[C),r’y/ NG Y- /
Proceedings of the Fifth International
Parallel Processing Symposium
Anaheim, California, April 30 - May 8, 1991

Input/Output Operations for Hybrid
Data-flow/Control-Flow Systems*

Paraskevas Evripidou
Dept. of Computer Science and Engineering
Southern Methodist University
Dallas, Texas 76275

Abstract

Hybrid data-flow/control-flow systems combine the
advantages of the data-flow model: functionality and
tolerance to communication and memory latencies
with the efficient instruction scheduling of the control-
flow model. The absence of global state in such hy-
brid multiprocessors and multiprocessors in general
renders the implementation of state tasks such as In-
put/Output operations very difficult to implement. A
distributed file-pointer scheme for incorporating I/O
operations onto the data-flow model has been devel-
oped. A dependency detection algorithm detects and
classify cases of potential access conflicts. A conflict
resolution data-flow graph is then created which at ex-
ecution time safely distributes file-pointers to the I/O
actors. This scheme has also been implemented on
a hybrid a data-flow control-flow multiprocessor: the
Decoupled Data-Driven Multiprocessor with Variable
Resolution Actors.

1 Introduction

While a single host attached to a multiprocessor could
easily serve as an interface to the outside world, timely
distribution of the data may not be assured to all
the processors and thus create a bottleneck (Amdahl’s
Law). Instead, one must assume that the I/O oper-
ations will be equally distributed and that ali (or a
subset) of the processors will be involved in communi-
cating with the I/O devices. Consequently, individual
I/O operations are distributed, we must also insure
proper synchronization among them.

Traditionally, data-flow researchers and designers of
functional languages have been faced with two diamet-
rically opposed goals[1]:

e Semantic simplicity: 1/0 should be treated as
primitives with the same functional semantics as all

*This material is based upon work supported in part by the
U.S. Department of Energy, Office of Energy Research under
Grant No. DE-FG03-87TER25043

Jean-Luc Gaudiot
Dept. of Electrical Engineering-Systems
University of Southern California
Los Angeles, California 90089

operations.
¢ Programmer convenience: I/O operations should
be introduced as primitives with side-effects.

I/0 operations have been introduced as “state” op-
erations in the von Neumann environment as a con-
venient and clean way of injecting new data into a
program without recompiling it. In other words, the
very absence of side-effects that makes it very conve-
nient to specify computational operations also makes
1/0 very difficult to implement in a functional environ-
ment. Therefore, introducing I/O instructions either
in a pure functional way or as primitives with “side-
effects” requires some kind of retreating from these op-
posing environments. A Aybrid approach has been de-
veloped for incorporating I/O operations at the data-
flow graph level [2]. The logical order for executing the
I/O operations of common source/destination is the
sequential ordering given by their lexicographical or-
dering in the source program. This compromises some
of the semantic simplicity of the “pure approach” with
some of the convenience of the “convenient approach”.

In this paper we provide an overview of the overall
1/O scheme for dynamic data-flow machines (section
2). Anin depth analysis of the output value processing
in dynamic data-flow machines is presented in section
3. Section 4 presents the incorporation of I/O in the
Decoupled Data-Driven Architecture,

2 I/O in the Data-Flow Model

The two basic I/O instructions;

z = read(filename), and
write(filename, value)

are introduced at the data-flow graph level as prim-
itives with side-effects, i.e., the file pointer is incre-
mented after each access. Actually in our optimized
scheme, parallel I/O operations are made possible by
using multiple file pointers. The file pointer always
points to the file location to be read or written. Con-
sider the following simple program.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

functlon Simple I0(InFile, OutFile : file returns ...)
a := read(DataFile);
b := if 2 <> 0 then read(InFile,A);
else 0;
¢ := read(InFile);
di=b+c¢;
write(* The Sum is");
wrlte(OutFile, d);
write(OutFile, “end”);
end function

This program contains six I/O instructions. Notice
that the file names are available to all I/O instruc-
tions at the same time. Therefore, sequencing by data
availability as in “conventional” data-flow operations
is not an option any longer. In the Simple JO ex-
ample there are numerous different combinations in
which the reads and writes can occur. Obviously, this
non-deterministic behavior is not acceptable for most
practical cases,

We have developed a dependency detection algo-
rithm which identifies all /O dependencies in a pro-
gram. This algorithm produces a Dependency Trace
which indicates the logical ordering of the I/O instruc-
tions. This dependency trace is used to create the
I/0 Access Graphs. In the simple IO example the de-
pendency trace gives the logical order in which the
IO instructions should be executed according to their
lexicographical ordering in the source program:

Our approach improves on the complete sequential-
ization of I/O-performing functions by superimposing
I/0 dependencies and related operations as a separate
graph (Input Access Graph (IAG) in the case of input
processing; Output Access Graph (OAG) in the case
of output processing). Thus, it constrains the main
computation graph only in a minimum way. neces-
sary,

Figure 1 depicts the data-flow graph and the IAG
and OAG for the simple_JO example. As shown in
Figure 1 each I/O access graph provides conflict res-
olution for the access of the corresponding I/0 files.
The purpose of the Input Access Graph is to synchro-
nize the read accesses from a shared file. In a dynamic
data-flow environment, this amounts to extracting a
value from the input file, tagging it, sending it to its
consumer, and finally incromenting the file pointer.
An in-depth analysis of the input case has been pre-
gsented in [2]. The output case is presented next.

3 Output Processing

Inputing values from a file into a dynamic data-flow
graph is the process of determining the correct tag for

FRowre

Wrike,

Figure 1: Data-flow graph for function simple 10 with
the IAG for file Infile and OAG for file OutFile

an input value. The tag associated with each value is
determined by (in addition to other factors), the po-
sition of the input value in the I/O file. In the output
case, it is exactly the opposite. The output value has
a tag associated with it. This tag will determine the
position of the value in the output file.

The OAG is the interface between the Computa-
tional subgraph of a program and the file-service fa-
cility of the operating system. The OAG has a write
actor associated with each write instruction in the pro-
gram, The communication between the various stages
of the OAG is performed by passing pointers. Stage {
passes a pointer to stage i + 1. This pointer contains
the file location at which stage § + 1 starts writing in
the output file. Thus, & distributed i a-pointer scheme
is employed, which in turn provides for the parallel ex-
ecution of the I/O operations,

The Output Access Graph is constructed by a com-
bination of standard dynamic data-flow actors (U-
Interpreter [3] and Token Relabeling [4]) with the ad-
dition of the write actor. Some logical modules that
consists of various basic actors are also defined.

The write actor W is the basic output actor. It
receives two inputs: a) the value to be written, and b)
the file-pointer (file pointer is the 2-tuple of file name
and offset within the file). It places an output value
in the designated output file. There are four basic
output constructs: simple write, write inside a forall
loop(s), conditional write, write inside a repeat-until
loop(s), and finally the synthesis of a number of the
four basic constructs. The description of the OAG
construction will be demonstrated with the aid of the
function write_matriz shown in the following:

functlon write.matrix(...)
if flag then write(infilen);
foriln 1,ncroes jinik
write(outfile, afi,j])
returns flle outfile
end for
end function

The notation used in the data-flow graph used in
this papers are as follows. The token format is V{,.,.¢
where V is the data value, and (¢ ,.¢ is the tag. The
first part of the tag ¢ is the context identifier, the
second field s is the destination address, and ¢ is the
iteration identifier (used for loops). The following no-
tation will be used to describe the actors used in the
rest of this paper:

opcode : inputly, , ¢+ +,input2y ..

—soutput,, qs*** soutputpe,, g

which means that the actor “opcode” receives as argu-
ments the tokens inputl(e,,.q, ‘-, input2, , q and pro-
duces the output token output(,,, q, Which sends to
ite n consumers: 8y, -+, 8.

Simple Write

This is the simplest form of a write construct; it cor-
responds to a single write instruction. The stage of
the OAG corresponding to a simple write is consists
of a write actor W, a flle-pointer increment module,
and possibly a tag relabeling module, The latter is
needed to manipulate the tag of the file-pointer so that
it matches the tag of the output value. The three write
actors in the OAG of Figure 1 are examples of simple
write.

Write inside a Forall loop

Nested loops (Forall loops) is a very common way to
output data. The output values are arriving at the
OAG, possibly out of order., Therefore, the Forall
stage has to determine the order of creation of the
values in order to place them in their correspond-
ing position in the output file. To do that, it is
important to observe that the iteration identifiers of
the tag create a form of multi-base number system:
the base of position § is the maximum range of posi-
tion ¢ 4+ 1. Therefore, the order of creation of token

data[.‘.ﬂu.e.c.ﬁ]‘a.a,(a]...].e.n.(,] is given by:!

1
int Y (h=1)sm+1 (1)

hz=n~—1

1Formula 1 assumes that the tag generation starts at 1, nat
0.

where 1, is the max range at k' level

To perform the mapping described by equation 1, it
is necessary to know the maximum range in each level
of nesting. This ls done by the LR" module where
n ia the degree of nesting. The LR" module takes as
inputs the maximum range of each of the nested loops.
It then calculates the combined maximum range by
multiplying the rauge of each loop. It also records the
range of each level of nesting in the iteration field of
the tag as shown below,

LR": rl[u.o.o.l]o: "2[0.0.0.1]1:- EFRAL RN RN
= rler2® L ue.r1).00.02).n 000.00)

The mapping of equation 1 is done by the Wy,
module. The Wj,, module takes as input the max-
imum range of the nested loops created by an LR"
module, the output value and the initial file-pointer.
The W}, module is shown in Figure 2, A new actor,
Lp!, is introduced which is similar to the L-! ac-
tor, in addition it produces a Boolean true value each
time it unstacks the context part of the tag. However,
when there is no stacked context to unstack, it sends
a boolean false value to port b and nothing to port a:

Lii : dat‘[[u.c.o.‘].c'.o’.l']o
—-’{ (d&tl{a,g..,ﬂ)d ,True[u,g,'.,‘],‘

a ' u.c.om.s

The file-pointer is computed and sent to the next
stage as soon as all required data becomes avail-
able. In short, the stage of the OAG correspond-
ing to & write in neated loops is composed of a LR"
module in scries with a W, module, Function
write.matriz presents such a situation-write inside two
nested loops. Stage 2 of Figure 4 depicts this config-
uration. First an LR? module is needed which takes
as inputs the maximum range of the two nested loops
(2fc.0) and 3(c.q)) and creates the maximum combined
range (6(c.2).5)). When a token arrives at the Wy,
module, it uses its tag and the combined range it
got from the LR? unit to determine the effective file
pointer for that value, For example, when the token
26({c.1).9) arrives at the Wy, module the latter calcu-
lates that its relative position is 3 and the initial file
pointer (one in this case) has to be added to this value,
Thus the effective file-pointer for the value 25[[,,,13,31 is
4((c.1).3]- Both tokens are sent to the write actor, which
performs the actual write. Note that as soon as both
the initial file pointer 1(,; and the maximum combined
range of the two loops (6},)) arrive at the Wy, , the
effective file-pointer of the next stage is calculated as
7(s)? and passed to the next stage if one exists.

3 As mentioned earlier, it is beyond the scope of this paper to

Inputs
Poct 0: lnttlal file-polnter

Port 3 Gl Fange of toope
b o o
ort o il pom:« P elrent value® *109¢

Figure 2: The write Wy, module

Conditional Write

Conditional write is very similar to conditional read
(stage 2 of the IAG of Figure 1). A switch actor is
needed to gate the value of the file-pointer to the con-
ditional read stage if the condition is satisfied, or to
the next stage if the condition is not satisfied. How-
ever, the output values need not be gated because if
the condition evaluates to false, then the computation
subgraph will not send the output values to the OAG.

Write inside a repeat-until loop(s)

This case is very similar to its read counterpart. A
file-pointer increment module is needed to recirculate
the file pointer until the condition evaluate to false.
As in the conditional write case, it is not necessary to
gate the output values. Figure 3 depicts the case of
write inside a repeat until loop.

Synthesis

It is possible to have compound output construct by
combining the four basic constructs. This is the case
in function write.matriz where both a conditional and

discuss the tag-relabeling techniques. Therefore, the wild-card
» character is used to denote that correct matching occurs.

o

FP 10 next stage

Figure 3: Outputing values with repeat until construct

Initial file-pointerso

Figure 4: The OAG for function write_matriz

a forall loop are used. In general, the correspond-
ing modules are connected in the order the various
constructs appear in the dependency trace. A gen-
eral mapping algorithm from the dependency trace to
the IAG is given in [6). The mapping algorithm will
not be presented here however, the various examples
presented here give the flavor of how the mapping is
performed. The OAG for the write_martiz function is
shown in Figure 4. Each write instruction in the pro-
gram corresponds to one line in the dependency traces
which in turn corresponds to a stage in the OAG, It
should be clear by now from our examples that the
creation of both the IAG and OAG is very similar to
the creation of & dynamic data-flow graph. Both the
IAG and OAG are observing the ezecution-upon-data-
avatlability-principle.

4 1I/0 Operations on the Decoupled
Data-Driven Architecture

The Decoupled Data-Driven Architecture with Vari-
able Resolution Actors is a hybrid data-driven control
driven architecture with decoupled graph and compu-
tation units [6). Each actors is partitioned (decoupled)
into two parts: graph and computation portion. The
computation portion of each actor is a collection of
conventional instructions (load/store, add, etc). The
graph portion contains information about the exe-
cutability of the actor and its consumers. Thus, a
decoupled data-driven graph can be viewed as a con-
ventional program with a data-dependency graph su-
perimposed on it.

A decoupled processor, (depicted in Figure 5) has
two engines: the Data-flow Graph Engine (DFGE)
and the Computational Engine (CE). The DFGE ex-
ecutes all graph operations (determine executability)
and the CE executes all computation operations (code
fetching and execution). The two Engines execute in
en asynchronous manner, i.e., the computation unit
does not have to execute the computation portions of
actorsin the same order as the graph unit execvies the
graph portions. During execution the DFGE places all
ready actors in the Ready Queue (RQ). The CE re-
moves one actor at a time from the RQ and executes all
instructions related with that actor. The instruction
set of the CE is RISC-like., The CE performs load and
stores to/from the Computation Memory (CM) (the
computation cache actually). When the CE completes
the execution of an actor it places its identification in
the Acknowledgment Queue (AQ). The DFGE has its
own hierarchical memory: Graph Memory (GM) and
Graph Cache (GC). The DFGE removes one actor at
a time from the AQ and updates the status of ite con-
sumer actors. During this process all executable actors
are placed in the RQ.

The decoupled multiprocessor retains the dynamic
data-flow principles of execution at the coarser level
and employs control-flow principles at the fine level
(within a macro actor). Three types of actors are sup-
ported: (I) Scalar actors, (II) Vector and Macro ac-
tors, and (III) Compound Actors (CMAs): Compiler-
generated collections of scalar and/or vector instruc-
tions.

The modes of operation of the decoupled architec-
ture and its handling of the I/O operations are de-
scribed with the aid of the function simple_1O.

Each actor is represented by a graph subtemplate
and a computation subtemplate. Figure 6 depicts the
decoupled implementation of the simple O function.
A load/store instruction set is used. In the figure the

oM E M e

Figure 5: A Decoupled Data-Driven Processor

variables a, b, ¢, InFP1, InFP8, OutFP1, OutFPgare
all memory locations. Strf and Strg are the address of
the strings “ the Sum is” and “end” respectively. The
instructions:
write file-pointer, value and
read Reg, file-pointer

are the basic write and read instructions. The first
field of the graph subtemplate is the actor ID, the sec-
ond field is the context (context is 0 in this example),
the third field is the status word (number of input
tokens), and the last field is the consumer list. The
first actor performs the first two instructions of the
function (a:= read(...) and b: = if ...). It first reads
the firat value from the InFile by using its initial file-
pointer (load R1, InFP1) and then according to this
value it gets b equal to zero or it reads a second value
from the file. It also increments the value of the file
pointer and stores it in memory location InFp# that
is read by actor 2. Actor 2 is a scalar actor since it
performs cnly one operation (c:= read(...)), actor 1
on the other hand is a macro actor because it per-
forms more than one operation. Similarly, actors 3
and 4 are scalars and actor 5 is a macro actor. The
CE executes all instructions in actor and then it places
its ID in the AQ. The DFGE will fetch this ID from
the AQ and will update the status word of ita con-

Graph
Mem

ladd R3, R1,R2
istere d, R3
rot

PR e

wooa

Graph
Code Computation Code

Figure 6: Graph and Computation code for the Sim-
ple_I0 example

sumers (decrement it by 1). For example after actor
1 is executed the DFGE will decrement the status of
its consumer actors 2 and 3. When the status word of
an actor reaches zero the actor is executable and its
ID is placed in the RQ. The whole process continues
until all actors are executed.

The example described here has only one context.
The decoupled architecturs uses dynamic data-frames
for the implementation of multiple instantiations of an
actor (multiple contextes). Each dynamic instance of
an actor loads its operands form and stores its results
into unique memory locations. Interested readers may
refer to (6] for more details on this,

§ Concluding Remarks

A conflict resolution scheme has been developed that
allows the incorporation of general purpose Input Out-
put operations in the data-flow execution model. I/0
operations are ordered according to their lexicograph-
ical ordering in the source program. Their execution
however, can be performed in parallel since multiple
instances of the file-pointer are allowed. Each in-
stances of the file pointer is created and tagged ac-
cording to the dynamic data-flow principles of execu:
tion. Anin-depth analysis of the output case has been
presented. The I/O schemes presented here can be
incorporated in conventional multiprocessors if their
Process naming is used to emulate the data-flow tag-
ging. We have also described the incorporation of
general purpose 1/0 operations into the “Decoupled
Data-Driven Archi’ecture with Variable resolution Ac-
tors.”

References

(1] J.H. Williams and E.L. Wimmers. Sacrificing sim-
plicity for convenience: Where do you draw the
line? In Proceedings of the 18** Annual ACM
SIGART-SIGPLAN Symposium of Programming
Languages, Jan. 1988,

(2] P. Evripidou and J-L. Gaudiot. Distributed In-
put/Output Processing in Data-Driven Multipro-
cessors. In Proceedings of the Second IEEE Sympo-
sium on Parallel and Distriduted Processing, Dec.
1990.

(3] Arvind and K.P. Gostelow. The U-Interpreter.
IEEE Computer, pages 42-49, February 1982,

(4] J-L. Gaudiot and Y.H Wei. Token relabeling
in & tagged token Data-Flow architecture. JEEE
Transactions on Computers, 38(9), Sept. 1989.

[6) P. Evripidou and J -L. Gaudiot. Input/output op-
erations in a data-driven environment. Technical
Report CRI 88-45, University of Southern Califor-
nia, Dept. Electrical Engineering-Systems, Com-
puter Engineering, July 1988.

(6] P. Evripidou and J-L. Gaudiot. A Decou-
pled Graph/Computation Data-Driven Architec-
ture with Variable Resolution Actors. In Proceed-
ings of the 1990 International Conference on Par
allel Processing, August 1990,

T4

END

DATE
- FILMED
- ‘ ,al b I%

