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ABSTRACT. In a range of contexts, one comes across processes resembling 
inference, but where input propositions are not in general included among outputs, 
and the operation is not in any way reversible. Examples arise in contexts of 
conditional obligations, goals, ideals, preferences, actions, and beliefs. Our purpose is 
to develop a theory of such input/output operations. Four are singled out: simple-
minded, basic (making intelligent use of disjunctive inputs), simple-minded reusable 
(in which outputs may be recycled as inputs), and basic reusable. They are defined 
semantically and characterised by derivation rules, as well as in terms of relabeling 
procedures and modal operators. Their behaviour is studied on both semantic and 
syntactic levels. 
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1. INTRODUCTION 

 
Imagine a black box into which we may feed propositions as input, and that also 
produces propositions as output. Of course, classical consequence may itself be seen 
in this way, but it is a very special case, with additional features - inputs are also 
themselves outputs, since any proposition classically implies itself, and the operation 
is in a certain sense reversible, since contraposition is valid. However, there are many 
examples without those features. Roughly speaking, they are of two main kinds.  
 
The box may stop some inputs, while letting others through, perhaps in modified 
form. Inputs may record reports of agents, of the kind ‘according to source i, x is 
true’, while the box may give as output either x itself, a qualified version of x, or 
nothing at all, according to the identity of i. Or it might give output x only when at 
least two distinct sources vouch for it, and so on. Inputs might be facts about the 
performance of the stock-market today, and outputs an analyst’s commentary; or facts 
about your date and place of birth, with output your horoscope readings. In these 
examples, the outputs express some kind of belief or expectation. 
 
Again, inputs may be conditions, with outputs expressing what is deemed desirable in 
those conditions. The desiderata may be obligations of a normative system, ideals, 
goals, intentions or preferences. In general, a fact entertained as a condition may itself 
be far from desirable, so that inputs are not always outputs; and as is widely 
recognised, contraposition is inappropriate for conditional goals. 
 
Our purpose is to develop a general theory of propositional input/output operations, 
covering both kinds of example. Particular attention is given to the case where outputs 
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may be recycled as inputs. In a companion paper (Makinson and van der Torre, to 
appear), we examine the imposition of constraints on output. 
 
From a very general perspective, logic is often seen as an ‘inference motor’, with 
premises as inputs and conclusions as outputs (figure 1). But it may also be seen in 
another role, as ‘secretarial assistant’ to some other, perhaps non-logical, 
transformation engine (figure 2). From this point of view, the task of logic is one of 
preparing inputs before they go into the machine, unpacking outputs as they emerge 
and, less obviously, co-ordinating the two. The process as a whole is one of ‘logically 
assisted transformation’, and is an inference only when the central transformation is 
so. This is the general perspective underlying the present paper. It is one of ‘logic at 
work’ rather than ‘logic in isolation’; we are not studying some kind of non-classical 
logic, but a way of using the classical one. 
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On a pre-logical level, this picture is perfectly familiar from elementary set theory. 
Consider any universe L, not necessarily of propositions, and any relation G ⊆ L². For 
example, L may be the set of humans, and G the parent/child relation. Given an input 
A ⊆ L, the output of A under G may be understood simply as G(A) = {x: (a,x) ∈ G for 
some a ∈ A} -  in the example, the set of all children of persons in A.  
 
The present paper may be seen as investigating what happens to this basic picture 
when we pass to the logical level, i.e. when L is the set of propositions of some 
language, and input and output are both under the sway of the operation Cn of 
classical consequence. These are in a certain sense frills, but give rise to subtle and 
interesting behaviour. 
   

 
2. LOGICAL LEVEL: THE PROBLEM  

 
Consider a propositional language L, closed under at least the usual truth-functional 
connectives; its elements are called formulae. Let G be a set of ordered pairs (a,x) of 
formulae in L; the letter chosen serves as reminder of the interpretation (among 
others) of the pairs as conditional goals. We call G a generating set. We read a pair 
(a,x) forwards, i.e. with a as body and x as head; and we call the corresponding truth-
functional formula a→x its materialisation, echoing the old name ‘material 
implication’ for the connective involved.  
 
Suppose that we are also given a set A of formulae. Our problem is: how may we 
reasonably define the set of propositions x making up the output of A under G, or one 
might also say, of G given A, which we write out(G,A)? Alternatively, suppose we are 
given only the generating set G: how may we define the set of input/output pairs (A,x) 
arising from G, which we write out(G)?  
 
These questions are the same, for we may define (A,x) ∈ out(G) iff x ∈ out(G,A) or 
conversely. But the two formulations give a rather different gestalt, and one is 
sometimes more convenient rather than the other. As we shall see, the latter tends to 
be clearer in semantic contexts, whilst the former is easier to work with when 
considering derivations in a syntactic context. We shall move freely from one to the 
other, just as one moves between Cn and ├ for classical consequence. 
 

 
3. SIMPLE-MINDED OUTPUT 

 
3.1. Semantic definition 
 
The simplest response to our problem is to put out(G,A) = Cn(G(Cn(A))), where the 
function G(.) is defined as on the pre-logical level, and Cn alias ├ is classical 
consequence. In other words, given a set A of formulae as input, we first collect all of 
its consequences, then apply G to them, and finally consider all of the consequences 
of what is thus obtained (figure 3).  
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Under this definition, which we call simple-minded output and write as out1(G,A), 
inputs are not in general outputs; that is, we do not have A ⊆ out1(G,A).  
 
Example 1. Put G = {(a,x)}where a,x are distinct elementary letters, and put A = {a}. 
Then G(Cn(a)) = {x} so a ∉ out1(G,a) = Cn(G(Cn(a))) = Cn(x). Contraposition also 
fails, for although x ∈ out1(G,a) we have ¬a ∉ out1(G,¬x): since a ∉ Cn(¬x) we have 
G(Cn(¬x)) = ∅ so that ¬a ∉ out1(G,¬x) = Cn(G(Cn(¬x))) = Cn(∅). 
 
Clearly, this operation is inadequate for some purposes, for it is unable to handle 
disjunctive inputs intelligently.  
 
Example 2. Put G = {(a,x), (b,x)}and A = {a∨b}. Then Cn(A)∩b(G) = ∅ where we 
write b(G) for the set of all bodies of elements of G, i.e. in this example the set {a,b}. 
Hence also G(Cn(A)) = ∅ so that Cn(G(Cn(A))) = Cn(∅). However, in many contexts 
we would want to put x in the output, as it can be obtained from each of the two 
disjuncts of the input.  
 
Nevertheless, the operation of simple-minded output has an interest of its own, and its 
study also helps prepare the way for more sophisticated ones.  
 
 
3.2. Syntactic characterisation 
 
Our definition of simple-minded output is, in a broad sense of the term, semantic. It is 
not difficult to give it a syntactic characterisation in terms of derivation rules.  
 
In general, for any set of rules, we say that a pair (a,x) of formulae is derivable using 
those rules from a set G of such pairs iff (a,x) is in the least set that includes G, 
contains the pair (t,t) where t is a tautology, and is closed under the rules. In the 
systems studied here, it will make no difference which tautology t is chosen. Our 

Figure 3  
Simple-Minded Output: out1(G,A) = Cn(G(Cn(A))) 

Cn(G(Cn(A))) 
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G(Cn(A)) Cn(A) 
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notations are (a,x) ∈ deriv(G) or equivalently x ∈ deriv(G,a), with a subscript to 
indicate the set of rules employed.  
 
When A is a set of formulae, derivability of (A,x) from G is defined as derivability of 
(a,x) from G for some conjunction a = a1∧…∧an of elements of A. We understand the 
conjunction of zero formulae to be a tautology, so that (∅,x) is derivable from G iff 
(t,x) is for some tautology t.  
 
In the particular case of simple-minded output, we use the following three rules 
determining an operation deriv1. Of these, the first governs the use of inputs 
(strengthening the input: SI), while the other two deal with the management of outputs 
(conjunction in the output: AND; weakening the output: WO). 
 

SI:  From (a,x) to (b,x) whenever b├ a 
AND:  From (a,x), (a,y) to (a,x∧y)  
WO:  From (a,x) to (a,y) whenever x├ y. 

 
OBSERVATION 1. Out1(G,A) = deriv1(G,A). 
  
Outline of proof. The inclusion from right to left is straightforward by induction on 
length of derivation. From left to right, suppose x ∈ Cn(G(Cn(A))). Then by 
compactness of Cn there are x1,…,xn ∈ G(Cn(A)) with x ∈ Cn(x1∧…∧xn). In the case 
that n = 0, x is a tautology t and we can also put a = t giving us a one-step derivation 
of (t,t). In the case that n ≠ 0 we proceed as follows. For each i ≤ n, since xi ∈ 
G(Cn(A)) there is a bi ∈ Cn(A) with (bi,xi) ∈ G. Putting b = b1∧…∧bn we note that b 
∈ Cn(A), and so by compactness b ∈ Cn(a) for some conjunction a = a1∧…∧am of 
elements of A. We can thus construct a derivation whose leaves are the pairs (bi,xi), 
followed by applications of SI to get the pairs (a,xi), followed by applications of AND 
to get (a, x1∧…∧xn), followed finally by WO to get (a,x).  �  
 
Evidently, the proof of Observation 1 also provides a ‘universal order’ for derivations 
of simple-minded output: SI, AND, WO. More on this in section 8. 
 
 

4. BASIC OUTPUT 
 
4.1. Semantic definition and syntactic characterisation 
 
As already remarked, simple-minded output is unable to process disjunctive inputs 
intelligently. How may this be done? On the syntactic level, the answer is obvious: 
define deriv2(G) by adding the following rule to those for simple-minded derivations: 
 

OR:  From (a,x), (b,x) to (a∨b,x).  
 
On the semantic level, we define basic output, out2(G,A), as ∩{ Cn(G(V)): v(A) = 1}, 
in the principal case that A is classically consistent (see figure 4). Here, v ranges over 
boolean valuations and V = {b: v(b) = 1}. In the limiting case that there is no such v 
(which by classical logic happens iff A is inconsistent) we put out2(G,A) to be 



 6

Cn(G(L)) where L is the set of all boolean formulae; this equals Cn(h(G)) where h(G) 
is the set of all heads of elements of G. 
 
Equivalently: out2(G,A) = ∩{ Cn(G(V)): A ⊆V, V complete}. Here, by a complete set 
we mean one that is either maxiconsistent or equal to L. There is always at least one 
complete V that includes A, namely L, and so there is no need for a separate limiting 
case. The same trick could be done with the first formulation, by allowing v to be 
either a boolean valuation or the function that puts v(b) = 1 for all formulae b.  
 
Note that as classical consequence Cn is monotonic, and the transformation G(X) is 
also monotonic in each of X and G, both simple-minded and basic output are 
monotonic in each of their arguments.  
 
To compare basic with simple-minded output, notice that simple-minded output can 
also be expressed as an intersection. Trivially, out1(G,A) = ∩{ Cn(G(B)): A ⊆ B = 
Cn(B)}. As is well known, Cn(V) = V for any complete V, so we can say that basic 
output is like simple-minded output except that is restricts the choice of B to complete 
sets.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OBSERVATION 2. Out2(G,A) = deriv2(G,A). 
 
Outline of Proof. We begin by disposing of the limiting case that A is inconsistent. In 
that case out2(G,A) = Cn(h(G)) = deriv2(G,A) by definition on the left and easy 
verification on the right. Next, we dispose of another limiting case, that x ∉ Cn(G(L)). 

Figure 4

Basic Output: out2(G,A) = ∩∩∩∩{Cn(G(V)): v(A) = 1}

                    = ∩∩∩∩{Cn(G(V)): A ⊆⊆⊆⊆ V}
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V2

G(V1)

G(V2)

G

Cn(G(V1))

Cn(G(V2))

out2(G,A)
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Since L is complete and includes A, this gives immediately x ∉ out2(G,A); and it is 
also easy to show by induction that deriv2(G,A) ⊆ Cn(G(L)) so that x ∉ deriv2(G,A). 
So consider finally the principal case that A is consistent and x ∈ Cn(G(L)).  
 
The verification from right to left (soundness) is effected by first observing that it 
suffices to prove the result for individual formulae a and then carrying out a 
straightforward induction on length of derivation. The interesting case in the induction 
is that for the rule OR. Suppose x ∉ out2(G,b∨c). Then there is a boolean valuation v 
with v(b∨c) =1 and x ∉ Cn(G(V)). But then either v(b) =1 or v(c) =1 so either x ∉ 
out2(G,b) or x ∉ out2(G,c).  
 
For the converse (completeness), we can use a maximality argument, similar to that 
familiar for proving completeness in classical propositional logic, but with more 
verifications at each step. In sketch: suppose x ∉ deriv2(G,A). Then by the monotony 
and compactness of the derivability operation in its right argument (both immediate 
from its definition) there is a maximal A′ ⊇ A with x ∉ deriv2(G,A′). It is easy to 
verify that A′ is well-behaved with respect to conjunction and disjunction. Using the 
supposition x ∈ Cn(G(L)) we can also verify that it is well-behaved with respect to 
negation. Hence there is a boolean valuation v with A′ = V. To complete the proof, one 
need only show that x ∉ out1(G,V) = Cn(G(Cn(V))) = Cn(G(V)) since V is closed 
under consequence. But this is immediate since by Observation 1 out1(G,V) = 
deriv1(G,V) ⊆ deriv2(G,V) and we have x ∉ deriv2(G,V).  �  
 
Evidently, Observation 2 implies the compactness of out2, a fact rather difficult to 
verify directly from the semantic definition (in contrast to the situation for simple-
minded output, where compactness is almost immediate). 
 
We present two further characterisations of basic output. One uses relabeling of 
elementary letters, the other translates into modal logic. They have very similar 
structures. We regard these two characterisations as interesting curiosities more than 
useful tools, and they are not re-employed in subsequent sections. Hence sections 4.2 
and 4.3 may be skipped without loss of continuity. 
 
 
4.2. Account in terms of relabeling  
 
The basic idea of this approach is to relabel the letters in the heads. This has the effect 
of isolating the heads from the bodies, so that information about one cannot be carried 
forwards or backwards to the other. Technically, alongside the existing language, 
introduce a fresh set of elementary letters, with one new letter p* for each old letter p. 
For arbitrary old formulae x, define x* in the natural way, by substituting the letters 
p* for p in x. Write G* for { b→y*: (b,y) ∈ G}, i.e. as the set of all materialisations of 
pairs (b,y*) obtained by starring heads only of elements of G.  
 
OBSERVATION 3.  x ∈ out2(G,A) iff x ∈ Cn(G(L)) and G*∪A ├ x*. 
 
Proof. We dispose of the limiting cases that A is inconsistent and that x ∉ Cn(G(L)) in 
the same manner as for Observation 2. So suppose for the principal case that A is 
consistent and x ∈ Cn(G(L)).  
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Suppose first that the left side fails. Since A is consistent, there is a valuation v on 
unstarred letters with v(A) = 1 and x ∉ Cn(G(V)). From the latter, there is a valuation 
w (also on unstarred letters) with w(G(V)) = 1 and w(x) = 0. Define a valuation w* on 
formulae generated by starred letters by putting w*(p*) = w(p) for each starred letter 
p*. Write v+w* for the valuation on starred and unstarred letters determined by the 
two together. We claim that v+w*(G*∪A) = 1 and v+w*(x*) = 0. The latter is 
immediate from w(x) = 0 since all letters in x* are starred. Similarly, we have 
v+w*(A) = 1 from v(A) = 1 since all letters in A are unstarred.  It remains to check that 
v+w*(G*) = 1. Let (b,y) ∈ G and suppose v+w*(b) = 1; we need to show that 
v+w*(y*) = 1. Since b is unstarred the supposition tells us that v(b) = 1 so b ∈ V,  so y 
∈ G(V) so by hypothesis w(y) = 1 so w*(y*) = 1 and finally v+w*(y*) = 1. 
 
To show the converse, we could use the identity out2(G,A) = deriv2(G,A) established 
by Observation 2, and proceed by induction on length of derivation, but we give a 
direct argument, as follows.  
 
Suppose that the right side fails. Since we are assuming that x ∈ Cn(G(L)), there is a 
valuation defined on both starred and unstarred letters that satisfies G*∪A and fails 
x*. Without loss of generality, we may write this valuation as v+w* where v,w are 
defined on unstarred letters and w* is defined from w as before. Thus v+w*(G*∪A) = 
1 and v+w*(x*) = 0. We show that v(A) = 1 and x ∉ Cn(G(V)). We have v(A) = 1 
immediately from v+w*(A) = 1 since A contains only unstarred letters. For x ∉ 
Cn(G(V)), it suffices to show that w(x) = 0 while w(G(V)) = 1. The former is 
immediate from v+w*(x*) = 0. For the latter, suppose y ∈ G(V); we need to show w(y) 
= 1. Since y ∈ G(V) there is an unstarred formula b with (b,y) ∈ G and b ∈ V so that 1 
= v(b) = v+w*(b). Since v+w*(G*) = 1 we have v+w*(b→y*) = 1 so that 1 = v+w*(y*) 
= w*(y*) = w(y) as desired.  �  
 
 
4.3. Modal formulation 
 
The modal characterisation has strong formal parallels with the relabeling one. Its 
essential idea is to prefix heads with boxes and apply a suitable modal logic. Indeed 
any modal logic from a broad interval will do the job. 
 
Consider the modal propositional language formed by adding a unary box operator to 
the classical language, and consider the modal calculus K0, serving as a lower bound 
on the interval, defined axiomatically as follows. Take as axioms all classical 
tautologies in that language and all formulae of the form � (a→x)→(� a→� x); and 
take as rules  passage from a, a→x to x (detachment), and passage from t to � t for 
every classical tautology t. Evidently, we could reformulate the last rule as axioms � t 
for every classical tautology t.  
 
K0 is a subsystem of the familiar modal logic K; the latter also allows passage from a 
to � a for every thesis a. We recall the well-known fact that for first-degree formulae 
(i.e. formulae without iteration of the box) all systems from K0 to K45 agree. 
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Write G�  for the set of all modal formulae b→� y with (b,y) ∈ G, and Z ├S z to mean 
that (∧Y → z) ∈ S for some finite Y ⊆ Z.   
 
OBSERVATION 4.  x ∈ out2(G,A) iff x ∈ Cn(G(L)) and G� ∪A ├S � x, for any modal 
logic S with K0 ⊆ S ⊆ K45. 
 
Proof. Since all systems from K0 to K45 agree on first-degree formulae, we need only 
prove the Observation for K. In the limiting case that A is classically inconsistent both 
sides are equivalent to x ∈ Cn(G(L)) and we are done. So suppose that A is consistent.  
 
Suppose x ∈ out2(G,A). Then by Observation 2, (A,x) ∈ deriv2(G) so we need only 
show by induction that whenever (a,x) ∈ deriv2(G) then G� ∪{ a}├K � x, which is 
straightforward.  
 
Conversely, suppose x ∉ out2(G,A). Since A is assumed consistent, there is a valuation 
v of boolean formulae with v(A) = 1 and x ∉ Cn(G(V)). Fix one such v, and define a 
relational model (M,R,ϕ) by putting M to be the set of all purely boolean valuations 
and for u,w ∈ M put (u,w) ∈ R iff for every (b,y) ∈ G, if u(b) = 1 then w(y) = 1. Put 
ϕ(w,p) = w(p) for all elementary letters p and all w ∈ M.  
 
To complete the proof, it suffices to check that ϕ(v, G� ∪A) = 1 while ϕ(v, � x) = 0. 
Since v(A) = 1 and A is purely boolean, ϕ(v,A) = 1. Suppose b→� y ∈ G�  and ϕ(v,b) = 
1; then (b,y) ∈ G and b is purely boolean so v(b) = 1 and also whenever (v,w) ∈ R 
then by the definition of R, w(y) = 1; thus ϕ(v, b→� y) = 1. This shows ϕ(v, G� ) = 1. 
To show ϕ(v, � x) = 0 we need to find a w with (v,w) ∈ R and ϕ(w,x) = 0. But by 
hypothesis, x ∉ Cn(G(V)) so there is a w with w(G(V)) = 1 and w(x) = ϕ(w,x) = 0. It 
remains only to check that (v,w) ∈ R. But if (b,y) ∈ G and v(b) = 1 then immediately y 
∈ G(V) so w(y) = 1 and by the definition of R we are done.  �  
 
 

5. REUSABLE OUTPUT 
 
5.1. Idea and definitions 
 
In certain situations, it may be appropriate for outputs to be available for recycling as 
inputs. For example, the elements (a,x) of G may be conditional norms of a kind that 
say that any configuration in which a is true is one in which x is desirable. In some 
contexts, we may wish to entertain hypothetically the items already seen as desirable, 
in order to determine what is in turn so. How may such a principle of reusability be 
expressed formally? 
 
On the syntactic level, the answer again suggests itself naturally: add the following 
rule of ‘cumulative transitivity’ to those already available for simple-minded output, 
or those for basic output: 
 

CT:  From (a,x), (a∧x,y) to (a,y). 
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Given SI, this immediately implies transitivity (from (a,x), (x,y) to (a,y)) but not 
conversely.  
 
On the semantic level, we define simple-minded reusable output, written out3(G,A), as 
follows: 
 

out3(G,A) = ∩{ Cn(G(B)): A ⊆ B = Cn(B) ⊇ G(B)}. 
 
There is always at least one set B with A ⊆ B = Cn(B) ⊇ G(B), namely L, and the 
intersection of any non-empty family of such sets satisfies the same condition.  
 
Recalling again that simple-minded output can be expressed as an intersection, with 
out1(G,A) = ∩{ Cn(G(B)): A ⊆ B = Cn(B)}, we can say that reusable simple-minded 
output is like plain simple-minded output, except that it restricts the choice of B to 
sets that are included in their own image under G.  
 
Since each of the operations G and Cn is monotone, their composition is also 
monotone. Hence the definition may also be expressed thus: out3(G,A) = Cn(G(A*)) 
where A* is the least superset of A that is closed under both Cn and G. 
 
We define basic reusable output, written out4(G,A), as follows in the principal case 
that A is classically consistent:   
 

out4(G,A) = ∩{ Cn(G(V)): v(A) = 1 and G(V) ⊆ V}. 
 
Here as before, v ranges over boolean valuations and V = {b: v(b) = 1}. In the limiting 
case that there is no such v, we proceed as for basic output, putting out4(G,A) to be 
Cn(G(L)) where L is the set of all boolean formulae; equal to Cn(h(G)) where h(G) is 
the set of all heads of elements of G.  Equivalently, 
 

out4(G,A) = ∩{ Cn(G(V)): A ⊆ V ⊇ G(V), V complete}. 
 
Clearly out3(G,A) ⊆ out4(G,A) ⊆ Cn(G(L)). The diagrams for the two notions are 
essentially the same. For basic reusable output, see figure 5. For the simple-minded 
version, replace the captions Vi by Xi = Cn(Xi). 
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5.2. Simple-minded reusable output: properties and syntactic characterisation  
 
As in the non-reusable case, the simple-minded reusable operation is less satisfying 
than the basic one, given its inability to deal intelligently with disjunctive inputs. 
Nevertheless, the simple-minded version has a certain interest, and we indicate some 
of its basic properties. 
 
OBSERVATION 5 (cumulativity on the right). Out3(G,A) = out3(G,A∪D) whenever D 
⊆ out3(G,A).  
 
Proof. The left is included in the right, by monotony in the right argument (immediate 
from the definition). For the converse, suppose x ∉ out3(G,A). Then by the definition 
of out3 there is a B with A ⊆ B = Cn(B) ⊇ G(B) and x ∉ Cn(G(B). To show x ∉ 
out3(G,A∪D), it suffices to show A∪D ⊆ B, and so since A ⊆ B and using the 
hypothesis D ⊆ out3(G,A), it is enough to show out3(G,A) ⊆ B. But by its definition, 
out3(G,A) ⊆ Cn(G(B)) ⊆ B and we are done. �  
 
From cumulativity and monotony it follows immediately that simple-minded reusable 
output satisfies one half of idempotence on the right: out3(G,out3(G,A)) ⊆ 
out3(G,A∪out3(G,A)) = out3(G,A). However, the converse half of idempotence fails.  
 

Figure 5  
Basic Reusable Output: out4(G,A) = ∩∩∩∩{Cn(G(V)): A ⊆⊆⊆⊆ V ⊇⊇⊇⊇ G(V)} 
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G(V2) 

G
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⊆
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Example 3. Put G = {(a,x)} and A = {a} where a,x are distinct elementary letters. 
Then out3(G,a) = Cn(x) whereas out3(G,out(G,a)) = out3(G,Cn(x)) = Cn(∅), so that 
the former is not included in the latter. �  
 
Thus for each G, the right projection function outG,3(A), defined as out3(G,A), is in 
some respects like a Tarski consequence operation (that is, a closure operation on sets 
of propositions) and in some respects different. It is monotonic and cumulative, and 
iterated output is included in single output; but in general it fails inclusion and the 
other half of idempotence.  
 
These remarks about the right projection function of simple-minded reusable output 
should not be confused with the fact that all of our input/output operations, 
understood as taking sets G of pairs (A,x) to sets outi(G) of pairs, are quite trivially, 
closure operations - inclusion, monotony, and idempotence all hold. 
 
We sketch a proof of the equivalence of its semantic and syntactic definitions of 
reusable simple-minded output, writing deriv3(G,A) for the latter. 
 
OBSERVATION 6. Out3(G,A) = deriv3(G,A). 
 
Outline of proof. It suffices to prove the result for singleton A. The inclusion from 
right to left is straightforward by induction on length of derivation. The interesting 
clause is that for CT. Suppose that x ∈ out3(G,a) and y ∉ out3(G,a); we need to show 
that y ∉ out3(G,a∧x). From the second hypothesis, there is a B with a ∈ B = Cn(B) ⊇ 
G(B) and y ∉ Cn(G(B)). By the first hypothesis, x ∈ Cn(G(B)). But since G(B) ⊆ 
Cn(B) we have Cn(G(B)) ⊆ Cn(B) so x ∈ Cn(B). Thus a∧x ∈ Cn(B) and so y ∉ 
out3(G,a∧x) as desired. 
 
For the converse, suppose x ∉ deriv3(G,a); we need to find a B with a ∈ B = Cn(B) ⊇ 
G(B) and x ∉ Cn(G(B)).  
 
Put B = Cn({ a} ∪ deriv3(G,a)). Clearly a ∈ B = Cn(B). To show G(B) ⊆ B, suppose y 
∈ G(B). Then there is a b ∈ B with (b,y) ∈ G. We need to show y ∈ B, i.e. deriv3(G,a) 
├ a→y. But since b ∈ B we have deriv3(G,a) ├ a→b so since deriv3(G,a) is closed 
under classical consequence (by the rules AND,WO and the compactness of classical 
consequence) we have a→b ∈ deriv3(G,a), i.e. (a, a→b) ∈ deriv3(G). But since (b,y) 
∈ G we also have (b,y) ∈ deriv3(G) so by SI, (a∧b, y) ∈ deriv3(G), so by CT, (a,y) ∈ 
deriv3(G), i.e. y ∈ deriv3(G,a) so by WO, a→y ∈ deriv3(G,a) so deriv3(G,a) ├ a→y as 
desired.   
 
It remains to check that x ∉ Cn(G(B)), i.e. x ∉ Cn(G(Cn({ a} ∪ deriv3(G,a)))) = 
out1(G, {a} ∪ deriv3(G,a)) = deriv1(G, {a} ∪ deriv3(G,a)) using the completeness 
theorem for simple-minded output (Observation 1). Suppose the contrary. Then, using 
SI, there are x1,…,xn ∈ deriv3(G,a) with x ∈ deriv1(G, a∧x1∧…∧xn) i.e. (a∧x1∧…∧xn,, 
x) ∈ deriv1(G) ⊆ deriv3(G). But since each xi ∈ deriv3(G,a), i.e. (a,xi) ∈ deriv3(G) we 
have by AND and WO that (a, x1∧…∧xn) ∈ deriv3(G). Hence by CT, (a,x) ∈ 
deriv3(G) i.e. x ∈ deriv3(G,a) contradicting our initial supposition.  �  
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5.3. Basic reusable output: first properties 
 
We now focus on basic reusable output, better motivated than its simple-minded 
counterpart and also more interesting formally. To lighten terminology, from now on 
we refer to it simply as reusable output. We show in section 5.4 that out4(G,A) = 
deriv4(G,A), where the latter is defined by the rules for basic output 
(SI,AND,WO,OR) plus CT. But before doing so we draw attention to some properties 
of the semantic construction.  
 
Reusable output may equivalently be defined in the following manner, which is rather 
less intuitive, but establishes a link with basic output and simplifies proofs.  
 
OBSERVATION 7. Out4(G,A) = ∩{ Cn(G(V)): A∪m(G) ⊆ V, V complete}.  
 
Proof. It suffices to show that for any complete set V, we have G(V) ⊆ V  iff m(G) ⊆ 
V, where m(G) is the materialisation of G, that is, the set of all formulae b→y with 
(b,y) ∈ G.  
 
In one direction, suppose m(G) ⊆ V and let y ∈ G(V); we need to show that y ∈ V. 
Since y ∈ G(V) there is a b ∈ V with (b,y) ∈ G, so b→y ∈ V and so since V is 
complete, y ∈ V as desired.  
 
Conversely, suppose G(V) ⊆ V and suppose b→y ∈ m(G); we need to show b→y ∈ V. 
Suppose b∈ V; since V is complete, it suffices to show that y ∈ V. But since b→y ∈ 
m(G) we have (b,y) ∈ G so since b ∈ V we have y ∈ G(V) ⊆ V and we are done. �  
 
This observation immediately allows us to express reusable basic output in terms of 
its non-reusable counterpart, a fact that will be useful later. 
 
COROLLARY TO OBSERVATION 7. Out4(G,A) = out2(G,A∪m(G)).  
 
It also permits a simplification of Figure 5: drop the backward-reaching lines with 
their inclusion signs, and alongside the input circle insert a circle for m(G), also 
included within the Vi ellipses.  
 
First, we note that although out1(G,A) ⊆ {out2(G,A), out3(G,A)} ⊆ out4(G,A) ⊆ 
Cn(A∪ m(G)), still out4(G,A) ≠ Cn(A∪ m(G)); in particular, inputs are still not in 
general outputs, and contraposition still fails, as Example 1 continues to show. 
Nevertheless, contraposition plays a curious ‘ghostly’ role for reusable basic output.  
 
Example 4 (ghost contraposition). Put G = {(¬x,¬a),(a∧x,y)}. On the one hand, x ∉ 
out4(G,a) since x ∉ Cn(G(L)) = Cn(h(G)) = Cn(¬a,y). On the other hand, y ∈ 
out4(G,a), since y ∈ Cn(G(L)) and also for every valuation v satisfying {a} ∪m(G), 
v(x) = 1, so y ∈ G(V). �  
 
Expressed more generally, this example tells us that y ∈ out4(G,a) whenever y ∈ 
out4(G, a∧x) and ¬a ∈ out4(G,¬x). In other words, for basic reusable output we have 
the rule: 
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GC: From (¬x,¬a), (a∧x,y) to (a,y). 
 
Intuitively: although we cannot contrapose the premise (¬x,¬a), we can ‘use’ the 
contraposition for an application of cumulative transitivity. This can be verified 
directly, or from the following principle of input sufficiency: 
 
OBSERVATION 8 (input sufficiency). Whenever {a} ∪m(G)├ x, then if y ∈ out4(G, 
a∧x) then y ∈ out4(G,a). More generally, whenever A∪m(G)├ X, then if y ∈ out4(G, 
A∪X) then y ∈ out4(G,A).  
 
Proof. Immediate from Observation 7, for if A∪m(G)├ X and A∪m(G) ⊆ V where V is 
a complete set, then A∪X∪m(G) ⊆ V.  �  
 
This is a powerful principle, with a number of consequences. Expressed syntactically, 
it is the rule: 
 

IS: From (a∧x,y) to (a,y) whenever {a} ∪m(G)├ x. 
 

This implies ghost contraposition, for ¬a ∈ out(G,¬x) implies {¬x} ∪m(G)├ ¬a so 
that {a} ∪m(G)├ x. Again, since x ∈ out(G,a) implies {a} ∪m(G)├ x, input sufficiency 
also implies CT, which we recall authorises passage from (a,x), (a∧x,y) to (a,y).    
 
Essentially the same property may be expressed as follows: for reusable output we 
may add to the input the materialisations of some or all of the generators, without 
changing the output.   
 
OBSERVATION 9 (shadow input). Out4(G,A) = out4(G, A∪ m(G′)) whenever G′ ⊆ G.  
 
Proof. Immediate from Observation 7, since A∪m(G) = A∪m(G′)∪m(G) whenever G′ 
⊆ G. It may also be seen as the case of Observation 8 in which X = A∪m(G′).  �  
 
From Observation 9 we may say that for reusable output, generators are in a certain 
sense stronger than inputs. But only in a limited sense: we can copy from generators 
to inputs without altering output, but if we transfer from generators to inputs then we 
may in general lose and gain output, as can be shown by trivial examples. Simple 
examples also show that copying from inputs to generators may change output. 
 
Finally, we note that basic reusable output is cumulative and satisfies half of 
idempotence (iterated output included in single output). The proof is the same as for 
simple-minded output (Observation 5). However, these properties fail for plain 
simple-minded and basic output (i.e. without reusability). This is as one would expect: 
cumulativity of the output operation is closely associated on the syntactic level with 
the rule CT, and on the semantic level with reusability.   
 
 
5.4. Basic reusable output: syntactic characterisation 
 
We now show that out4(G,A) = deriv4(G,A), where the latter is defined by the rules for 
basic output (SI,AND,WO,OR) plus CT. 
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OBSERVATION 10 (soundness). Deriv4(G,A) ⊆ out4(G,A). 
 
Outline of proof. We need only add to the verification of the corresponding result for 
basic output (Observation 2, first part of proof) a verification of the rule CT. That 
verification follows the same pattern as in the soundness proof for simple-minded 
reusable output (Observation 6).  �  
 
OBSERVATION 11 (completeness). Out4(G,A) ⊆ deriv4(G,A). 
 
Proof. By the Corollary to Observation 7 we have out4(G,A) = out2(G,A∪m(G)) = 
deriv2(G,A∪ m(G)) by Observation 2, so it suffices to show deriv2(G,A∪m(G)) ⊆ 
deriv4(G,A). Hence, we need only show that the shadow input property, already noted 
for the semantic operation out4 (Observation 9), also holds for the syntactic one 
deriv4. We do this in two steps: first, we prove the property for singleton input with 
singleton generating set, and then show that it follows in the general form.  
 
LEMMA 11a. If (b,x) ∈ G then deriv4(G,a∧(b→x)) ⊆ deriv4(G,a). 
 
Proof. Let (b,x) ∈ G and suppose y ∈ deriv4(G,a∧(b→x)); we want to show that y ∈ 
deriv4(G,a)). The desired derivation can be displayed as a tree diagram, as follows: 
 

 (b,x)   (a∧(b→x),y)        (a∧(b→x),y)  
     SI                  SI                 
(a∧b,x)     (a∧b∧x,y)                       
--------------------------------  CT              
 (a∧b,y)           
 -------------------------------------    OR  
         (a,y)  

 
LEMMA 11b. Deriv4(G,A∪m(G))  ⊆ deriv4(G,A). 
 
Proof. Suppose y ∈ deriv4(G,A∪m(G)). Clearly the operation deriv4 is monotonic and 
compact on left and right. By definition, there is a conjunction a of formulae in A, and 
a conjunction g = ∧(bi→xi) of formulae in m(G), such that y ∈ deriv4(G,a∧g). 
Applying Lemma 11a finitely many times according to the number of conjuncts in g, 
we have y ∈ deriv4(G,a) so by definition y ∈ deriv4(G,A). This completes the proof of 
the Lemma and of Observation 11.  �  
 
The above proof of completeness makes use of the reduction of reusable basic output 
to plain basic output, in the Corollary to Observation 7. If one prefers to argue from 
first principles, one can re-run the same maximality construction as in the proof of 
Observation 2, but ensuring that A∪m(G) ⊆ A′. For this it suffices to show that 
whenever x ∉ deriv4(G,A) then x ∉ deriv4(G,A∪m(G)), i.e. the same shadow input 
property deriv4(G,A∪m(G)) ⊆ deriv4(G,A) proven as Lemma 11b above. 
 
OBSERVATION 12 (semantic characterisation). Out4(G,A) = deriv4(G,A). 
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Proof. Immediate from Observations 10, 11. As a corollary, we may note that since 
deriv4 is compact on both left and right, out4 is too.  
 
 
5.5. Relabeling and modal formulations  
 
Like basic output, its reusable extension can be characterised by means of relabeling, 
and also in modal terms.  
 
OBSERVATION 13. x ∈ out4(G,A) iff x ∈ Cn(G(L)) and G*∪A∪m(G) ├ x*. 
 
Proof. Immediate from the reduction of basic reusable output to out2 in the Corollary 
to Observation 7, i.e. out4(G,A) = out2(G,A∪m(G)), together with Observation 3.  �  
 
OBSERVATION 14. x ∈ out4(G,A) iff x ∈ Cn(G(L)) and G� ∪A∪m(G) ├S � x, for any 
modal logic S with K0 ⊆ S ⊆ K45. 
 
Proof: Immediate from the same reduction, with Observation 4. �  
 
A more interesting modal reduction gets rid of the ‘additional premise’ m(G) in 
favour of the additional modal axiom � a→a, known as T.  
 
OBSERVATION 15. x ∈ out4(G,A) iff x ∈ Cn(G(L)) and G� ∪A ├S � x, for any modal 
logic S with K0T ⊆ S ⊆ KT45. 
 
Outline of proof. Since all systems from K0T to KT45 agree on first-degree formulae, 
we need only prove the observation for KT. The argument follows the same lines as 
for Observation 4, with the following additions and modifications.  
 
From left to right, we need to show that the modal translation satisfies the rule CT. 
This amounts to showing that for any formula g, if (g∧a)→� x and (g∧a∧x)→� y are in 
KT then so is (g∧a)→� y. But this is immediate given the availability of � x→x in KT. 
 
From right to left, we suppose x ∉ out4(G,A). As before, it follows from the definition 
of the output operation that there is a valuation v of boolean formulae with v(A) = 1 
and x ∉ Cn(G(V)), and this time we also have G(V) ⊆ V. Fix one such v, and define 
the relational model (M,R,ϕ) as before, but with a modified relation R. For the chosen 
valuation v put (v,w) ∈ R iff for every (b,y) ∈ G, if v(b) = 1 then w(y) = 1; for every 
valuation u ≠ v, put (u,u) ∈ R. Note that when v(b) = 1 and (b,y) ∈ G then y ∈ G(V) ⊆ 
V so that v(y) = 1; this shows (v,v) ∈ R. Combining this with the other part of the 
definition of R, we have its reflexivity, so that the model validates the modal system 
KT. To complete the proof, it suffices to check that ϕ(v, G� ∪A) = 1 while ϕ(v, � x) = 
0. This is done exactly as in the proof of  Observation 4.  �  
 
We note in passing that in modal logics satisfying the modal axiom T, G�  implies 
m(G), so that given observations 14 and 15, we can also push the upper bound of the 
former up to KT45. 
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As far as the authors are aware, it is not possible to characterise the system of simple-
minded output (with or without reusability) by relabeling or modal logic in a 
straightforward way. The OR rule appears to be needed, so that we can work with 
complete sets. 
 
 

6. ACCEPTING INPUTS AS OUTPUTS 
 
What happens if we strengthen the logic of some kind of output by accepting inputs as 
outputs? Syntactically, add the rule: From no premises to (y,y). Evidently, such a rule 
can always be applied first, so the semantic counterpart amplifies outi(G,A) to 
outi(G∪I,A) where I = {(y,y): y a formula}. Of these, basic reusable output plus 
identity collapses into classical consequence.  
 
OBSERVATION 16: out4(G∪I,A) = Cn(A∪m(G)).  
 
Proof. Given Observation 11, the left in right inclusion is a trivial induction. For the 
converse, write G+ for G∪I, and suppose x ∉ out4(G

+,A). Then by Observation 7, 
there is a complete set V with A∪m(G+) ⊆ V and x ∉ Cn(G+(V)). Clearly V ⊆ I(V) ⊆ 
G+(V) ⊆ Cn(G+(V)), so x ∉ V, so that the complete set V is a maxiconsistent set, 
corresponding to a classical valuation v, with v(x) = 0. Since also A∪m(G) ⊆ 
A∪m(G+) ⊆ V, we have v(A∪m(G)) = 1. Putting these together, x ∉ Cn(A∪m(G)). � 
 
Alternatively, one may re-run the second argument for Observation 11, observing that 
since x ∉ out4(G

+,A′) (defined as in that proof) and I ⊆ G+, we have x ∉ A′  so that 
v(x) = 0. Since A∪m(G+) ⊆ A′ = V we also have v(A∪m(G)) =1.  
 
Simple-minded reusable output plus identity does not collapse into classical logic, but 
may be simplified. 
 
OBSERVATION 17: out3(G∪I,A) = ∩{ B: A ⊆ B = Cn(B) ⊇ G(B)}. 
 
Proof. By the definition of out3 it suffices to check that whenever B = Cn(B) ⊇ G(B) 
we have Cn(G+(B)) = B . Left in right: if G(B) ⊆ B then since also I(B) ⊆ B we have 
G+(B) ⊆ B  so Cn(G+(B)) ⊆ Cn(B) = B by hypothesis. Right in left: since I ⊆ G+ we 
have B  ⊆ G+(B) ⊆ Cn(G+(B)). � 
 
Note that this verification makes essential use of reusability, i.e. that G(B) ⊆ B, and of 
identity, i.e. that the generating set includes I, so that the argument does not apply to 
weaker kinds of output. 
 
From our perspective, operations that accept all inputs as outputs are a limiting case 
of ‘logically assisted transformations’. However, Observation 17 draws attention to an 
interesting connection with a construction underlying normal default logic. 
Specifically: Reiter’s default logic, stripped of its consistency constraint, is the same 
as simple-minded reusable output with identity. To see this, take the quasi-inductive 
definition of an extension of a normal default system as given in (Reiter 1980, 
theorem 2.1) or (Makinson 1994, section 3.2), and take out the consistency constraint. 
This puts ext(G,a) = ∪{ Ei: 0 ≤ i < ω} where E1 = {a} and Ei+1 = Cn(Ei)∪G(Ei). It is 
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easy to check that ext(G,a) = ∩{ B: a ∈ B = Cn(B) ⊇ G(B)}, so by Observation 17, 
ext(G,a) = out3(G∪I,a).  
 
In (Makinson and van der Torre, to appear) we show how normal default logic, with 
its consistency constraint, is a special case of constrained input/output logic.  
 
 

7. REVERSIBILITY OF RULES IN A DERIVATION 
 
We finally consider briefly some questions arising for the syntactic formulations of 
the four input/output operations: reversibility of rules (this section) and ‘universality’ 
of certain orders of derivation of output (following section).   
 
Note that all four input/output operations satisfy replacement of input, and of output, 
by classically equivalent propositions. That is, if (a,x) ∈ out(G) then (a′,x′) ∈ out(G) 
whenever Cn(a) = Cn(a′) and Cn(x) = Cn(x′). From this point on, we treat 
replacement of logically equivalent propositions as a ‘silent rule’, that may be applied 
at any step without explicit justification. 
  
With this understanding, the order of application of two derivation rules is often 
‘reversible’. In some cases, we may simply permute the application of two successive 
rules, independently of the choice of the formulae to which they are applied. For 
example, any application of AND followed by SI may be replaced by one in which SI 
is followed by AND. In other cases, the order may be reversed, but with additional 
(and prior) use of a third rule - often SI and in one instance WO. Finally, there are 
some configurations for which no transformation appears to be available.  
 
Observation 18 displays in a table the transformations that the authors have noted to 
be possible. The table should be read as follows: 
 

• An entry in the cell determined by the row for rule R and the column for R′  
tells us to what extent the sequence R,R′ may be reversed to R′,R.  

• In an application of the asymmetric rule CT, taking us from (a,x) and (a∧x,y) to 
(a,y), we call (a,x) the ‘minor’ premise and (a∧x,y) the ‘major’ premise. In the 
column for CT, the left (resp. right) sub-column represents the case where the 
output of the previous rule feeds in as the minor (resp. major) premise of the 
rule CT.  

• The entry � indicates that simple permutation is possible.   
• When only a more complex reversal is known to be possible, it is written 

explicitly. Thus for example in the cell for CT,AND we have written 
SI,AND,CT to indicate that the former order may be transformed into the latter.  

• The entry none? means that no transformation is known to the authors.  
• The empty spaces in the diagonal mean that the question does not arise there. 
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OBSERVATION 18 (reversibility of rules).  
 
 

 
 

 
     SI 
 

 
    WO 

 
               CT 

 
   AND 

 
   OR 
 

 
   SI 
 

  
     � 

 
   none? 

 
   none? 

 
   none? 

 
     � 
 

 
   WO 
 

 
     � 

  
  SI,CT 

 
     � 

 
     � 

 
   none? 

 
   CT 
 

 
     � 

 
     � 

  
 SI,AND,CT 

 
   none? 
 

 
  AND 
 

 
     � 

 
     � 

 
  SI,CT  

 
     � 

  
WO,OR,AND 
 

 
   OR 
 

 
     � 

 
     � 

 
SI,CT,OR 

 
SI,CT,OR 

 
 SI,AND,OR 

 
 

 
 
Not to overburden the paper, we omit the verifications of the reversals in the table, 
giving only the least immediate among them as an example. This is the transformation 
OR,CT ⇒ SI,CT,OR, where the left hand configuration takes two forms according as 
the conclusion of OR feeds in as ‘minor’ or ‘major’ premise of the non-symmetric 
two-premise rule CT.  
 
OR,CT (Case 1) ⇒ SI,CT,OR  
 
 
 (a,x) (b,x)         ((a∨b)∧x,y) 
--------------   OR                   
    (a∨b,x)                      
   ------------------------------   CT 
                  (a∨b,y) 

 
    (a,x)      ((a∨b)∧x,y)    (b,x)        ((a∨b)∧x,y) 
                        SI                         SI 
                  (a∧x,y)                     (b∧x,y)  
CT   ------------------          -------------------   CT 
                 (a,y)        (b,y) 
                -------------------------------   OR 
                               (a∨b,y) 
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OR,CT (Case 2) ⇒ SI,CT,OR 

 
 
(z,y)    (a,x)    (b,x)       
          -----------------  OR  
               (a∨b,x) 
   ------------------- CT: z∧y ≈ a∨b 
               (z,x) 
 
 

 
(z,y)          (a,x)                  (z,y)               (b,x)       
      SI                                      SI                 
(z∧(¬b∨a),y)                     (z∧(¬a∨b),y)        
 ------------------ CT             --------------------- CT 
(z∧(¬b∨a),x)            (z∧(¬a∨b),x) 
 --------------------------------------------------  OR 
                                 (z,x) 
 

  
Here ≈ stands for classical equivalence. In the second case, the given application of 
CT (on the left) is allowable iff z∧y ≈ a∨b, in which case z∧(¬b∨a)∧y ≈ a and 
z∧(¬a∨b)∧y ≈ b so that we can apply CT as indicated on the right. 
 
 

8. UNIVERSAL ORDERS OF DERIVATION 
 
Consider any system with n derivation rules (e.g. basic output with its four rules SI, 
AND, WO, OR). We say that a derivation respects an order R1,...,Rn of those rules iff 
a rule Rj is never applied in it before (i.e. leafwards of) a rule Ri for i < j. In other 
words, rules may be skipped or repeated (and moreover, as already mentioned earlier, 
it is understood that classically equivalent formulae may replace each other whenever 
desired), but the rules must never be applied contrary to the indicated order. Of 
course, many derivations do not respect any order at all; in particular, if an application 
of R is made before one of a distinct rule R′, but also an application of R′ is made 
before one of R, then no order is respected in the derivation. 
  
We say that an order is universal (for a given set of rules defining an input/output 
operation) iff whenever (a,x) ∈ out(G) then there is a derivation of (a,x) from G 
respecting that order. The question naturally arises: are there any universal orders? 
Repeated application of Observation 18 tells us that there are several. 
 
OBSERVATION 19.  

(a) For simple-minded output, with the rules SI, AND, WO, there are (at least) three 
universal orders of derivation: SI,AND,WO, and (SI,WO),AND. 

(b) For basic output, with the rules SI, AND, WO, OR, there are (at least) six 
universal orders: SI,AND,WO, OR, and (SI,WO),(AND,OR) and WO,OR,SI,AND. 

(c) For simple-minded reusable output, with the rules SI, AND, WO, CT, there are (at 
least) eight universal orders: SI,(WO,CT,AND) and WO,SI,(CT,AND). 

(d) For reusable output, with the rules SI, AND, WO, OR, CT, there are (at least) 
eleven universal orders: SI,(WO,CT,AND),OR and SI,(WO,CT),OR,AND and 
WO,SI,(CT,AND),OR and WO,SI,CT,OR,AND. 
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Here the parentheses indicate that every arrangement within them is counted. The first 
order for simple-minded output also emerged from its completeness proof 
(Observation 1). Of course, Observation 19 depends very much on the particular 
choice of rules made, not only their joint force. For the rules that we have used, we 
conjecture that in each case there are no universal orders of derivation other than 
those listed. 
 
Remark. In Observation 18, there are just four non-reversible orders: SI,CT; SI,AND; 
WO,OR; CT,OR. Thus all orders listed as universal in Observation 19 satisfy the 
property: SI before (immediately or separated by other rules) CT, SI before AND, 
WO before OR, and CT before OR. More surprisingly, it can be checked by 
enumeration that the converse is also true: every order satisfying that property is 
universal. It is not clear whether this fact points to a deeper pattern. 
 
 

9. OTHER SYSTEMS 
 
One might consider strengthening, weakening, or otherwise modifying the systems 
studied in this paper, with either a purely formal motivation or an eye to possible 
applications. 
 
For example, with an interest in defeasible conditionals, one might drop the SI rule, 
perhaps replacing it by a rule of replacement of equivalent input propositions. 
Semantically, the operations are Cn(G(a)) and Cn(G(E(a))) for individual formulae a, 
although the definition for infinite sets A (section 3.2) becomes problematic.   
 
Again, one might consider modifying certain of the rules employed. For example, we 
know (section 5.1) that given SI, cumulative transitivity CT implies transitivity T, but 
not conversely. What happens if in the system of simple-minded reusable output, say, 
we replace CT by T? Given SI and AND, it is easy to show that T is equivalent to the 
following principle of ‘ghost cumulative transitivity’ GCT, which the authors have 
not seen in the literature: From (p,a), (a,b), (a∧b,c) to (p,c).  
 
We conjecture that this system may be defined as out(G,A) = Cn(out3(G∪I, 
out1(G,A))). Diagrammatically: two G boxes, one under the other, with the same 
ordered pairs inside. The input A comes into the first box; whose output is input to the 
second box. Input to the second box reappears in its output; and output of the second 
box is reusable in its input. The final output is closure under Cn of the second box. 
 
Finally, one could consider adding various rules to one or more of the systems 
studied. For example, one could look at: 
 

Contraposition CP:    from (a,x) to (¬x,¬a) 
Dual cumulative transitivity DCT:  from (a,x∨y), (x,y) to (a,y) 
Conditionalisation CND:   from (a,x) to (t, a→x).  

 
We see these three rules of relatively minor interest, as they have little motivation in 
terms of the underlying vision of input/output processes outlined in the first section of 
this paper. Nevertheless, we note some facts about them. Observe, first, that we may 
add any or all of these three rules to those for basic reusable output without collapse 
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into classical consequence. For if G = ∅, then whenever (a,x) ∈ out(G), where out is 
the enlarged operation, then a simple induction shows that either a is a contradiction 
or x is a tautology, so that in particular (a,a) ∉ out(G), for contingent a, whereas a ∈ 
Cn({ a} ∪m(G)). We also have the following equivalences. 
 
OBSERVATION 20. Given CP, the rules CT and DCT are equivalent. Also, given the 
rules of basic output, DCT and CND are equivalent. 
 
Outline of proof. The only verification that is not trivial is that for Basic + DCT ⇒ 
CND, as follows. 
 

       (t,t)      (a,x)   (a,x) 
              SI          WO        
(¬a, a∨(¬a∨x)) (a, ¬a∨x)      WO 
--------------------------------------   DCT        
                   (¬a, ¬a∨x)            (a, ¬a∨x)     
        -------------------------------------------------        OR   
    (t, a→x)     �  
  

On the semantic level, it is difficult to see any input/output semantics for CP or DCT. 
However, in the case of the rule CND, we do have a semantics, indirectly.   
 
OBSERVATION 21. For each of the systems outi (i = 1,…,4), if we add the rule CND 
then we have a semantics like that for the source system, except that the set G is 
replaced by G∪{( t, a→x): (a,x) ∈ G}. If we add both CND and the identity rule, then 
we replace G in the semantics by G∪I∪{( t, a→x): (a,x) ∈ G∪I}. 
 
Proof. It is easy to check that the rule CND may always be applied first in any 
derivation using at most SI,AND,WO,OR,CT,CND.  �  
 
 

10. SUMMARY 
 
The investigations in this paper are inspired by a view of logic as ‘secretarial 
assistant’ to an arbitrary process transforming propositional inputs into propositional 
outputs. Its task is to prepare the inputs, unpack the outputs, and co-ordinate the two 
in various ways. In this perspective, we introduced four principal input/output 
operations: simple-minded, basic (making intelligent use of disjunctive inputs), 
simple-minded reusable (in which outputs may be recycled as inputs), and basic 
reusable output. These are doubled by corresponding systems in which inputs 
reappear among the outputs. The systems are defined semantically, and are 
characterised syntactically by derivation rules. We recall the four basic systems. 
 
• Simple-minded output, written out1(G,A), is defined as Cn(G(Cn(A))), and is 

characterised by the rules SI,AND,WO. 

• Basic output, written out2(G,A), is defined as ∩{ Cn(G(V)): A ⊆ V, V complete}, 
where a complete set is one that is either maxiconsistent or equal to the set L of all 
formulae of the language. It is characterised by SI,AND,WO,OR. 
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• Simple-minded reusable output, written out3(G,A), is defined as ∩{ Cn(G(B)): A ⊆ 
B = Cn(B) ⊇ G(B)}. It is characterised by SI,AND,WO,CT. 

• Basic reusable output, written out4(G,A), is defined as ∩{ Cn(G(V)): A ⊆ V ⊇ 
G(V), V complete}. Equivalently, as: ∩{ Cn(G(V)): A∪m(G) ⊆ V, V complete}. It 
is reducible to basic output by the equality out4(G,A) = out2(G,A∪m(G)), and is 
characterised by SI,AND,WO,OR,CT. 

 
In none of the systems are inputs automatically outputs, that is, we do not have in 
general a ∈ out(G,a). Nor do the systems guarantee contraposition: we may have x ∈ 
out(G,a) without ¬a ∈ out(G,¬x). Of the four systems, basic reusable output reveals 
the most subtle behaviour, for example the ‘input sufficiency’ and ‘shadow input’ 
properties (Observations 8 and 9).  
 
Basic output and its reusable extension may also be characterised in terms of 
relabeling procedures and modal operators. The account in terms of relabeling 
substitutes fresh elementary letters for old ones in heads, and applies classical 
consequence. The modal characterisation prefixes boxes to heads, and applies any 
modal logic from within a broad interval.   
 
On a syntactic level, it is shown that in a surprising number of cases, the application 
of rules in a derivation may be reversed (Observation 18), giving rise to certain 
‘universal orders’ of derivation for each of the four systems studied (Observation 19). 
 
Given that an intended area of application of input/output logic is the study of systems 
of conditional goals or obligations, it is natural to ask how one might introduce 
constraints into them, to deal with ‘contrary to duty’ conditions. This question is 
investigated systematically in a sequel (Makinson and van der Torre, to appear). 
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