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This paper deals with the control of three-dimensional rotational maneuvers of flexible spacecraft. A 
spacecraft model with a cylindrical huh and four symmetric appendages is considered. The appendages are tong 
and flexible, leading to low-frequency vibration under any control action. To provide a comprehensive treat- 
ment of input-shaped controllers (time-delay filters), both open-loop and closed-loop maneuvers are considered. 
For the open-loop maneuver, a five-switch, near-minimum-time bang-bang controller is designed based on the 
rigid-body model. The design procedure accounts for the presence of the time-delay filter for determining the 
switch times. In addition, a combination of a Lyapunov controller with the time-delay control technique is 
proposed to take advantage of the simple feedback control strategy and augment it with a technique that can 
eliminate the vibratory motion of the flexible appendages more efficiently. 

I. Introduction 
N this paper the problem of reorientation of a hub-ap- I pendage structure is considered. Considerable work has 

been done on Lyapunov control of single-axis maneuvers of 
hub-appendage structures. Hablani5 provides a technique 
for the estimation of the switch times for a bang-bang profile 
for zero residual energy, single-axis slew of a flexible space- 
craft. Techniques are provided to estimate switch times for a 
system with either damped or undamped modes. A weighted 
time-fuel optimal controller for the rest-to-rest slew with zero 
residual energy is designed using the principles of dynamics by 
Skaar et a1.6 An elegant input-shaping scheme proposed by 
Smith7 and later modified by Singer and Seering* has been 
used by Wie and Liu9 to modify the flexible-body time optimal 
control profile to produce a robust control scheme, which has 
been applied to the control of a two-mass spring model. 

Here we consider the three-dimensional case, leading to a 
model that has kinematic and dynamic nonlinearities. The 
system under consideration consists of a cylindrical hub, with 
four cantilevered cylindrical appendages of equal dimensions 
(Fig. 1). In modeling this system, only those modes that will be 
excited by a hub torque are considered. These modes lead to 
displacements of the appendages (which are modeled as Euler- 
Bernoulli beams), which resemble a three-dimensional 
starfish. The equations of motion of the flexible appendages 
are arrived at using the Lagrangian approach, and the rigid- 
body equations are arrived at using the Newton-Euler tech- 
nique. The assumed modes technique is used to transform the 
partial differential equations (representing the equations of 
motion of the flexible appendages) to ordinary differential 
equations. Two modes are used to represent the displacement 
of each of the flexible appendages in the simulation of the 
system. 

The first controller proposed in this study is based on the 
amalgamation of two powerful control techniques. First, the 
rigid-body controller is designed based on the Lyapunov sta- 
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bility concept, which leads to a simple control law that in- 
volves feeding back the Euler parameters and the angular 
velocities of the system. With this feedback controller in place, 
a time-delay controller is designed based on the eigenvalues of 
the system linearized about the final position. The benefit of 
using this combination is made evident by the reduction in the 
deflection of the appendages and the maximum applied 
torque. The second controller utilizes a bang-bang profile 
designed for the rigid body, which has a time-delay prefilter 
associated with it. A comparison of various controllers men- 
tioned previously is provided in the penultimate section of this 
paper. 

11. Modeling 
The derivation of the equations of motion is carried out 

symbolically using Mathematica. The radius of the hub is a 
(Fig. 2) and the appendages are of length L . The radius vector 
of points on the two appendages in the body fixed frame are 

for the first appendage and 

Fig. 1 Schematic of the hub-appendage spacecraft. 
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Fig. 2 Flexible spacecraft configuration. 

for the second appendage. Here .$ is the independent variable 
indicating position on the appendage. It is assumed that the 
flexible appendages deform in a starfish fashion, leading to 
the deformation of the first appendage in they direction being 
the negative of the deformation of the second appendage in 
the x direction. 

The deformation of the appendages can be represented as 
m 

~i = ,E 4ij(t)qij(t) (3) 
J =  I 

where rn is the number of assumed modes. The assumed 
modeslo chosen for this model are 

dij(4) = 1 - coso‘7r.$/L) + %( - l)j+yj7r.$/L)2 j = 1 to 2 

(4) 

The Euler-Lagrange equations of motion for the flexible 
modes are arrived at after determining the potential and 
kinetic energy of the system. The potential energy is repre- 
sented as 

I/ = - E I [ ~ ( ~ J ? ) ~  + &”)’ + ( jJ3”)2] d.$] ( 5 )  u: 
where EI is the flexural rigidity of the appendage and ( ) ”  
represents the second spatial derivative. The kinetic energy is 

where Zhub is the mass moment of inertia of the hub, pA is the 
mass density per unit length, and g is the angular velocity 
vector 

(7) 

with components in the body-fixed frame. 

modes are 
The Euler-Lagrange equations of motion for the flexible 

where q,, are the generalized coordinates and L = T - Vis the 
Lagrangian of the system. 

The rigid-body equations of motion are arrived at from the 
angular momentum of the system, which is 

E; X t ;pA d.$ + z h u b g  (9) 
i =  1 

The derivative of the angular momentum is 

where the subscript b refers to the body-fixed frame and g is 
the torque vector. In the interest of brevity the equations of 
motion are not included here. 

111. Closed-Loop Control: Lyapunov Controller 
The Lyapunov control design process starts with a choice of 

a candidate Lyapunov function, which for the present system 
is a combination of the kinetic, flexural, and pseudopotential 
energies. The choice here is a generalization to the three-di- 
mensional space of the single-axis Lyapunov functi0n.l The 
Euler parameter differential equations are 

= !hG@)g 

where 

I _  P1 - P2  - P3 

Po - P 3  0 2  
G(P)=  I P 3  Po - P I  

I I - 6 2  P1 Po 
L 

At time t = 0, 

e = e@) 
The desired equilibrium is 

e = ef 
and ef is not necessarily [ 1 0 0 01. Then the error quaternion at 
any instant is 

01, P2,  

- 02 ,  - 03, Po, 
- 63, P2, - P1, Po, 

We define a pseudopotential energy function 

+ = (Po, - + + Pi, + P;e 

= 2(POe - l)Po, + 2PiePie = - 2P0, 

We can show that 

=) - [Po, Pi, P2, @3,IG(P)g = BTg 

where is the reduced error quaternion 

fie = [PI, Pz, &,IT  

Let the Lyapunov function be 

V = T +  V + k I + = E + k l +  

where kl  is a positive definite scalar. Other forms of the 
Lyapunov function can be found in Ref. 11. The rate of 
change of E can be evaluated using the work-energy rate 
principleJ2: 

E = g=g (21) 

Therefore 
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The feedback control law that renders the closed-loop system 
asymptotically stable is given by 

where K2 is a positive definite gain matrix. For simplicity, K2 
was chosen as a diagonal matrix with the gain for each axis 
being k2. The specific numerical choice of the gains was made 
using a model obtained by linearizing the system about the 
desired final state. For this purpose, the following relations 
were utilized: 

O; = 8; (24) 

be, = 81/2 i = l , 2 , 3  (25) 

where Bi are the Euler angles. The linearized rigid-body equa- 
tions are 

Z T I ~ I  = ui i = 1, 2, 3 (26) 

where ITI is the total undeformed moment of inertia about the 
ith axis and is defined as 

ITI = (I1 + 2 (a + 0 2 P J I ,  d-9 i = l , 2  (27) S: 
and 

L 

IT1 = (11 + 4 1  (a + t ) 2 P f i l  dt )  i = 3  (28) 
0 

The design requirements can be specified in terms of the 
natural frequency w and damping r of the closed-loop system. 
The gains are calculated to satisfy the preceding requirements 
using the formulas given subsequently: 

kl = 21,,w2 (29) 

k2 = 21~,{O (30) 

The feedback law chosen leads to the following differential 
equation 

Z T I W ,  = - klPi, - k2~1 (31) 

(32) 
8 .  
2 

* IT18; = - kl’ - k28, 

Simulation of the Lyapunov controller is presented in the 
penultimate section of this paper. 

IV. Minimum-Time Control 
The minimum-time control profiles for rest-to-rest maneu- 

vers of a rigid body are bang-bang in nature. The number of 
switches and the switch times can be determined using a pa- 
rameter optimization approach. The rigid-body equations of 
motion are given by 

I; + gzg = g (33) 

where l i s  the inertia matrix and 2 is the angular velocity cross 
product operator. 

A parameter optimization problem is formulatedL3 to mini- 
mize the cost function 

J = %pi  (34) 

subject to 
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where po and pi are n + 1 parameters to be selected, po is the 
final time, and the rest of the parameters define the switch 
times and the maximum amplitude of the control effort. The 
function g defines the inequality constraints and x(1) are the 
terminal boundary constraints. The bang-bang control is 
parameterized as 

u = - PLsgn[(t - P2)O - P3)l (37) 

for a control with two switches. The sensitivity of the final 
states to the individual parameters are obtained by finite dif- 
ferencing. In this work the parameters were solved for using 
sequential quadratic programming (SQP). It has been shown 
that for a spherical body, the number of switches can be either 
five or sevenl5>l6 based on the boundary conditions. The pres- 
ence of the time-delay filter (Sec. V) can explicitly be incorpo- 
rated into the optimization process. This way, the open-loop 
optimization takes the time delay into account. 

V. Input Shaping and Time-Delay Control 
Because present-day spacecraft are becoming increasingly 

lightweight and flexible, there is a growing need to design 
controllers that do not excite the vibratory modes of the 
system. In the problem of reorientation, the step input leads to 
the feedback controller “kicking” the system into motion due 
to the large initial error; this large control action can exces- 
sively excite the vibratory modes of the system. This is the 
motivating reason for modifying the reference input to attenu- 
ate vibration of the flexible appendages. A time-delay filter to 
achieve this objective is presented in the next section. 

Time-delay controllers designed to cancel the poles of a 
system with the intention of attenuating the residual vibration 
has been shown to correspond to the two-impulse shaped-in- 
put controller8 by Singh and Vadali. l4  It has further been 
shown that the three-impulse shaped-input controller (de- 
signed to increase robustness) is equivalent to using two time- 
delay controllers in series. The design of time-delay controllers 
to cancel the poles of the system is presented in this section. 

Figure 3 illustrates a time-delay controlled second-order 
underdamped system. We need to determine Ao, A I ,  and T so 
that the poles of the system are cancelled by the zeros of the 
controller, which are given by the equation 

A,, + Alexp( - sT) = 0 (38) 

A .  is the amplitude of the proportional signal and T is the 
delay time of the time-delayed signal, which has a gain of A I .  
Representing the Laplace variable s as 

s = a + j w  (39) 

and substituting Eq. (39) into Eq. (38) and equating the real 
and imaginary parts to zeros, we have 

A.  + Alexp( - uT)cos(wT) = 0 (40) 

and 

(41) Alexp( - aT)sin(wT) = 0. 

To ensure that the time-delay filter does not act as an amplifier 
or attenuator, we arrive at the third equation 

A , + A ,  = 1 (42) 

i =  1,. . ., n Fig. 3 Time-delay controlled system. 
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From Eq. (41) we have chosen to meet the requirements are 

w = (2n + l)(a/T), 2n(a/T) (43) kl = 68.51 and k2 = 154.53 (52) 
These gains were arrived at considering the linearized equation 
corresponding to motion about the x axis. These gains lead to 
a different natural frequency and damping ratio for motion 
about the z axis. We use this difference in frequency to illus- 
trate the ability of the time-delay filter to handle variations in 
frequency. 

The eigenvalues of the closed-loop linearized system (18th 
order) about the final states are 

Substituting Eq. (43) into Eqs. (40) and (42), we have 

- exp( - UT) 
1 - exp( - UT) A0 (44) 

and 

1 
1 - exp( - UT) 

Ai = (45) 

We see that only w = (2n + l )a /T  produces positive values 

(1) - 0.0235 f 0.1014;; 

(2)  - 0.0381 f 0.5875j; 

(2) - 0.0368 * 0.1257j 

(1) - 0.0376 zt 0.6686j 
for Ao. 

have from Eq. (43) (setting n = 0) 
To cancel the system poles at s = - <zwz * j w f m ,  we (2) - 0.0018 f 2.7169j; (1) - 0.0026 + 2.7386j 

The numbers in parentheses indicate the multiplicity of the 
w = w i m  = a/T  

and 

(46) eigenvalues. 

(47) function 

The time-delay filter to cancel the poles at - 0.0381 f 0.5875; 
and attenuate the poles at - 0.0376 f 0.6686j has a transfer 

= 0.0710 + 0.2662e -s.3464s + 0.3742e -2*5.3464s 
R(s) 

Substituting Eq. (48) into Eqs. (44) and (43,  we have 

and 

(49) 

This corresponds exactly to the solution of the shaped-input 
technique. The controller can also be written as 

u(s) = (s2 + 2S;wp + w?)(s2 + 2Czwp + 9wf - 8<fwf) . . , 
(s2 + 2S;wfs + n2wf - (n2 - l)ew;?)R(s) 

n = 1, 3, 5 , .  . . (51) 

where R ( s )  is the reference input and u(s)  is the filtered 
output. Thus the single time-delay controller can also be used 
to cancel poles of the system that are odd multiples of the two 
primary poles. 

Singh and Vadali14 have demonstrated the addition of ro- 
bustness to the time-delay filter, to errors in estimated 
parameters of the system, by the multiple use of the single 
time-delay filter in cascade. Using multiple instances of this 
time-delay filter amounts to locating multiple zeros at the 
system pole location. 

Although the equations of motion of the hub-appendage 
system are nonlinear, we use the robust time-delay filter to 
study its ability to deal with the nonlinear system. For the 
design of the time-delay controller for the hub-appendage 
system, the equations of motion are linearized about the final 
states, and the resulting eigenvalues are used in the design of 
the controller. 

The eigenvalues of the Lyapunov-controlled system about 
the final attitude is required for the design of the time-delay 
controller. The feedback gains are selected so that the con- 
troller produces an underdamped response with a period of 
50 s and a 5% settling time of 100 s. This leads to a damping 
ratio of 0.3 and a natural frequency of 0.133 rad/s. This has 
been done deliberately to illustrate the attenuation of vibra- 
tions of two frequencies simultaneously. The feedback gains 

The filter is designed based only on the poles at 
- 0.0381 f 0.5875j. To design a better filter, we would have 
to design filters for each of the pairs of poles and use them in 
cascade. We use the robust version of the filter to illustrate the 
control of frequencies in the vicinity of the design frequency. 
The robust filter consists of four single time-delay filters in 
cascade. 

The time-delay filter to cancel the poles at - 0.0235 f 0.1014j 
and to attenuate the effect of poles at - 0.0368 f 0.1257j has a 
transfer function 

= 0.3 110 + 0.4933e - 30.98s + 0.1956e - 2*30.98s 
R ( s )  

The modified reference input to eliminate the frequencies 
- 0.0235 f 0.1014j and - 0.0368 f 0.1257j and others in 
their vicinity, when the plant is subject to a unit step input, is 
arrived at by filtering the step input through the time-delay 
filters designed for each of these frequencies. 

The results of the Lyapunov controller used in conjunction 
with the time-delay filter are presented in the next section. 

VI. Simulation 
The proposed controllers are tested on the reorientation 

problem of a hub-appendage system. The initial attitude for 
all the simulated controllers corresponds to the coincidence of 
the body axis frame to the inertial frame. The final attitude 
corresponds to the Euler parameter set 

(53) 

The flexible spacecraft parameters are 

a = 1.0 m p A  = 0.0004 kg/m, 

EZ= 1500Nm2, L = 151 m 

ZT, = 1936.5 kg m2, ZTy = 1936.5 kg m2 

ZTz = 3073.0 kg m2 
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This leads to an inertia ratio of the flexible to the rigid portion 
of the structure to be 

Zf/Zr 936.5/1000 (54) 

Zf /Zr  = 1873/1200 ( 5 5 )  

for the x and y axis and 

for the z axis, where Zf and I, are the moment of inertia of the 
flexible and rigid portions of the spacecraft about the slew 
axis, respectively. The first simulation consists of control of 

- 

0 1” 
0 50 100 150 200 250 

the spacecraft using the Lyapunov controller. The graph of 
the Euler parameters reveals an underdamped motion leading 
to overshoot of the Euler parameters (Fig. 4a). The slew and 
settling time of the rigid body is more than 100 s. Figure 5a 
illustrates the motion of the tip of one of the flexible ap- 
pendages. The analogy of the single-link flexible-arm robot 
can be used to explain the initial motion of the flexible ap- 
pendage. The nonminimum phase characteristic of the flex- 
ible-arm robot results in the flexible link moving in the direc- 
tion opposite the desired direction of motion.17 The large 
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Fig. 4 Time history of Euler parameters: a) Lyapunov control and b) Lyapunov/time-delay control (15-time-delays). 
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Fig. 5 Tip deflection of appendage: a) Lyapunov control and b) Lyapunov/time-delay control (15-time-delays). 
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Fig. 6 Control torque history: a) Lyapunov control and b) Lyapunov/time-delay control (15-time-delays). 
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Fig. 7 Time history of Euler parameters: a) time-delay shaped bang-bang control, b) post time-delay filtered bang-bang control, c) time-delay 
filtered bang-bang control, and d) time-delay filtered bang-bang control with end game feedback control. 
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Fig. 8 Tip deflection of appendage: a) time-delay hang-bang control, b) post time-delay filtered bang-bang control, e) time-delay filtered 
bang-bang control, and d) time-delay filtered bang-bang control with end game feedback control. 
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displacement of the tip is asymptotically forced to zero by the 
Lyapunov controller. Figure 6a, which shows the control in- 
put of one of the actuators, exemplifies the spike in the control 
action required due to the large initial error in the attitude. 
The effect of the vibratory motion of the flexible link con- 
tributes to the oscillation in the control input in spite of the 
controller being a function of the angular velocity and the 
attitude because the rigid-body mode and the flexible modes 
are coupled. 

The second simulation involves elimination or reduction in 
the overshoot of the rigid-body motion. The filter for the 
elimination of the frequency corresponding to the rigid-body 
motion is used in cascade with the time delay filter designed to 
attenuate the contributions of the first mode of vibration of 
the appendages. This filter with 15 time delays seems to pro- 
vide a very elegant technique to reorient the spacecraft. Figure 
4b illustrates the significant reduction in the overshoot of the 
rigid-body motion compared with the overshoot when the 
Lyapunov controller was used. The tip motion of the ap- 
pendage reveals a motion that is insignificant compared to the 
first controller (Fig. 5b). Finally, Fig. 6b helps to verify that a 
smaller peak torque is required. 

The next set of simulations exemplifies the fact that the 
time-delay filter can be used to reduce the vibratory motion of 
the structure even in an open-loop setting. A 5 N-m bound was 
selected for each of the actuators and the optimization pro- 
gram converged to a five-switch bang-bang profile for the 
rigid-body model. The first simulation involves the hub-ap- 
pendage system being subject to a time-optimal bang-bang 
controller. Figure 7a illustrates the evolution of the Euler 
parameters. It can be seen that the application of the bang- 
bang control profile, designed based on the rigid-body model, 
does not meet the boundary conditions of the system that 
includes the flexible-body modes. In addition it also excites the 
flexible appendage, the effect of which on the Euler parame- 

6 

jl 

/ /  

:: 

i 

0 5 0  100 1 5 0  200 2 5 0  

0 50 1 0 0  150 2 0 0  2 5 0  
-6 

b) Time (Sec) 

ters is revealed by the oscillations present after the bang-bang 
control is complete. Figure 8a demonstrates the large residual 
vibration of the tip of the first appendage in the y direction. 
Figure 9a represents the five-switch bang-bang control profile. 

The next simulation illustrates that the time-delay filter 
cannot be used directly to modify the bang-bang input after 
the bang-bang control profile has been designed. Figure 7b 
represents the evolution of the Euler parameters when the 
time-optimal control profile is filtered through a time-delay 
filter designed to eliminate the first mode of vibration of the 
appendage. Because the time-delay filter is based on linear 
theory, there is considerable residual velocity, which leads to 
the Euler parameters drifting after the control torque is zero 
(Fig. 9b). Figure 8b, however, reveals that the time-delay 
filtering reduced the vibration of the tip of the appendage 
significantly. 

To reduce residual vibration via the time-delay filter, the 
time-delay filter is concatenated to the plant and the bang- 
bang control profile is designed for this modified plant. Figure 
7c reveals that this procedure works very well, leading to the 
Euler parameters reaching the desired position with small 
error in residual velocity and vibration. The objective of using 
the time-delay filter is achieved (Fig. 8c) by the small ampli- 
tude of vibration of the tip of the appendage. Figure 9c reveals 
that the control profile is different from the previous case 
(Fig. 9b). 

The final simulation involves the use of an end-game con- 
troller. A Lyapunov-based feedback controller designed to 
produce a natural frequency of 0.133 rad/s and a damping of 
0.8 is gradually included into the system at the end of the 
bang-bang control profile. A multiplier function (?(3 - 27)) 
gradually introduces the effect of the Lyapunov controller, 
where 7 is the time referenced from the instant when the 
Lyapunov controller was introduced. Figure 7d illustrates that 
the small residual errors present at the end of the previous 

6 

I 

- t  n,ii r 

0 5 0  100 1 5 0  2 0 0  250 

C) 6 Time (Sec) 

- 6  
50 1 0 0  1 5 0  200 

4 Time (Sec) 
0 

Fig. 9 Control torque history: a) time-delay bang-bang control, b) post time-delay filtered bang-bang control, c) time-delay filtered bang-bang 
control, and d) time-delay filtered bang-bang control with end game feedback control. 
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simulation are eliminated. The tip vibration (Fig. 8d) is essen- 
tially the same as in the previous case. It can be seen in Fig. 9d 
that the control profile is essentially the same as that in Fig. 9c 
for 70 s, which is when the Lyapunov controller is introduced 
to control the system. 

VII. Conclusions 
An elegant control strategy has been proposed combining 

the robustness of the Lyapunov controller to modeling errors 
and the robustness of the time-delay controller to estimated 
frequency and damping. The stability proof of the Lyapunov 
controller does not at any time consider the model of the 
system being controlled. A good estimate of the inertia of the 
system is, however, useful to help select gains for a desired 
performance. In the same vein, the design of the time-delay 
controller for a nonlinear system based on its linearized model 
is a powerful approach, as seen from the excellent results 
shown in the paper. 

It is observed that when the open-loop controller is designed 
with the time-delay controller in place, the results are truly 
remarkable. 
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