
" Proceedings of the Fifth International ,
' • ' Parallel Processing Symposium

Anaheim, California, April 30 - May P,, 1991
t

Input/Output Operations for Hybrid
Data-flow/Control-Flow Systems*

Paraskevas Evripidou Jean-Luc Gaudiot
Dept. of Computer Science and Engineering Dept. of Electrical Engineering-Systems

Southern Methodist University University of Southern California
Dallas, Texas 75275 Los Angeles, California 90089

Abstract operations.
• Proorammer convenience: I/O operations should

Hybrid data-flow/control-flow systems combine the be introduced as primitives with side-effects.
advantages of the data-flow model: functionality and
tolerance to communication and memory latencies I/O operations have been introduced as "state" op-
with the efficient instruction scheduling of the control- erations in the yon Neumann environment as a con-
flow model. The absence of global state in such hy- venient and clean way of injecting new data into a
brid multiproeessors and multiprocessore in general program without recompiling it. In other wordst the
renders the implementation of state tasks such as In- very absence of side-effects that makes it very conve-
put/Output operations very difficult to implement. A nient to specify computational operations also makes
distributed file-pointer scheme for incorporating I/O I/O verydifficult to implement in a functional environ-
operations onto the data-flow model has been devel- ment. Therefore, introducing I/O instructions either
oped. A dependency detection algorithm detects and in a pure functional way or as primitives with "side-
classify cases of potential access conflicts. A conflict effectsn requires some kind of retreating from these op-
resolution data-flow graph is then crested which at ex- posing environments. A hl/brid approach has been de-
ecution time safely distributes file-pointers to the I/O veloped for incorporating I/O operations at the data-
actors. This scheme has also been implemented on flow graph level [2]. The logical order for executing the
a hybrid a dare, flow control-flow multiprocessor: the I/O operations of common source/destination is the
Decoupled Data-Driven Multiprocessor with Variable sequential ordering given by their lexicographical or-
Resolution Actors. dering in the source program. This compromises some

of the semantic simplicity of the "pure approach" with

1 Introduction some of the convenience of the "convenient approachn.
In this paper we provide an overview of the overall

While a single host attached to a multiprocessor could I/O scheme for dynamic data-flow machines (section
easily serve as an interface to the outside world, timely 2). An in depth analysis of the output value processing
distribution of the data may not be assured to all in dynamic dat_-flow machines is presented in section
the processors and thus create a bottleneck (AmdahlJs 3. Section 4 presents the incorporation of I/O in the
Law). Instead, one must assume that the I/O oper- Decoupled Dat_-Driven Architecture.
ations will be equally distributed and that al2 (or a
subset) of the processors will be involved in communi- 2 I/O in the Data-Flow Model
eating with the I/O devices. Consequently, individual
I/O operations are distributed, we must also insure The two basic I/O instructions:

proper synchronization among them. z = read(filename), and
TraditionaIly_dat_-flow researchers and designers of wrlte(filename, value)

functional languages have been faced with two diamet-
rically opposed goals[I]: are introduced at the data-flow graph level as prim-

itives with side-effects, i.e., the file pointer is incre-
s Semantic aimplicitl/: I/O should be treated as mented after each access. Actually in our optimized

primitives with the same functional semantics as all scheme, parallel I/O operations are made possible by
• This material iJ bued upon work oupported In part by the USing multiple file pointers. The file pointer always

U.S. Department of EnerlD', OItieeof Energy R_earch under points to the file location to be read or written. Con-
Grant No. DE-FG03-STER25043 sider the following simple program.

L

DISCLAIMER

Thisreportwas preparedasan accountof work sponsoredby an agencyofthe
United States Government. Neither the United States Government nor any agency
thereof, nor any of their cmploy_s, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosod, or represents
that its use would not infringe privately owned rights. Reference herein to any spo.
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

function SimpleIO(InFfle, OutFile : file returna ...) =_!_ OL__.

c :---read(InFfle); _. i i :_:.......... =,,]
d:-b+c; . __ :

write(" The Sum il");

write(OutFile, "end'); G r_ _)ii

This program contains six I/O instructions. Notice]] " -- _ fill
that the file names are available to all I/O instruc- ;_:!_:;_i_!!ii_................!!!i!i
tions at the same time. Therefore, sequencing by data w_: '..d" iii
availability as in "conventional" data-flow operations :iiiiii:::iiiii!_ii_k:!_h:iii_i!_
is not an option any longer. In the ,.,eimple_.rOex- _!_:_i/_!i:_!_:_!_!ii_i!_
ample there are numerous different combinations in
which the reads and writes can occur. Obviously, this Figure 1: Data-flow graph for function simple.IO with
non-deterministic behavior is not acceptable for most the IAG for file Infile and OAG for file OutFile
practicalcases.
We havedevelopeda dependencydetectionalgo-

rithmwhichidentifiesallI/O dependenciesina pro- an inputvalue.The tagassociatedwitheachvalueis
gram. Thisalgorithmproducesa DependencyTrace determinedby (inadditiontootherfactors),thepo-
whichindicatesthelogicalorderin9ofthei/Oinstruc- sitionoftheinputvalueintheI/O file.Intheoutput
tions.Thisdependencytraceisusedto createthe case,itisexactlytheopposite.The outputvaluehas
I/O Acce_ Graphs.Inthe_im_le..[O ezample thede- a tagassociatedwithit.Thistagwilldeterminethe
pendencytracegivesthelogicalorderinwhichthe positionofthevalueintheoutputfile.
IO instructionsshouldbe executedaccordingtotheir The OAG istheinterfacebetweentheComputa-
lexicographicalorderinginthesourceprogram: tionalsubgraphofa programand thefile-servicefar
Our approachimproveson thecompletesequential- cilityoftheoperatingsystem.The OAG hasa write

izationofI/O-performingfunctionsbysuperimposing actorassociatedwitheachwriteinstructioninthepro-
I/Odependenciesandrelatedoperationsasaseparate gram.The communicationbetweenthevariousstages
graph(InputAccessGraph (LAG)inthecaseofinput oftheOAG isperformedby passingpointers.Stagei
processing;OutputAccessGraph (OAG) inthecase passesa pointertostagei+ 1.Thispointercontains
ofoutputprocessing).Thus,itconstrainsthemain thefilelocationatwhichstagei+ 1 startswritingin
computationgraphonlyina minimum way. neces- theoutputfile.Thus,a distributedi _-pointerscheme
sary. isemployed,whichinturnprovidesfortheparallelex-
Figurei depictsthedata-flowgraphand theLAG ecutionoftheI/O operations.

and OAG forthe aimple./Oexample.As shown in The OutputAccessGraph isconstructedby a corn-
Figure1 eachI/O accessgraphprovidesconflictres- binationofstandarddynamic data-fiowactors(U-
olutionfortheaccessofthecorrespondingI/O files. Interpreter[3]andTokenRelabeling[4])withthead-
The purposeoftheInputAccessGraphistosynchro- ditionofthewriteactor.Some logicalmodulesthat
nizethereadaccessesfromasharedfile.Ina dynamic consistsofvariousbasicactorsarealsodefined.

data-flowenvironment,thisamountstoextractinga The writeactorW isthebasicoutputactor.It
valuefromtheinputfile,taggingit,sendingittoits receivestwoinputs:a)thevaluetobe written,andb)
consumer,and finallyincrementingthefilepointer, thefile-pointer(filepointeristhe2-tupleoffilename
An in-depthanalysisoftheinputcasehasbeenpre- and offsetwithinthefile).Itplacesan outputvalue
sentedin[2].The outputcaseispresentednext. in thedesignatedoutputfile.Therearefourbasic

outputconstructs:simplewrite,writeinsidea/oral/
loop(a,), conditional write, write inside a repeat._ntil

3 Output Processing loo_(_),and finallythesynthesisofa number ofthe
fourbasicconstructs.The descriptionofthe OAG

Inputingvaluesfroma fileintoa dynamicdata-flow constructionwillbe demonstratedwiththeaidofthe
graphistheprocessofdeterminingthecorrecttagfor functiontor/te_matr/zshowninthefollowing:

t

function write.matrix(...) where _h is the max range at k 'h level
if flag then write(inttle.n); To perform the mapping described by equation 1, it

for i in 1,n cross j In i,k is necessary to know the maximum range in each level
write(outflle, a_iJ]) of nesting. This is done by the LR n module where

returns file outflle n is the degree of nesting. The L._" module takes as

end for inputs the maximum range of each of the nested loops.
end function It then calculates the combined maximum range by

multiplying the range of each loop. It also records the

The notation used in the date-flow graph used in range of each level of nesting in the iteration field of
this papers are as follows. The token format is V;_[..],_ the tag as shown below,

where V is the data value, and [o,,._] is the tag, The LR" : rl[u._.,.l]o, r2[_,o,,,l]L,...,rn[.._.,.1].
first part of the tag c is the context identifier, the

second field s is the destination address, and i is the --, rl. r2 ,.,., rn[,,.[[_,o.,,rl].o,,,rS]_,,.r.]
iteration identifier (used for loops). The following no-
ration will be used to describe the actors used in the The mapping of equation 1 is done by the W/or
rest of this paper: module. The W/or module takes as input the max-

opcode : inputl[o.,._],...,input2[c.,._ imum range of the nested loops created by an LR n
module, the output value and the initial file-pointer.

-'°utput[c.'l._' ""*°utput[o.', ._] The W/or module is shown in Figure 2. A new actorj
which means that the actor "op¢ode" receives as argu- L_ 1, is introduced which is similar to the L -I ac-

ments the tokens inputl[,.,.{],. ,., input2[a.,._ and pro- tot, in addition it produces a Boolean true value each

ducee the output token output[e.,jj]t which sends to time it unstacke the context part ofthe tag. However,
its n consumers: sl,..., e,. when there is no stacked context to unstackj it sends

a boolean false value to port b and nothing to port a:

Simple Write LB t : data([u._..._]..,..,._,]o

This Is the simplest form of a write construct; it cor- _ (data(_.,.s.j]). , True[u,o,,..,],
responds to a single write instruction. The stage of " L, v. , Fa]se(_,a,,s.¢],
the OAG corresponding to a simple write is consists
of a write actor W, a file-pointer increment module, The file-pointer is computed and sent to the next
and possibly a tag relabeling module. The latter is stage as soon as all required data becomes avail-
needed to manipulate the tag of the file-pointer so that able. In short, the stage of the OAG correspond-
it matches the tag of the output value. The three write ing to a write in nested loops is composed of a LR 'z
actors in the OAG of Figure 1 are examples of simple module in s_ries with a W/or module, Function
write, wrfle.matriz presents such a situation-write inside two

nested loops. Stage 2 of Figure 4 depicts this conflg-

Write inside a Forall loop uration. First an LR 2 module is needed which takes
as inputs the maximum r_ge of the two nested loops

Nested loops (For_]l loops) is a very common way to (2[o.0] and 3[c.0]) and creates the maximum combined
output data. The output values are arriving at the range (6[(_.s].s]). When a token arrives at the W/or
OAG, possibly out of order. Therefore, the ForaU module_ it uses its tag and the combined range it
afa_e has to determine the order of creation of the got from the LR _ unit to determine the effective file
values in order to pl_ce them in their correspond- pointer for that value. For example_ when the token

ing position in the output file. To do that, it is 25[[_.1].s] arrives at the W/o_ module the latter calcu-
important to observe that the iteration identifiers of lares that its relative position is 3 and the initial file
the tag create a form of multi-base number system: pointer (one in this case) has to be added to this value.

the base of position i is the maximum range of posi- Thus the effective file-pointer for the value 25[[c.t].s] is
tion i . I. Therefore, the order of creation of token 4[[_.I].s], Both tokens are sent to the write actor, which
data[...[i_._,,._],_,,._,].,.]._,,,_.] is given by: _ performs the actual write, Note that as soon as both

the initial file pointer I[, l and the maximum combined
range of the two loops (6[,]) arrive at the W/or , the

i, + _ (i_ - 1) * r_ + 1 (1) effective file-pointer of the next stage is calculated as

_=.-! 7[.] s and passed to the next stage if one exists.
_Formula 1 _mmz_ that the ta_ _enerstlon atart_ at 1_ not

0. aAe mentioned earner, it is beyond the scope of this paper to

ll.okil* 1;

_ - _,'_i._l) "

__ _

Figure 3: Outputtng values with repeat until construct

Ird_d flk_,zlnt_.O

i "n

_Ouip_l values
Po_ b: isffe_4ivafile DOintlH'fOl"next itale
PaN o: file polnte¢ for outTentvalue i

Figure 2: The write Wl,r module "c_,,_ .p I *t_Ji

Conditional Write s_

Conditional write is very siwHar to conditional read

(stage 2 of the LAG of Figure 1). A switch actor is
i needed to gate the value of the file-pointer to the con-
' ditional read stage if the condition is satisfied, or to

the next stage if the condition is not satisfied. How-
ever, the output values need not be sated because if

the condition evaluates to false, then the computation Figure 4: The OAG for function _or/fe.mafr/z
subgraph wil] not send the output values to the OAG.

Write inside a repea_.unlilloop(s) a forali loop are used. In seneral, the correspond-
ins modules are connected in the order the various

This cue is very similar to its read counterpart. A constructs appear in the dependency trace. A sen-
file-pointer increment module is needed to recirculate eral mappins alsorithm from the dependency trace to
the file pointer until the condition evaluate to false, the JAG is given in [5]. The mapping algorithm will
As in the conditional write case, it is not necessary to not be presented here however, the various examples
gate the output values. Figure 3 depicts the case of presented here save the flavor of how the mapping is
write inside a repeat until loop. performed. The OAG for the torite.marti:_ function is

shown in Figure 4. Each write instruction in the pro-
Synthesis gram corresponds to one line in the dependency traces

which in turn corresponds to a sta_e in the OAG. It
It is possible to have compound output construct by should be clear by now from our examples that the
combining the four basic constructs. This is the case creation of both the lAG and OAG is very similar to

in function t_rite.matriz where both a conditional and the creation of a dynamic data.flow graph. Both the

d_.cu., the tN_-nd_1_Uni_technlquu. Therdor,, the wlld-cazd lAG and OAG are observing the eze¢_tion._pon.daf_.
* character b used to denote that correct matchin_ occurs, availability.principle,

e

i li ii n nl I

4 I/O Operations on the Decoupled
Data-Driven Architecture

The Decoupled Dat_-Driven Architecture with Vari-

able Resolution Actors is a hybrid dat_-driven control I -
driven architecture with decoupled graph and eompu-

,mtation unite [6]. Each actors is partitioned (decoupled)
into two parts: graph and computation portion. The _ _,.
computation portion of each actor is a collection of _ P:.:::_:_"__ _ _ • . r _ _

conventional instructions (load/store, add, etc). The
graph portion contains information about the exe-
cutability of the actor and its consumers. Thus, a
decoupled dat_-driven graph can be viewed as a con-
ventional program with a data-dependency graph su-
perimposed on it.

A decoupled processor, (depicted in Figure 5) has
two engines: the Data-flow Graph Engine (DFGE)
and the Computational Engine (CE). The DFGE ex-
ecutes all graph operations (determine executability)

and the CE executes all computation operations (code
fetching and execution). The two Engines execute in
an asynchronous manner, i.e., the computation unit
does not have to exe¢,ute the computation portions of
actor0 in the name order as the graph unit executes the

graph portions. During execution the DFGE pisces all Figure 5: A Decoupled Data-Driven Processor
ready actors in the Ready Queue (RQ). The CE re-
moves one actor at a time from the RQ and executes all

instructions related with that actor. The instruction vaxiablee a, b, c, InFPI, InFPS, OutFPl, OutFPt_ are
eat of the CE is RISC-like. The CE performs load and all memory locations. Strl and Str$ are the address of
stores to/from the Computation Memory (CM) (the the etrlngs the Sum is" sad "end" c '" respe tzvely. The
computation cache actually). When the CE completes instructions:

the execution of an actor it places its identification in write file.pointer, value and
the Acknowledgment Queue (AQ). The DFGE has its read Rag, file.pointer
own hierarchical memory: Graph Memory (GM) and are the basic write and read instructions. The first

Graph Cache (GC). The DFGE removes one actor at field of the graph eubtemplate is the actor ID, the see-

s time from the AQ and updates the statue of its con- end field is the context (context is 0 in this example),
eumer actors. During this process all executable actors the third field is the status word (number of input
are placed in the RQ. tokens)_ and the last field is the consumer list. The

The decoupled multiprocessor retains the dynamic first actor performs the first two instructions of the

data_flow principles of execution at the coarser level function (a:- read(...) and b: -- if ...). It first reads
and employs control-flow principles at the fine level the first value from the InFile by using its initial file-
(within a macro actor). Three types of actors are sup- pointer (load R1, InFP1) and then according to this
ported: (I) Scalar actors, (II) Vector and Macro ac- value i_ sets b equal to zero or it reads a second value
tore, and (III) Compound Actors (CMAs): Compiler- from the file. It also increments the value of the file

generated collections of scalar and/or vector inetruc- pointer and stores it in memory location InFp/3 that
tione, is read by actor 2. Actor 2 is a scalar actor since it

The modes of operation of the decoupled architec- performs only one operation (c:= read(...)), actor 1
ture and its handling of the I/O operations are de- on the other hand is a macro actor because it per-
scribed with the aid of the function aimple.IO, forms more than one operation. Similarly, actors 3

Each actor in represented by a graph eubtemplate and 4 are scalars and actor 5 is a macro actor. The

and a comput_ttion eubtemplate. Figure 6 depicts the CE executes all instructions in actor and then it places
decoupled implementation of the eimple.[O function, its ID in the AQ. The DFGE will fetch this ID from
A load/store instruction set is used. In the fl_ure the the AQ and will update the status word of its con-

m ' I

Jt

o

t_ar,ph Mmcmry 5 Concluding Remarks
emory

11i: A conflict resolution scheme hu been developed that
o : a,m allows the incorporation of general purpose Input Ont-o _i R1
=,3 a_ t,be, put operations in the data-flow execution model, I/O

_ b.m0 operations are ordered according to their lexicograph-InFP2.R1
ical ordering in the source program. Their execution

R1.R2 however, can be performed in parallel since multiple
m instances of the file-pointer are allowed. Each in-

IoFP=.m stances of the file pointer is created and tagged ac-
cording to the dynamic data-flow principles of execu:

= tion. An in-depth analysis of the output case has been
o a, _ presented. The I/O schemes presented here can be

_ i _ incorporated in conventional multiprocessors if their
process naming is used to emulate the dats,-flow tag-

3 ii a gin& We have also described the incorporation of
io i I_ b general purpose I/O operations into the "Decoupled
i2 iii m, n1,_ Data-Driven Architecture with Variable resolution Ac-i2.S _i d.R3

• :: RI References
• !i R2.o_tFPl

S_ [1] :.H, Williams and E.L. Wimmers. Sacrificing aim-
m, _ pUcity for convenience: Where do you draw the

line? In Proceedings o/f/se 18'h Annual ACM

i_!_:_iii!i SIGART-SIGPLAN 8;/mpo.ium of Programming
:0 iii:: loadR2.d Languages, Jan. 1988.
i= !iii m, R_
:i_:_!:_::_:_!i!i nam [2] P. Evripidou and J-L. Oandiot. Distributed In-

R1, 8tr2 put/Output Processing in Data-Driven Multipro-
cessors. In Proceedings o/the Recond IEEE Sympo-

Graph siurn on Parallel and Distributed Processing, Dec.
Code Oomputatloncod, 1990.

[3] A:vind and K.P. Gostelow. The U-Interpreter.
Figure 6: Graph and Computation code for the Sire. IEEE Computer, pages 42--49, February 1982.

ple_lO example [4] ;].-L. Gandiot and Y.H Wei. Token relabeUng
in s tagged token Data-Flow architecture. IEEE
_nsacfion8 on Computere,38(9), Sept. 1989.

sumert (decrement it by 1). For example after actor [5] P. Evripidou and J.-L. Gaudiot. Input/output op-
1 is executed the DFGE will decrement the status of erations in a data_driven environment. Technical
its consumer actors 2 and 3. When the status word of Eeport CRI 88-45, Univtrsity of Southern Califor-
an actor reaches zero the actor is executable and its nia, Dept. Electrical Engineering-Systems, Com-
ID is placed in the RQ. The whole process continues purer Engineering, July 1988.

until all actors are executed. [6] P. Evripidou and J-L. Gaudiot. A Decou-

The example described here has only one context, pied Graph/Computation Data-Driven Architec-
The decoupled architecture uses dynamic dat_-frsmes ture with Variable P_esolutionActors. In Proceed.
for the implementation of multiple instantiations of an inga of t_e 1990 International Conference on Par.
actor (multiple contextee). Each dynamic instance of allel Processing, August 1990.
an actor loads its operands form and stores its results
into unique memory locations. Interested readers may
refer to [6] for more details on this.

