outside the probe station in order to eliminate
the influence of temperature on the circuit. It is a closed-loop circuit for real-time driving
and sensing and is powered by a DC power source (KEITHLEY 2450, Keithley Instruments,
Cleveland, OH, USA). The resonator frequency is monitored using a frequency counter
(KEYSIGHT 53230A, Keysight, Santa Rosa, CA, USA). Temperature and frequency data
were collected using a computer. Figure 4b shows a real picture of the experiment.
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Figure 4. Temperature experiment setup. (a) The schematic of the temperature experiment: The
probe station act as a temperature oven heated up by the temperature controller and cooled down by
liquid nitrogen. The accelerometer was zero-bias and driven by an interface circuit. The frequency
counter monitored the frequency changes. (b) The real picture of the temperature experiment.

Our temperature experiment has two steps as shown in Figure 5: static step and
dynamic step, which, respectively, yield FDs and FDd for the f-T model in Figure 2. We
carried out the experiment on two kinds of model separately. We first calibrated static
temperature data for polynomial fitting (5th order) with each point stable for an hour, and
then collected data from the dynamic experiment to train the IOI-RC. Our training dataset
(TrDs) started from a −10 ◦C stabilization and contained plenty of up–down processes
with multiple trends (shown in the next section). Two testing datasets (TeDs1, TeDs2) were
designed, while TeDs1 was collected continuously behind TrDs, and TeDs2 was collected
after another −10 ◦C stabilization in order to validate long-term effectiveness of the system.
The range of temperature and the ramping rate were −20~60 ◦C and −30~25 ◦C/min,
respectively. As explained before, the compensation error is calculated using FD-FDs-FDd.
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and tested.
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3. Results
3.1. NARMA10 Task

In order to verify our IOI-RC before the temperature experiment, we simulated the
well-known NARMA10 task in the RC community [26]. We generated 1000 time points
for training and 1000 time points for testing. Three different algorithms are compared for
the NARMA10 task: ESN, T-RC, and IOI-RC. The basic structures are similar, and we set
the number of virtual nodes as the same for all three algorithms. Except for the improved
parts, the IOI-RC parameters were the same as T-RC. We chose N = 50, s = 9, k = 1, and the
delay length of 50. Therefore, 10 adjacent points were jointed together in the network to
obtain a strong MC specially for this task. We retained 20% of the output vector elements
evenly, so a single output vector oi contains 200 elements, as well as the w.

Table 1 shows the system’s performance. The normalized root mean square error
(NMSE) is calculated for evaluation, with IOI-RC being the smallest, which validates the
superiority of our optimized algorithm.

Table 1. Performance comparation of NARMA10 task.

Methods NMSE

ESN 0.3045
T-RC 0.1142

IOI-RC 0.0852

3.2. Dynamic Temperature Compensation Task

In total, five algorithms are compared: polynomial fitting (PF), PF–ESN, PF–T-RC,
IOI-RC, and PF–IOI-RC. We also chose a one-step method with only IOI-RC predicting
the whole FD to compare. While PF continued using the 5th order model, the other four
algorithms were all developed using TrDs. The ESN was optimized by scaling reservoir
states for the active function [13], and the two kinds of RC were hardware-implemented
with the same parameters. For IOI-RC, we chose θ = 1.05 ms, N = 50, α = 0.9, β = 1, s = 3,
and k = 400. Specifically, θ was set as 0.1 Td, s and k were set according to the hysteresis
time around 1 min, which covers 1200 samples. As hysteresis is a homogeneous process for
all time points, we expanded the output feature vectors by evenly selecting three additional
feature vectors among related samples, that is: oi = ri ⊕ ri-400 ⊕ ri-800 ⊕ ri-1200. We did
not discard elements such as the NARMA10 task for better performance. In this way, the
prediction of each time point was trained by data from a past period, so the model could
remember dynamic information of the past directly.

The compensation results are shown in Figure 6. Figure 6a shows the prediction result
of TrDs and TeDs1. The blue line is the real FD measured before compensation, while the
green line and red line stand for the prediction of PF and PF—IOI-RC chosen as examples.
Because PF could not catch dynamic information, a given temperature at a different time
would yield the same FDs, which means the hysteresis could not be compensated. For
TeDs1, the residual error after compensation of the five methods is presented in Figure 6b.
It is obvious that our proposed method has the best performance, as the residual curve
is almost zero. For TeDs2, Figure 6c compares the real and predicted FD curves of all
five methods, and Figure 6d shows the residual error. Because TeDs2 is a new run of
temperature stabilization, the thermal flow is initialized at the first few time points, which
are often called warm-up points. It can be seen that ESN has an obvious dithering area at
the beginning with some large error points even beyond the axis. A possible explanation
for this unsteadiness is that the reservoir parameters of ESN are randomly selected, so they
need more warm-up time. However, our RC structure is more stable for long-term testing,
benefitting from its simple network, short warm-up period and large MC.
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Table 2 illustrates that the PF–IOI-RC has the best performance among the five methods,
with up to 90% improvement in root mean square error (RMSE) and 93% improvement
in maximum absolute error (MAE) over uncompensated data. The one-step method can
also depict the dynamic f-T relationship but is weaker than the two-step method. This is
probably because the PF first finds a near-static operation frequency, then the remaining
FDd is predicted by IOI-RC more easily than the origin FD. Although the one-step method
has a little bit smaller MAE in TeDs1, it may be due to some individually measured noise
points causing PF–IOI-RC a large error. But on the whole, the two-step method is more
accurate in terms of RMSE. Compared to other state-of-art works in Table 3, our work
shows superiority, which infers that our IOI-RC is well-suited for dynamic temperature
compensation. Taken together, these results suggest that IOI-RC has a superb performance
in dynamic temperature compensation, which solves the hysteresis problem significantly.

Table 2. Performance comparation of dynamic temperature compensation task.

Method
TeDs1 TeDs2

RMSE (ppm) MAE (ppm) RMSE (ppm) MAE (ppm)

raw 651 1580 715 1580
PF 701 1435 627 1233

PF–ESN 328 1550 423 1974
PF–T-RC 290 769 249 707
IOI-RC 165 146 96 165

PF–IOI-RC 132 164 76 114

Notably, in the above experiment, we keep the physical reservoir based on the MEMS
clamp–clamp beam resonator (details can be referred to in our previous work [22]) at
a stationary temperature to ensure its stationary operation point. However, it will be a
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challenge to achieve online temperature compensation considering that we are supposed
to integrate the physical reservoir into the sensors that need temperature compensation in
the following work. In our future work, we propose two improvement approaches. One is
using a physical system with nonlinear dynamics, which is not sensitive to temperature,
such as the well-known Mackey–Glass circuit [27]. Another method is to divide the
target temperature region into different intervals, so that the training can be performed
segmentally in these intervals based on our IOI-RC. In a small temperature range (for
example, 5 ◦C~10 ◦C), the RC characteristic could be treated as invariant, so we can
separately train several weight vectors w for different temperature ranges. Meanwhile,
every single w will carry some necessary information of the signal fluctuation result
from small temperature change by training in the dynamic case. Combining system
control via FPGA, the segmented model can primarily provide online compensation under
changing temperatures.

Table 3. Comparation between this work and other reported.

Reference Method Temperature Range (◦C) Error (%) Improvement (%)

[12] PF −20~60 0.43 80
[28] AGA-BP −20~60 0.38 85
[29] RBF-NN −25~65 0.68 82

This work PF–IOI-RC −20~60 0.016 93

4. Conclusions

In conclusion, we proposed a temperature compensation method based on the physical
RC with a MEMS resonator. With this method, we first achieved temperature compensation
for the MEMS accelerometer, which we demonstrated previously [30], under rapid ambient
temperature changes and resolved the dramatic hysteresis phenomenon. Multiple analyses
revealed that our proposed model of RC with improved structure can achieve high predic-
tion accuracy, decreasing the zero bias up to tenfold with only 114 ppm in a temperature
range from −20 ◦C to 60 ◦C. The findings of this research provide insights for a novel
real-time online temperature compensation method using hardware RC integrated with
an accelerometer, which add to the rapidly expanding field of hardware implementation
for neural networks, as the RC shows superiority with high accuracy and simple structure.
Being limited to the unknown performance of temperature influence of the RC system, we
divided data acquisition and processing. Additionally, we are working on exploring the
deep mechanism behind the thermal lagging affect’s compensation. Although we cannot
provide enough explanation, we have demonstrated that physical RC can be applied for
dynamic temperature compensation of MEMS sensors. In our future work, we will focus
on simulation work to determine hysteresis quantitively and devote attention to exploring
a temperature-independent physical RC system to achieve real-time online temperature
compensation for MEMS sensors.
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