
Journal of Philosophical Logic 29 (2000) 383-408.

DAVID MAKINSON AND LEENDERT VAN DER TORRE

INPUT/OUTPUT LOGICS

ABSTRACT. In a range of contexts, one comes across processes resembling
inference, but where input propositions are not in general included among outputs,
and the operation is not in any way reversible. Examples arise in contexts of
conditional obligations, goals, ideals, preferences, actions, and beliefs. Our purpose is
to develop a theory of such input/output operations. Four are singled out: simple-
minded, basic (making intelligent use of disjunctive inputs), simple-minded reusable
(in which outputs may be recycled as inputs), and basic reusable. They are defined
semantically and characterised by derivation rules, as well as in terms of relabeling
procedures and modal operators. Their behaviour is studied on both semantic and
syntactic levels.

KEY WORDS: input/output logic, reusability, identity, conditional goals, conditional
obligations, deontic logic

1. INTRODUCTION

Imagine a black box into which we may feed propositions as input, and that also
produces propositions as output. Of course, classical consequence may itself be seen
in this way, but it is a very special case, with additional features - inputs are also
themselves outputs, since any proposition classically implies itself, and the operation
is in a certain sense reversible, since contraposition is valid. However, there are many
examples without those features. Roughly speaking, they are of two main kinds.

The box may stop some inputs, while letting others through, perhaps in modified
form. Inputs may record reports of agents, of the kind ‘according to source i, x is
true’, while the box may give as output either x itself, a qualified version of x, or
nothing at all, according to the identity of i. Or it might give output x only when at
least two distinct sources vouch for it, and so on. Inputs might be facts about the
performance of the stock-market today, and outputs an analyst’s commentary; or facts
about your date and place of birth, with output your horoscope readings. In these
examples, the outputs express some kind of belief or expectation.

Again, inputs may be conditions, with outputs expressing what is deemed desirable in
those conditions. The desiderata may be obligations of a normative system, ideals,
goals, intentions or preferences. In general, a fact entertained as a condition may itself
be far from desirable, so that inputs are not always outputs; and as is widely
recognised, contraposition is inappropriate for conditional goals.

Our purpose is to develop a general theory of propositional input/output operations,
covering both kinds of example. Particular attention is given to the case where outputs

 2

may be recycled as inputs. In a companion paper (Makinson and van der Torre, to
appear), we examine the imposition of constraints on output.

From a very general perspective, logic is often seen as an ‘inference motor’, with
premises as inputs and conclusions as outputs (figure 1). But it may also be seen in
another role, as ‘secretarial assistant’ to some other, perhaps non-logical,
transformation engine (figure 2). From this point of view, the task of logic is one of
preparing inputs before they go into the machine, unpacking outputs as they emerge
and, less obviously, co-ordinating the two. The process as a whole is one of ‘logically
assisted transformation’, and is an inference only when the central transformation is
so. This is the general perspective underlying the present paper. It is one of ‘logic at
work’ rather than ‘logic in isolation’; we are not studying some kind of non-classical
logic, but a way of using the classical one.

 Figure 2

Picture of Logic Assisting a Transformation Engine

Output Input

TRANSFORMATION
ENGINE

LOGIC
unpacks prepares

coordinates

Figure 1

Traditional Picture of Logic as an Inference Motor

Output Input

LOGIC

 3

On a pre-logical level, this picture is perfectly familiar from elementary set theory.
Consider any universe L, not necessarily of propositions, and any relation G ⊆ L². For
example, L may be the set of humans, and G the parent/child relation. Given an input
A ⊆ L, the output of A under G may be understood simply as G(A) = {x: (a,x) ∈ G for
some a ∈ A} - in the example, the set of all children of persons in A.

The present paper may be seen as investigating what happens to this basic picture
when we pass to the logical level, i.e. when L is the set of propositions of some
language, and input and output are both under the sway of the operation Cn of
classical consequence. These are in a certain sense frills, but give rise to subtle and
interesting behaviour.

2. LOGICAL LEVEL: THE PROBLEM

Consider a propositional language L, closed under at least the usual truth-functional
connectives; its elements are called formulae. Let G be a set of ordered pairs (a,x) of
formulae in L; the letter chosen serves as reminder of the interpretation (among
others) of the pairs as conditional goals. We call G a generating set. We read a pair
(a,x) forwards, i.e. with a as body and x as head; and we call the corresponding truth-
functional formula a→x its materialisation, echoing the old name ‘material
implication’ for the connective involved.

Suppose that we are also given a set A of formulae. Our problem is: how may we
reasonably define the set of propositions x making up the output of A under G, or one
might also say, of G given A, which we write out(G,A)? Alternatively, suppose we are
given only the generating set G: how may we define the set of input/output pairs (A,x)
arising from G, which we write out(G)?

These questions are the same, for we may define (A,x) ∈ out(G) iff x ∈ out(G,A) or
conversely. But the two formulations give a rather different gestalt, and one is
sometimes more convenient rather than the other. As we shall see, the latter tends to
be clearer in semantic contexts, whilst the former is easier to work with when
considering derivations in a syntactic context. We shall move freely from one to the
other, just as one moves between Cn and ├ for classical consequence.

3. SIMPLE-MINDED OUTPUT

3.1. Semantic definition

The simplest response to our problem is to put out(G,A) = Cn(G(Cn(A))), where the
function G(.) is defined as on the pre-logical level, and Cn alias ├ is classical
consequence. In other words, given a set A of formulae as input, we first collect all of
its consequences, then apply G to them, and finally consider all of the consequences
of what is thus obtained (figure 3).

 4

Under this definition, which we call simple-minded output and write as out1(G,A),
inputs are not in general outputs; that is, we do not have A ⊆ out1(G,A).

Example 1. Put G = {(a,x)}where a,x are distinct elementary letters, and put A = {a}.
Then G(Cn(a)) = {x} so a ∉ out1(G,a) = Cn(G(Cn(a))) = Cn(x). Contraposition also
fails, for although x ∈ out1(G,a) we have ¬a ∉ out1(G,¬x): since a ∉ Cn(¬x) we have
G(Cn(¬x)) = ∅ so that ¬a ∉ out1(G,¬x) = Cn(G(Cn(¬x))) = Cn(∅).

Clearly, this operation is inadequate for some purposes, for it is unable to handle
disjunctive inputs intelligently.

Example 2. Put G = {(a,x), (b,x)}and A = {a∨b}. Then Cn(A)∩b(G) = ∅ where we
write b(G) for the set of all bodies of elements of G, i.e. in this example the set {a,b}.
Hence also G(Cn(A)) = ∅ so that Cn(G(Cn(A))) = Cn(∅). However, in many contexts
we would want to put x in the output, as it can be obtained from each of the two
disjuncts of the input.

Nevertheless, the operation of simple-minded output has an interest of its own, and its
study also helps prepare the way for more sophisticated ones.

3.2. Syntactic characterisation

Our definition of simple-minded output is, in a broad sense of the term, semantic. It is
not difficult to give it a syntactic characterisation in terms of derivation rules.

In general, for any set of rules, we say that a pair (a,x) of formulae is derivable using
those rules from a set G of such pairs iff (a,x) is in the least set that includes G,
contains the pair (t,t) where t is a tautology, and is closed under the rules. In the
systems studied here, it will make no difference which tautology t is chosen. Our

Figure 3
Simple-Minded Output: out1(G,A) = Cn(G(Cn(A)))

Cn(G(Cn(A)))

Input A
G(Cn(A)) Cn(A)

G

 5

notations are (a,x) ∈ deriv(G) or equivalently x ∈ deriv(G,a), with a subscript to
indicate the set of rules employed.

When A is a set of formulae, derivability of (A,x) from G is defined as derivability of
(a,x) from G for some conjunction a = a1∧…∧an of elements of A. We understand the
conjunction of zero formulae to be a tautology, so that (∅,x) is derivable from G iff
(t,x) is for some tautology t.

In the particular case of simple-minded output, we use the following three rules
determining an operation deriv1. Of these, the first governs the use of inputs
(strengthening the input: SI), while the other two deal with the management of outputs
(conjunction in the output: AND; weakening the output: WO).

SI: From (a,x) to (b,x) whenever b├ a
AND: From (a,x), (a,y) to (a,x∧y)
WO: From (a,x) to (a,y) whenever x├ y.

OBSERVATION 1. Out1(G,A) = deriv1(G,A).

Outline of proof. The inclusion from right to left is straightforward by induction on
length of derivation. From left to right, suppose x ∈ Cn(G(Cn(A))). Then by
compactness of Cn there are x1,…,xn ∈ G(Cn(A)) with x ∈ Cn(x1∧…∧xn). In the case
that n = 0, x is a tautology t and we can also put a = t giving us a one-step derivation
of (t,t). In the case that n ≠ 0 we proceed as follows. For each i ≤ n, since xi ∈
G(Cn(A)) there is a bi ∈ Cn(A) with (bi,xi) ∈ G. Putting b = b1∧…∧bn we note that b
∈ Cn(A), and so by compactness b ∈ Cn(a) for some conjunction a = a1∧…∧am of
elements of A. We can thus construct a derivation whose leaves are the pairs (bi,xi),
followed by applications of SI to get the pairs (a,xi), followed by applications of AND
to get (a, x1∧…∧xn), followed finally by WO to get (a,x). �

Evidently, the proof of Observation 1 also provides a ‘universal order’ for derivations
of simple-minded output: SI, AND, WO. More on this in section 8.

4. BASIC OUTPUT

4.1. Semantic definition and syntactic characterisation

As already remarked, simple-minded output is unable to process disjunctive inputs
intelligently. How may this be done? On the syntactic level, the answer is obvious:
define deriv2(G) by adding the following rule to those for simple-minded derivations:

OR: From (a,x), (b,x) to (a∨b,x).

On the semantic level, we define basic output, out2(G,A), as ∩{ Cn(G(V)): v(A) = 1},
in the principal case that A is classically consistent (see figure 4). Here, v ranges over
boolean valuations and V = {b: v(b) = 1}. In the limiting case that there is no such v
(which by classical logic happens iff A is inconsistent) we put out2(G,A) to be

 6

Cn(G(L)) where L is the set of all boolean formulae; this equals Cn(h(G)) where h(G)
is the set of all heads of elements of G.

Equivalently: out2(G,A) = ∩{ Cn(G(V)): A ⊆V, V complete}. Here, by a complete set
we mean one that is either maxiconsistent or equal to L. There is always at least one
complete V that includes A, namely L, and so there is no need for a separate limiting
case. The same trick could be done with the first formulation, by allowing v to be
either a boolean valuation or the function that puts v(b) = 1 for all formulae b.

Note that as classical consequence Cn is monotonic, and the transformation G(X) is
also monotonic in each of X and G, both simple-minded and basic output are
monotonic in each of their arguments.

To compare basic with simple-minded output, notice that simple-minded output can
also be expressed as an intersection. Trivially, out1(G,A) = ∩{ Cn(G(B)): A ⊆ B =
Cn(B)}. As is well known, Cn(V) = V for any complete V, so we can say that basic
output is like simple-minded output except that is restricts the choice of B to complete
sets.

OBSERVATION 2. Out2(G,A) = deriv2(G,A).

Outline of Proof. We begin by disposing of the limiting case that A is inconsistent. In
that case out2(G,A) = Cn(h(G)) = deriv2(G,A) by definition on the left and easy
verification on the right. Next, we dispose of another limiting case, that x ∉ Cn(G(L)).

Figure 4

Basic Output: out2(G,A) = ∩∩∩∩{Cn(G(V)): v(A) = 1}

 = ∩∩∩∩{Cn(G(V)): A ⊆⊆⊆⊆ V}

Input A

V1

V2

G(V1)

G(V2)

G

Cn(G(V1))

Cn(G(V2))

out2(G,A)

 7

Since L is complete and includes A, this gives immediately x ∉ out2(G,A); and it is
also easy to show by induction that deriv2(G,A) ⊆ Cn(G(L)) so that x ∉ deriv2(G,A).
So consider finally the principal case that A is consistent and x ∈ Cn(G(L)).

The verification from right to left (soundness) is effected by first observing that it
suffices to prove the result for individual formulae a and then carrying out a
straightforward induction on length of derivation. The interesting case in the induction
is that for the rule OR. Suppose x ∉ out2(G,b∨c). Then there is a boolean valuation v
with v(b∨c) =1 and x ∉ Cn(G(V)). But then either v(b) =1 or v(c) =1 so either x ∉
out2(G,b) or x ∉ out2(G,c).

For the converse (completeness), we can use a maximality argument, similar to that
familiar for proving completeness in classical propositional logic, but with more
verifications at each step. In sketch: suppose x ∉ deriv2(G,A). Then by the monotony
and compactness of the derivability operation in its right argument (both immediate
from its definition) there is a maximal A′ ⊇ A with x ∉ deriv2(G,A′). It is easy to
verify that A′ is well-behaved with respect to conjunction and disjunction. Using the
supposition x ∈ Cn(G(L)) we can also verify that it is well-behaved with respect to
negation. Hence there is a boolean valuation v with A′ = V. To complete the proof, one
need only show that x ∉ out1(G,V) = Cn(G(Cn(V))) = Cn(G(V)) since V is closed
under consequence. But this is immediate since by Observation 1 out1(G,V) =
deriv1(G,V) ⊆ deriv2(G,V) and we have x ∉ deriv2(G,V). �

Evidently, Observation 2 implies the compactness of out2, a fact rather difficult to
verify directly from the semantic definition (in contrast to the situation for simple-
minded output, where compactness is almost immediate).

We present two further characterisations of basic output. One uses relabeling of
elementary letters, the other translates into modal logic. They have very similar
structures. We regard these two characterisations as interesting curiosities more than
useful tools, and they are not re-employed in subsequent sections. Hence sections 4.2
and 4.3 may be skipped without loss of continuity.

4.2. Account in terms of relabeling

The basic idea of this approach is to relabel the letters in the heads. This has the effect
of isolating the heads from the bodies, so that information about one cannot be carried
forwards or backwards to the other. Technically, alongside the existing language,
introduce a fresh set of elementary letters, with one new letter p* for each old letter p.
For arbitrary old formulae x, define x* in the natural way, by substituting the letters
p* for p in x. Write G* for { b→y*: (b,y) ∈ G}, i.e. as the set of all materialisations of
pairs (b,y*) obtained by starring heads only of elements of G.

OBSERVATION 3. x ∈ out2(G,A) iff x ∈ Cn(G(L)) and G*∪A ├ x*.

Proof. We dispose of the limiting cases that A is inconsistent and that x ∉ Cn(G(L)) in
the same manner as for Observation 2. So suppose for the principal case that A is
consistent and x ∈ Cn(G(L)).

 8

Suppose first that the left side fails. Since A is consistent, there is a valuation v on
unstarred letters with v(A) = 1 and x ∉ Cn(G(V)). From the latter, there is a valuation
w (also on unstarred letters) with w(G(V)) = 1 and w(x) = 0. Define a valuation w* on
formulae generated by starred letters by putting w*(p*) = w(p) for each starred letter
p*. Write v+w* for the valuation on starred and unstarred letters determined by the
two together. We claim that v+w*(G*∪A) = 1 and v+w*(x*) = 0. The latter is
immediate from w(x) = 0 since all letters in x* are starred. Similarly, we have
v+w*(A) = 1 from v(A) = 1 since all letters in A are unstarred. It remains to check that
v+w*(G*) = 1. Let (b,y) ∈ G and suppose v+w*(b) = 1; we need to show that
v+w*(y*) = 1. Since b is unstarred the supposition tells us that v(b) = 1 so b ∈ V, so y
∈ G(V) so by hypothesis w(y) = 1 so w*(y*) = 1 and finally v+w*(y*) = 1.

To show the converse, we could use the identity out2(G,A) = deriv2(G,A) established
by Observation 2, and proceed by induction on length of derivation, but we give a
direct argument, as follows.

Suppose that the right side fails. Since we are assuming that x ∈ Cn(G(L)), there is a
valuation defined on both starred and unstarred letters that satisfies G*∪A and fails
x*. Without loss of generality, we may write this valuation as v+w* where v,w are
defined on unstarred letters and w* is defined from w as before. Thus v+w*(G*∪A) =
1 and v+w*(x*) = 0. We show that v(A) = 1 and x ∉ Cn(G(V)). We have v(A) = 1
immediately from v+w*(A) = 1 since A contains only unstarred letters. For x ∉
Cn(G(V)), it suffices to show that w(x) = 0 while w(G(V)) = 1. The former is
immediate from v+w*(x*) = 0. For the latter, suppose y ∈ G(V); we need to show w(y)
= 1. Since y ∈ G(V) there is an unstarred formula b with (b,y) ∈ G and b ∈ V so that 1
= v(b) = v+w*(b). Since v+w*(G*) = 1 we have v+w*(b→y*) = 1 so that 1 = v+w*(y*)
= w*(y*) = w(y) as desired. �

4.3. Modal formulation

The modal characterisation has strong formal parallels with the relabeling one. Its
essential idea is to prefix heads with boxes and apply a suitable modal logic. Indeed
any modal logic from a broad interval will do the job.

Consider the modal propositional language formed by adding a unary box operator to
the classical language, and consider the modal calculus K0, serving as a lower bound
on the interval, defined axiomatically as follows. Take as axioms all classical
tautologies in that language and all formulae of the form � (a→x)→(� a→� x); and
take as rules passage from a, a→x to x (detachment), and passage from t to � t for
every classical tautology t. Evidently, we could reformulate the last rule as axioms � t
for every classical tautology t.

K0 is a subsystem of the familiar modal logic K; the latter also allows passage from a
to � a for every thesis a. We recall the well-known fact that for first-degree formulae
(i.e. formulae without iteration of the box) all systems from K0 to K45 agree.

 9

Write G� for the set of all modal formulae b→� y with (b,y) ∈ G, and Z ├S z to mean
that (∧Y → z) ∈ S for some finite Y ⊆ Z.

OBSERVATION 4. x ∈ out2(G,A) iff x ∈ Cn(G(L)) and G� ∪A ├S � x, for any modal
logic S with K0 ⊆ S ⊆ K45.

Proof. Since all systems from K0 to K45 agree on first-degree formulae, we need only
prove the Observation for K. In the limiting case that A is classically inconsistent both
sides are equivalent to x ∈ Cn(G(L)) and we are done. So suppose that A is consistent.

Suppose x ∈ out2(G,A). Then by Observation 2, (A,x) ∈ deriv2(G) so we need only
show by induction that whenever (a,x) ∈ deriv2(G) then G� ∪{ a}├K � x, which is
straightforward.

Conversely, suppose x ∉ out2(G,A). Since A is assumed consistent, there is a valuation
v of boolean formulae with v(A) = 1 and x ∉ Cn(G(V)). Fix one such v, and define a
relational model (M,R,ϕ) by putting M to be the set of all purely boolean valuations
and for u,w ∈ M put (u,w) ∈ R iff for every (b,y) ∈ G, if u(b) = 1 then w(y) = 1. Put
ϕ(w,p) = w(p) for all elementary letters p and all w ∈ M.

To complete the proof, it suffices to check that ϕ(v, G� ∪A) = 1 while ϕ(v, � x) = 0.
Since v(A) = 1 and A is purely boolean, ϕ(v,A) = 1. Suppose b→� y ∈ G� and ϕ(v,b) =
1; then (b,y) ∈ G and b is purely boolean so v(b) = 1 and also whenever (v,w) ∈ R
then by the definition of R, w(y) = 1; thus ϕ(v, b→� y) = 1. This shows ϕ(v, G�) = 1.
To show ϕ(v, � x) = 0 we need to find a w with (v,w) ∈ R and ϕ(w,x) = 0. But by
hypothesis, x ∉ Cn(G(V)) so there is a w with w(G(V)) = 1 and w(x) = ϕ(w,x) = 0. It
remains only to check that (v,w) ∈ R. But if (b,y) ∈ G and v(b) = 1 then immediately y
∈ G(V) so w(y) = 1 and by the definition of R we are done. �

5. REUSABLE OUTPUT

5.1. Idea and definitions

In certain situations, it may be appropriate for outputs to be available for recycling as
inputs. For example, the elements (a,x) of G may be conditional norms of a kind that
say that any configuration in which a is true is one in which x is desirable. In some
contexts, we may wish to entertain hypothetically the items already seen as desirable,
in order to determine what is in turn so. How may such a principle of reusability be
expressed formally?

On the syntactic level, the answer again suggests itself naturally: add the following
rule of ‘cumulative transitivity’ to those already available for simple-minded output,
or those for basic output:

CT: From (a,x), (a∧x,y) to (a,y).

 10

Given SI, this immediately implies transitivity (from (a,x), (x,y) to (a,y)) but not
conversely.

On the semantic level, we define simple-minded reusable output, written out3(G,A), as
follows:

out3(G,A) = ∩{ Cn(G(B)): A ⊆ B = Cn(B) ⊇ G(B)}.

There is always at least one set B with A ⊆ B = Cn(B) ⊇ G(B), namely L, and the
intersection of any non-empty family of such sets satisfies the same condition.

Recalling again that simple-minded output can be expressed as an intersection, with
out1(G,A) = ∩{ Cn(G(B)): A ⊆ B = Cn(B)}, we can say that reusable simple-minded
output is like plain simple-minded output, except that it restricts the choice of B to
sets that are included in their own image under G.

Since each of the operations G and Cn is monotone, their composition is also
monotone. Hence the definition may also be expressed thus: out3(G,A) = Cn(G(A*))
where A* is the least superset of A that is closed under both Cn and G.

We define basic reusable output, written out4(G,A), as follows in the principal case
that A is classically consistent:

out4(G,A) = ∩{ Cn(G(V)): v(A) = 1 and G(V) ⊆ V}.

Here as before, v ranges over boolean valuations and V = {b: v(b) = 1}. In the limiting
case that there is no such v, we proceed as for basic output, putting out4(G,A) to be
Cn(G(L)) where L is the set of all boolean formulae; equal to Cn(h(G)) where h(G) is
the set of all heads of elements of G. Equivalently,

out4(G,A) = ∩{ Cn(G(V)): A ⊆ V ⊇ G(V), V complete}.

Clearly out3(G,A) ⊆ out4(G,A) ⊆ Cn(G(L)). The diagrams for the two notions are
essentially the same. For basic reusable output, see figure 5. For the simple-minded
version, replace the captions Vi by Xi = Cn(Xi).

 11

5.2. Simple-minded reusable output: properties and syntactic characterisation

As in the non-reusable case, the simple-minded reusable operation is less satisfying
than the basic one, given its inability to deal intelligently with disjunctive inputs.
Nevertheless, the simple-minded version has a certain interest, and we indicate some
of its basic properties.

OBSERVATION 5 (cumulativity on the right). Out3(G,A) = out3(G,A∪D) whenever D
⊆ out3(G,A).

Proof. The left is included in the right, by monotony in the right argument (immediate
from the definition). For the converse, suppose x ∉ out3(G,A). Then by the definition
of out3 there is a B with A ⊆ B = Cn(B) ⊇ G(B) and x ∉ Cn(G(B). To show x ∉
out3(G,A∪D), it suffices to show A∪D ⊆ B, and so since A ⊆ B and using the
hypothesis D ⊆ out3(G,A), it is enough to show out3(G,A) ⊆ B. But by its definition,
out3(G,A) ⊆ Cn(G(B)) ⊆ B and we are done. �

From cumulativity and monotony it follows immediately that simple-minded reusable
output satisfies one half of idempotence on the right: out3(G,out3(G,A)) ⊆
out3(G,A∪out3(G,A)) = out3(G,A). However, the converse half of idempotence fails.

Figure 5
Basic Reusable Output: out4(G,A) = ∩∩∩∩{Cn(G(V)): A ⊆⊆⊆⊆ V ⊇⊇⊇⊇ G(V)}

Input A

V1

V2

G(V1)

G(V2)

G

Cn(G(V1))

Cn(G(V2))

out2(G,A)

⊆

⊆

 12

Example 3. Put G = {(a,x)} and A = {a} where a,x are distinct elementary letters.
Then out3(G,a) = Cn(x) whereas out3(G,out(G,a)) = out3(G,Cn(x)) = Cn(∅), so that
the former is not included in the latter. �

Thus for each G, the right projection function outG,3(A), defined as out3(G,A), is in
some respects like a Tarski consequence operation (that is, a closure operation on sets
of propositions) and in some respects different. It is monotonic and cumulative, and
iterated output is included in single output; but in general it fails inclusion and the
other half of idempotence.

These remarks about the right projection function of simple-minded reusable output
should not be confused with the fact that all of our input/output operations,
understood as taking sets G of pairs (A,x) to sets outi(G) of pairs, are quite trivially,
closure operations - inclusion, monotony, and idempotence all hold.

We sketch a proof of the equivalence of its semantic and syntactic definitions of
reusable simple-minded output, writing deriv3(G,A) for the latter.

OBSERVATION 6. Out3(G,A) = deriv3(G,A).

Outline of proof. It suffices to prove the result for singleton A. The inclusion from
right to left is straightforward by induction on length of derivation. The interesting
clause is that for CT. Suppose that x ∈ out3(G,a) and y ∉ out3(G,a); we need to show
that y ∉ out3(G,a∧x). From the second hypothesis, there is a B with a ∈ B = Cn(B) ⊇
G(B) and y ∉ Cn(G(B)). By the first hypothesis, x ∈ Cn(G(B)). But since G(B) ⊆
Cn(B) we have Cn(G(B)) ⊆ Cn(B) so x ∈ Cn(B). Thus a∧x ∈ Cn(B) and so y ∉
out3(G,a∧x) as desired.

For the converse, suppose x ∉ deriv3(G,a); we need to find a B with a ∈ B = Cn(B) ⊇
G(B) and x ∉ Cn(G(B)).

Put B = Cn({ a} ∪ deriv3(G,a)). Clearly a ∈ B = Cn(B). To show G(B) ⊆ B, suppose y
∈ G(B). Then there is a b ∈ B with (b,y) ∈ G. We need to show y ∈ B, i.e. deriv3(G,a)
├ a→y. But since b ∈ B we have deriv3(G,a) ├ a→b so since deriv3(G,a) is closed
under classical consequence (by the rules AND,WO and the compactness of classical
consequence) we have a→b ∈ deriv3(G,a), i.e. (a, a→b) ∈ deriv3(G). But since (b,y)
∈ G we also have (b,y) ∈ deriv3(G) so by SI, (a∧b, y) ∈ deriv3(G), so by CT, (a,y) ∈
deriv3(G), i.e. y ∈ deriv3(G,a) so by WO, a→y ∈ deriv3(G,a) so deriv3(G,a) ├ a→y as
desired.

It remains to check that x ∉ Cn(G(B)), i.e. x ∉ Cn(G(Cn({ a} ∪ deriv3(G,a)))) =
out1(G, {a} ∪ deriv3(G,a)) = deriv1(G, {a} ∪ deriv3(G,a)) using the completeness
theorem for simple-minded output (Observation 1). Suppose the contrary. Then, using
SI, there are x1,…,xn ∈ deriv3(G,a) with x ∈ deriv1(G, a∧x1∧…∧xn) i.e. (a∧x1∧…∧xn,,
x) ∈ deriv1(G) ⊆ deriv3(G). But since each xi ∈ deriv3(G,a), i.e. (a,xi) ∈ deriv3(G) we
have by AND and WO that (a, x1∧…∧xn) ∈ deriv3(G). Hence by CT, (a,x) ∈
deriv3(G) i.e. x ∈ deriv3(G,a) contradicting our initial supposition. �

 13

5.3. Basic reusable output: first properties

We now focus on basic reusable output, better motivated than its simple-minded
counterpart and also more interesting formally. To lighten terminology, from now on
we refer to it simply as reusable output. We show in section 5.4 that out4(G,A) =
deriv4(G,A), where the latter is defined by the rules for basic output
(SI,AND,WO,OR) plus CT. But before doing so we draw attention to some properties
of the semantic construction.

Reusable output may equivalently be defined in the following manner, which is rather
less intuitive, but establishes a link with basic output and simplifies proofs.

OBSERVATION 7. Out4(G,A) = ∩{ Cn(G(V)): A∪m(G) ⊆ V, V complete}.

Proof. It suffices to show that for any complete set V, we have G(V) ⊆ V iff m(G) ⊆
V, where m(G) is the materialisation of G, that is, the set of all formulae b→y with
(b,y) ∈ G.

In one direction, suppose m(G) ⊆ V and let y ∈ G(V); we need to show that y ∈ V.
Since y ∈ G(V) there is a b ∈ V with (b,y) ∈ G, so b→y ∈ V and so since V is
complete, y ∈ V as desired.

Conversely, suppose G(V) ⊆ V and suppose b→y ∈ m(G); we need to show b→y ∈ V.
Suppose b∈ V; since V is complete, it suffices to show that y ∈ V. But since b→y ∈
m(G) we have (b,y) ∈ G so since b ∈ V we have y ∈ G(V) ⊆ V and we are done. �

This observation immediately allows us to express reusable basic output in terms of
its non-reusable counterpart, a fact that will be useful later.

COROLLARY TO OBSERVATION 7. Out4(G,A) = out2(G,A∪m(G)).

It also permits a simplification of Figure 5: drop the backward-reaching lines with
their inclusion signs, and alongside the input circle insert a circle for m(G), also
included within the Vi ellipses.

First, we note that although out1(G,A) ⊆ {out2(G,A), out3(G,A)} ⊆ out4(G,A) ⊆
Cn(A∪ m(G)), still out4(G,A) ≠ Cn(A∪ m(G)); in particular, inputs are still not in
general outputs, and contraposition still fails, as Example 1 continues to show.
Nevertheless, contraposition plays a curious ‘ghostly’ role for reusable basic output.

Example 4 (ghost contraposition). Put G = {(¬x,¬a),(a∧x,y)}. On the one hand, x ∉
out4(G,a) since x ∉ Cn(G(L)) = Cn(h(G)) = Cn(¬a,y). On the other hand, y ∈
out4(G,a), since y ∈ Cn(G(L)) and also for every valuation v satisfying {a} ∪m(G),
v(x) = 1, so y ∈ G(V). �

Expressed more generally, this example tells us that y ∈ out4(G,a) whenever y ∈
out4(G, a∧x) and ¬a ∈ out4(G,¬x). In other words, for basic reusable output we have
the rule:

 14

GC: From (¬x,¬a), (a∧x,y) to (a,y).

Intuitively: although we cannot contrapose the premise (¬x,¬a), we can ‘use’ the
contraposition for an application of cumulative transitivity. This can be verified
directly, or from the following principle of input sufficiency:

OBSERVATION 8 (input sufficiency). Whenever {a} ∪m(G)├ x, then if y ∈ out4(G,
a∧x) then y ∈ out4(G,a). More generally, whenever A∪m(G)├ X, then if y ∈ out4(G,
A∪X) then y ∈ out4(G,A).

Proof. Immediate from Observation 7, for if A∪m(G)├ X and A∪m(G) ⊆ V where V is
a complete set, then A∪X∪m(G) ⊆ V. �

This is a powerful principle, with a number of consequences. Expressed syntactically,
it is the rule:

IS: From (a∧x,y) to (a,y) whenever {a} ∪m(G)├ x.

This implies ghost contraposition, for ¬a ∈ out(G,¬x) implies {¬x} ∪m(G)├ ¬a so
that {a} ∪m(G)├ x. Again, since x ∈ out(G,a) implies {a} ∪m(G)├ x, input sufficiency
also implies CT, which we recall authorises passage from (a,x), (a∧x,y) to (a,y).

Essentially the same property may be expressed as follows: for reusable output we
may add to the input the materialisations of some or all of the generators, without
changing the output.

OBSERVATION 9 (shadow input). Out4(G,A) = out4(G, A∪ m(G′)) whenever G′ ⊆ G.

Proof. Immediate from Observation 7, since A∪m(G) = A∪m(G′)∪m(G) whenever G′
⊆ G. It may also be seen as the case of Observation 8 in which X = A∪m(G′). �

From Observation 9 we may say that for reusable output, generators are in a certain
sense stronger than inputs. But only in a limited sense: we can copy from generators
to inputs without altering output, but if we transfer from generators to inputs then we
may in general lose and gain output, as can be shown by trivial examples. Simple
examples also show that copying from inputs to generators may change output.

Finally, we note that basic reusable output is cumulative and satisfies half of
idempotence (iterated output included in single output). The proof is the same as for
simple-minded output (Observation 5). However, these properties fail for plain
simple-minded and basic output (i.e. without reusability). This is as one would expect:
cumulativity of the output operation is closely associated on the syntactic level with
the rule CT, and on the semantic level with reusability.

5.4. Basic reusable output: syntactic characterisation

We now show that out4(G,A) = deriv4(G,A), where the latter is defined by the rules for
basic output (SI,AND,WO,OR) plus CT.

 15

OBSERVATION 10 (soundness). Deriv4(G,A) ⊆ out4(G,A).

Outline of proof. We need only add to the verification of the corresponding result for
basic output (Observation 2, first part of proof) a verification of the rule CT. That
verification follows the same pattern as in the soundness proof for simple-minded
reusable output (Observation 6). �

OBSERVATION 11 (completeness). Out4(G,A) ⊆ deriv4(G,A).

Proof. By the Corollary to Observation 7 we have out4(G,A) = out2(G,A∪m(G)) =
deriv2(G,A∪ m(G)) by Observation 2, so it suffices to show deriv2(G,A∪m(G)) ⊆
deriv4(G,A). Hence, we need only show that the shadow input property, already noted
for the semantic operation out4 (Observation 9), also holds for the syntactic one
deriv4. We do this in two steps: first, we prove the property for singleton input with
singleton generating set, and then show that it follows in the general form.

LEMMA 11a. If (b,x) ∈ G then deriv4(G,a∧(b→x)) ⊆ deriv4(G,a).

Proof. Let (b,x) ∈ G and suppose y ∈ deriv4(G,a∧(b→x)); we want to show that y ∈
deriv4(G,a)). The desired derivation can be displayed as a tree diagram, as follows:

 (b,x) (a∧(b→x),y) (a∧(b→x),y)
 SI SI
(a∧b,x) (a∧b∧x,y)
-------------------------------- CT
 (a∧b,y)
 ------------------------------------- OR
 (a,y)

LEMMA 11b. Deriv4(G,A∪m(G)) ⊆ deriv4(G,A).

Proof. Suppose y ∈ deriv4(G,A∪m(G)). Clearly the operation deriv4 is monotonic and
compact on left and right. By definition, there is a conjunction a of formulae in A, and
a conjunction g = ∧(bi→xi) of formulae in m(G), such that y ∈ deriv4(G,a∧g).
Applying Lemma 11a finitely many times according to the number of conjuncts in g,
we have y ∈ deriv4(G,a) so by definition y ∈ deriv4(G,A). This completes the proof of
the Lemma and of Observation 11. �

The above proof of completeness makes use of the reduction of reusable basic output
to plain basic output, in the Corollary to Observation 7. If one prefers to argue from
first principles, one can re-run the same maximality construction as in the proof of
Observation 2, but ensuring that A∪m(G) ⊆ A′. For this it suffices to show that
whenever x ∉ deriv4(G,A) then x ∉ deriv4(G,A∪m(G)), i.e. the same shadow input
property deriv4(G,A∪m(G)) ⊆ deriv4(G,A) proven as Lemma 11b above.

OBSERVATION 12 (semantic characterisation). Out4(G,A) = deriv4(G,A).

 16

Proof. Immediate from Observations 10, 11. As a corollary, we may note that since
deriv4 is compact on both left and right, out4 is too.

5.5. Relabeling and modal formulations

Like basic output, its reusable extension can be characterised by means of relabeling,
and also in modal terms.

OBSERVATION 13. x ∈ out4(G,A) iff x ∈ Cn(G(L)) and G*∪A∪m(G) ├ x*.

Proof. Immediate from the reduction of basic reusable output to out2 in the Corollary
to Observation 7, i.e. out4(G,A) = out2(G,A∪m(G)), together with Observation 3. �

OBSERVATION 14. x ∈ out4(G,A) iff x ∈ Cn(G(L)) and G� ∪A∪m(G) ├S � x, for any
modal logic S with K0 ⊆ S ⊆ K45.

Proof: Immediate from the same reduction, with Observation 4. �

A more interesting modal reduction gets rid of the ‘additional premise’ m(G) in
favour of the additional modal axiom � a→a, known as T.

OBSERVATION 15. x ∈ out4(G,A) iff x ∈ Cn(G(L)) and G� ∪A ├S � x, for any modal
logic S with K0T ⊆ S ⊆ KT45.

Outline of proof. Since all systems from K0T to KT45 agree on first-degree formulae,
we need only prove the observation for KT. The argument follows the same lines as
for Observation 4, with the following additions and modifications.

From left to right, we need to show that the modal translation satisfies the rule CT.
This amounts to showing that for any formula g, if (g∧a)→� x and (g∧a∧x)→� y are in
KT then so is (g∧a)→� y. But this is immediate given the availability of � x→x in KT.

From right to left, we suppose x ∉ out4(G,A). As before, it follows from the definition
of the output operation that there is a valuation v of boolean formulae with v(A) = 1
and x ∉ Cn(G(V)), and this time we also have G(V) ⊆ V. Fix one such v, and define
the relational model (M,R,ϕ) as before, but with a modified relation R. For the chosen
valuation v put (v,w) ∈ R iff for every (b,y) ∈ G, if v(b) = 1 then w(y) = 1; for every
valuation u ≠ v, put (u,u) ∈ R. Note that when v(b) = 1 and (b,y) ∈ G then y ∈ G(V) ⊆
V so that v(y) = 1; this shows (v,v) ∈ R. Combining this with the other part of the
definition of R, we have its reflexivity, so that the model validates the modal system
KT. To complete the proof, it suffices to check that ϕ(v, G� ∪A) = 1 while ϕ(v, � x) =
0. This is done exactly as in the proof of Observation 4. �

We note in passing that in modal logics satisfying the modal axiom T, G� implies
m(G), so that given observations 14 and 15, we can also push the upper bound of the
former up to KT45.

 17

As far as the authors are aware, it is not possible to characterise the system of simple-
minded output (with or without reusability) by relabeling or modal logic in a
straightforward way. The OR rule appears to be needed, so that we can work with
complete sets.

6. ACCEPTING INPUTS AS OUTPUTS

What happens if we strengthen the logic of some kind of output by accepting inputs as
outputs? Syntactically, add the rule: From no premises to (y,y). Evidently, such a rule
can always be applied first, so the semantic counterpart amplifies outi(G,A) to
outi(G∪I,A) where I = {(y,y): y a formula}. Of these, basic reusable output plus
identity collapses into classical consequence.

OBSERVATION 16: out4(G∪I,A) = Cn(A∪m(G)).

Proof. Given Observation 11, the left in right inclusion is a trivial induction. For the
converse, write G+ for G∪I, and suppose x ∉ out4(G

+,A). Then by Observation 7,
there is a complete set V with A∪m(G+) ⊆ V and x ∉ Cn(G+(V)). Clearly V ⊆ I(V) ⊆
G+(V) ⊆ Cn(G+(V)), so x ∉ V, so that the complete set V is a maxiconsistent set,
corresponding to a classical valuation v, with v(x) = 0. Since also A∪m(G) ⊆
A∪m(G+) ⊆ V, we have v(A∪m(G)) = 1. Putting these together, x ∉ Cn(A∪m(G)). �

Alternatively, one may re-run the second argument for Observation 11, observing that
since x ∉ out4(G

+,A′) (defined as in that proof) and I ⊆ G+, we have x ∉ A′ so that
v(x) = 0. Since A∪m(G+) ⊆ A′ = V we also have v(A∪m(G)) =1.

Simple-minded reusable output plus identity does not collapse into classical logic, but
may be simplified.

OBSERVATION 17: out3(G∪I,A) = ∩{ B: A ⊆ B = Cn(B) ⊇ G(B)}.

Proof. By the definition of out3 it suffices to check that whenever B = Cn(B) ⊇ G(B)
we have Cn(G+(B)) = B . Left in right: if G(B) ⊆ B then since also I(B) ⊆ B we have
G+(B) ⊆ B so Cn(G+(B)) ⊆ Cn(B) = B by hypothesis. Right in left: since I ⊆ G+ we
have B ⊆ G+(B) ⊆ Cn(G+(B)). �

Note that this verification makes essential use of reusability, i.e. that G(B) ⊆ B, and of
identity, i.e. that the generating set includes I, so that the argument does not apply to
weaker kinds of output.

From our perspective, operations that accept all inputs as outputs are a limiting case
of ‘logically assisted transformations’. However, Observation 17 draws attention to an
interesting connection with a construction underlying normal default logic.
Specifically: Reiter’s default logic, stripped of its consistency constraint, is the same
as simple-minded reusable output with identity. To see this, take the quasi-inductive
definition of an extension of a normal default system as given in (Reiter 1980,
theorem 2.1) or (Makinson 1994, section 3.2), and take out the consistency constraint.
This puts ext(G,a) = ∪{ Ei: 0 ≤ i < ω} where E1 = {a} and Ei+1 = Cn(Ei)∪G(Ei). It is

 18

easy to check that ext(G,a) = ∩{ B: a ∈ B = Cn(B) ⊇ G(B)}, so by Observation 17,
ext(G,a) = out3(G∪I,a).

In (Makinson and van der Torre, to appear) we show how normal default logic, with
its consistency constraint, is a special case of constrained input/output logic.

7. REVERSIBILITY OF RULES IN A DERIVATION

We finally consider briefly some questions arising for the syntactic formulations of
the four input/output operations: reversibility of rules (this section) and ‘universality’
of certain orders of derivation of output (following section).

Note that all four input/output operations satisfy replacement of input, and of output,
by classically equivalent propositions. That is, if (a,x) ∈ out(G) then (a′,x′) ∈ out(G)
whenever Cn(a) = Cn(a′) and Cn(x) = Cn(x′). From this point on, we treat
replacement of logically equivalent propositions as a ‘silent rule’, that may be applied
at any step without explicit justification.

With this understanding, the order of application of two derivation rules is often
‘reversible’. In some cases, we may simply permute the application of two successive
rules, independently of the choice of the formulae to which they are applied. For
example, any application of AND followed by SI may be replaced by one in which SI
is followed by AND. In other cases, the order may be reversed, but with additional
(and prior) use of a third rule - often SI and in one instance WO. Finally, there are
some configurations for which no transformation appears to be available.

Observation 18 displays in a table the transformations that the authors have noted to
be possible. The table should be read as follows:

• An entry in the cell determined by the row for rule R and the column for R′
tells us to what extent the sequence R,R′ may be reversed to R′,R.

• In an application of the asymmetric rule CT, taking us from (a,x) and (a∧x,y) to
(a,y), we call (a,x) the ‘minor’ premise and (a∧x,y) the ‘major’ premise. In the
column for CT, the left (resp. right) sub-column represents the case where the
output of the previous rule feeds in as the minor (resp. major) premise of the
rule CT.

• The entry � indicates that simple permutation is possible.
• When only a more complex reversal is known to be possible, it is written

explicitly. Thus for example in the cell for CT,AND we have written
SI,AND,CT to indicate that the former order may be transformed into the latter.

• The entry none? means that no transformation is known to the authors.
• The empty spaces in the diagonal mean that the question does not arise there.

 19

OBSERVATION 18 (reversibility of rules).

 SI

 WO

 CT

 AND

 OR

 SI

 �

 none?

 none?

 none?

 �

 WO

 �

 SI,CT

 �

 �

 none?

 CT

 �

 �

 SI,AND,CT

 none?

 AND

 �

 �

 SI,CT

 �

WO,OR,AND

 OR

 �

 �

SI,CT,OR

SI,CT,OR

 SI,AND,OR

Not to overburden the paper, we omit the verifications of the reversals in the table,
giving only the least immediate among them as an example. This is the transformation
OR,CT ⇒ SI,CT,OR, where the left hand configuration takes two forms according as
the conclusion of OR feeds in as ‘minor’ or ‘major’ premise of the non-symmetric
two-premise rule CT.

OR,CT (Case 1) ⇒ SI,CT,OR

 (a,x) (b,x) ((a∨b)∧x,y)
-------------- OR
 (a∨b,x)
 ------------------------------ CT
 (a∨b,y)

 (a,x) ((a∨b)∧x,y) (b,x) ((a∨b)∧x,y)
 SI SI
 (a∧x,y) (b∧x,y)
CT ------------------ ------------------- CT
 (a,y) (b,y)
 ------------------------------- OR
 (a∨b,y)

 20

OR,CT (Case 2) ⇒ SI,CT,OR

(z,y) (a,x) (b,x)
 ----------------- OR
 (a∨b,x)
 ------------------- CT: z∧y ≈ a∨b
 (z,x)

(z,y) (a,x) (z,y) (b,x)
 SI SI
(z∧(¬b∨a),y) (z∧(¬a∨b),y)
 ------------------ CT --------------------- CT
(z∧(¬b∨a),x) (z∧(¬a∨b),x)
 -- OR
 (z,x)

Here ≈ stands for classical equivalence. In the second case, the given application of
CT (on the left) is allowable iff z∧y ≈ a∨b, in which case z∧(¬b∨a)∧y ≈ a and
z∧(¬a∨b)∧y ≈ b so that we can apply CT as indicated on the right.

8. UNIVERSAL ORDERS OF DERIVATION

Consider any system with n derivation rules (e.g. basic output with its four rules SI,
AND, WO, OR). We say that a derivation respects an order R1,...,Rn of those rules iff
a rule Rj is never applied in it before (i.e. leafwards of) a rule Ri for i < j. In other
words, rules may be skipped or repeated (and moreover, as already mentioned earlier,
it is understood that classically equivalent formulae may replace each other whenever
desired), but the rules must never be applied contrary to the indicated order. Of
course, many derivations do not respect any order at all; in particular, if an application
of R is made before one of a distinct rule R′, but also an application of R′ is made
before one of R, then no order is respected in the derivation.

We say that an order is universal (for a given set of rules defining an input/output
operation) iff whenever (a,x) ∈ out(G) then there is a derivation of (a,x) from G
respecting that order. The question naturally arises: are there any universal orders?
Repeated application of Observation 18 tells us that there are several.

OBSERVATION 19.

(a) For simple-minded output, with the rules SI, AND, WO, there are (at least) three
universal orders of derivation: SI,AND,WO, and (SI,WO),AND.

(b) For basic output, with the rules SI, AND, WO, OR, there are (at least) six
universal orders: SI,AND,WO, OR, and (SI,WO),(AND,OR) and WO,OR,SI,AND.

(c) For simple-minded reusable output, with the rules SI, AND, WO, CT, there are (at
least) eight universal orders: SI,(WO,CT,AND) and WO,SI,(CT,AND).

(d) For reusable output, with the rules SI, AND, WO, OR, CT, there are (at least)
eleven universal orders: SI,(WO,CT,AND),OR and SI,(WO,CT),OR,AND and
WO,SI,(CT,AND),OR and WO,SI,CT,OR,AND.

 21

Here the parentheses indicate that every arrangement within them is counted. The first
order for simple-minded output also emerged from its completeness proof
(Observation 1). Of course, Observation 19 depends very much on the particular
choice of rules made, not only their joint force. For the rules that we have used, we
conjecture that in each case there are no universal orders of derivation other than
those listed.

Remark. In Observation 18, there are just four non-reversible orders: SI,CT; SI,AND;
WO,OR; CT,OR. Thus all orders listed as universal in Observation 19 satisfy the
property: SI before (immediately or separated by other rules) CT, SI before AND,
WO before OR, and CT before OR. More surprisingly, it can be checked by
enumeration that the converse is also true: every order satisfying that property is
universal. It is not clear whether this fact points to a deeper pattern.

9. OTHER SYSTEMS

One might consider strengthening, weakening, or otherwise modifying the systems
studied in this paper, with either a purely formal motivation or an eye to possible
applications.

For example, with an interest in defeasible conditionals, one might drop the SI rule,
perhaps replacing it by a rule of replacement of equivalent input propositions.
Semantically, the operations are Cn(G(a)) and Cn(G(E(a))) for individual formulae a,
although the definition for infinite sets A (section 3.2) becomes problematic.

Again, one might consider modifying certain of the rules employed. For example, we
know (section 5.1) that given SI, cumulative transitivity CT implies transitivity T, but
not conversely. What happens if in the system of simple-minded reusable output, say,
we replace CT by T? Given SI and AND, it is easy to show that T is equivalent to the
following principle of ‘ghost cumulative transitivity’ GCT, which the authors have
not seen in the literature: From (p,a), (a,b), (a∧b,c) to (p,c).

We conjecture that this system may be defined as out(G,A) = Cn(out3(G∪I,
out1(G,A))). Diagrammatically: two G boxes, one under the other, with the same
ordered pairs inside. The input A comes into the first box; whose output is input to the
second box. Input to the second box reappears in its output; and output of the second
box is reusable in its input. The final output is closure under Cn of the second box.

Finally, one could consider adding various rules to one or more of the systems
studied. For example, one could look at:

Contraposition CP: from (a,x) to (¬x,¬a)
Dual cumulative transitivity DCT: from (a,x∨y), (x,y) to (a,y)
Conditionalisation CND: from (a,x) to (t, a→x).

We see these three rules of relatively minor interest, as they have little motivation in
terms of the underlying vision of input/output processes outlined in the first section of
this paper. Nevertheless, we note some facts about them. Observe, first, that we may
add any or all of these three rules to those for basic reusable output without collapse

 22

into classical consequence. For if G = ∅, then whenever (a,x) ∈ out(G), where out is
the enlarged operation, then a simple induction shows that either a is a contradiction
or x is a tautology, so that in particular (a,a) ∉ out(G), for contingent a, whereas a ∈
Cn({ a} ∪m(G)). We also have the following equivalences.

OBSERVATION 20. Given CP, the rules CT and DCT are equivalent. Also, given the
rules of basic output, DCT and CND are equivalent.

Outline of proof. The only verification that is not trivial is that for Basic + DCT ⇒
CND, as follows.

 (t,t) (a,x) (a,x)
 SI WO
(¬a, a∨(¬a∨x)) (a, ¬a∨x) WO
-------------------------------------- DCT
 (¬a, ¬a∨x) (a, ¬a∨x)
 --- OR
 (t, a→x) �

On the semantic level, it is difficult to see any input/output semantics for CP or DCT.
However, in the case of the rule CND, we do have a semantics, indirectly.

OBSERVATION 21. For each of the systems outi (i = 1,…,4), if we add the rule CND
then we have a semantics like that for the source system, except that the set G is
replaced by G∪{(t, a→x): (a,x) ∈ G}. If we add both CND and the identity rule, then
we replace G in the semantics by G∪I∪{(t, a→x): (a,x) ∈ G∪I}.

Proof. It is easy to check that the rule CND may always be applied first in any
derivation using at most SI,AND,WO,OR,CT,CND. �

10. SUMMARY

The investigations in this paper are inspired by a view of logic as ‘secretarial
assistant’ to an arbitrary process transforming propositional inputs into propositional
outputs. Its task is to prepare the inputs, unpack the outputs, and co-ordinate the two
in various ways. In this perspective, we introduced four principal input/output
operations: simple-minded, basic (making intelligent use of disjunctive inputs),
simple-minded reusable (in which outputs may be recycled as inputs), and basic
reusable output. These are doubled by corresponding systems in which inputs
reappear among the outputs. The systems are defined semantically, and are
characterised syntactically by derivation rules. We recall the four basic systems.

• Simple-minded output, written out1(G,A), is defined as Cn(G(Cn(A))), and is

characterised by the rules SI,AND,WO.

• Basic output, written out2(G,A), is defined as ∩{ Cn(G(V)): A ⊆ V, V complete},
where a complete set is one that is either maxiconsistent or equal to the set L of all
formulae of the language. It is characterised by SI,AND,WO,OR.

 23

• Simple-minded reusable output, written out3(G,A), is defined as ∩{ Cn(G(B)): A ⊆
B = Cn(B) ⊇ G(B)}. It is characterised by SI,AND,WO,CT.

• Basic reusable output, written out4(G,A), is defined as ∩{ Cn(G(V)): A ⊆ V ⊇
G(V), V complete}. Equivalently, as: ∩{ Cn(G(V)): A∪m(G) ⊆ V, V complete}. It
is reducible to basic output by the equality out4(G,A) = out2(G,A∪m(G)), and is
characterised by SI,AND,WO,OR,CT.

In none of the systems are inputs automatically outputs, that is, we do not have in
general a ∈ out(G,a). Nor do the systems guarantee contraposition: we may have x ∈
out(G,a) without ¬a ∈ out(G,¬x). Of the four systems, basic reusable output reveals
the most subtle behaviour, for example the ‘input sufficiency’ and ‘shadow input’
properties (Observations 8 and 9).

Basic output and its reusable extension may also be characterised in terms of
relabeling procedures and modal operators. The account in terms of relabeling
substitutes fresh elementary letters for old ones in heads, and applies classical
consequence. The modal characterisation prefixes boxes to heads, and applies any
modal logic from within a broad interval.

On a syntactic level, it is shown that in a surprising number of cases, the application
of rules in a derivation may be reversed (Observation 18), giving rise to certain
‘universal orders’ of derivation for each of the four systems studied (Observation 19).

Given that an intended area of application of input/output logic is the study of systems
of conditional goals or obligations, it is natural to ask how one might introduce
constraints into them, to deal with ‘contrary to duty’ conditions. This question is
investigated systematically in a sequel (Makinson and van der Torre, to appear).

REFERENCES

Makinson, David, 1999. On a fundamental problem of deontic logic. In Norms,
Logics and Information Systems. New Studies in Deontic Logic and Computer
Science, ed. Paul McNamara and Henry Prakken. Amsterdam: IOS Press, Series:
Frontiers in Artificial Intelligence and Applications, Volume 49, pp 29-53.

Makinson 1994. General patterns in nonmonotonic reasoning. In Handbook of Logic
in Artificial Intelligence and Logic Programming, vol. 3, ed. Gabbay, Hogger and
Robinson. Oxford University Press, pages 35-110.

Makinson, David, and L. van der Torre (to appear). Constraints for input/output
logics.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence, 13: 81-132.

van der Torre, Leendert W.N., 1997. Reasoning about Obligations: Defeasibility in
Preference-Based Deontic Logic. Ph.D. thesis, Erasmus University of Rotterdam.
Tinbergen Institute Research Series n° 140. Thesis Publishers: Amsterdam.

 24

van der Torre, Leendert W.N., 1998. Phased labeled logics of conditional goals.
Logics in Artificial Intelligence. Proceedings of the Sixth European Workshop on
Logics in AI (JELIA’98). Berlin: Springer, LNCS 1489, pp 92-106.

ACKNOWLEDGEMENTS

Thanks to Veronica Becher, Salem Benferhat and anonymous referees for DEON
2000 for comments on drafts. Research for this paper was begun when the second
author was working at IRIT, Université Paul Sabatier, Toulouse, France, and at the
Max Planck Institute for Computer Science, Saarbrücken, Germany.

David Makinson
Visiting Professor, Department of Computing
King’s College London
Permanent address:
Les Etangs B2, Domaine de la Ronce
92410 Ville d’Avray, France
Email: d.makinson@unesco.org

Leendert van der Torre
Department of Artificial Intelligence
Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, the Netherlands
Email: torre@cs.vu.nl

To appear in Journal of Philosophical Logic, February 2001
Last revised: 25.05.00 (transcribing corrections from page proofs)
Wordcount: 9,174

