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Input-to-state stabilizing event-triggered control
for linear systems with output quantization

M. Abdelrahim, V.S. Dolk and W.P.M.H. Heemels

Abstract— In this paper, we are interested in the stabilization only an output of the plant is measured [6]. In addition,
of a linear plant based on output measurements that are subf#  the quantization phenomenon is unavoidable in NCS due to
to dynamic quantization. Moreover, to save communication he gigital nature of the communication channel and the fact

resources, these measurements are transmitted to the cootler that onl finit t of dat be t itted h
using an output-based event-triggering condition. The prposed at only a inite amount of data can be transmitled over the

event-triggering mechanism and the dynamic quantizaton Ne€twork. In this context, the dynamic quantization devices
strategy ensure an input-to-state stability (ISS) propery of a are of particular interest since the quantizer saturatim c
set around the origin with respect to the external disturbartes. pe avoided with finite quantization range, which may not
The existence of a strictly positive lower bound is ensured be possible to achieve using static quantizers, see, &aJ,, [
on both the inter-transmission times and the inter-zoom tines . . o
in order to prevent the occurrence of Zeno behaviour. The [11]_' [14] and the re_ferences therein. In dY”am'C q_uantbmt
chattering between zoom-in and zoom-out actions is avoided devices, the quantizer uses a zoom variable to increase the
and the zoom variable of the dynamic quantizer is guaranteed quantizer range when a saturation is detected (referred to a
to be bounded. We characterize the inherent tradeoff betwe®e  zoom-out stage) or to decrease the quantizer range to extrac
transmissions and quantlzatlon in terms of deS|gn paramets more precise information (referred to as zoom-in stage).
that can be tuned by the user. The effectiveness of the approh . . . . .
is illustrated on a numerical example. Although the idea of dynamic quantization is appealing,
more challenges are produced:
. INTRODUCTION L )
) ) Hu) since the zoom actions are state-dependent, the accu-
Networked control systems (NCS) are systems in whic mulation of zoom instants need to be prevented;

th_e feedback information and/or the co_ntro_l input are Han%iv) chattering between the zoom-in and the zoom-out ac-
mitted over a network. The communication channel ca

: ) ) i tions should be avoided,;
be possibly shared with other users/devices while the re(v) the zoom variable has to remain bounded

sources of the network are often limited. Hence, the network ) o )
should be used efficiently. In this regard, event-triggeredN€S€ issues are non-trivial to handle when the plant is
controllers have shown more potential to achieve this godffected by unknown exogenous inputs and/or when the
than time-triggered setups. The idea of this technique [§SPonse of the closed-loop system exhibits oscillatia@s [

to allow the network access only when it is needed, frorht7]- . ) .

the stability/performance perspectives, see, e.g., [6] the In this paper, we consider the scenario where the plant
references therein. This consequently allows to save tifynamics is affected by unknown external disturbances and
network from unnecessary usages, however, more diffisultié€ Output measurement is quantized by means of dynamic
are induced on the stability analysis. In particular, whes t guantizers. The quantizeq feedback information is tratismi
plant is subject to external disturbances, the event-riegy ted to the controller by using a dynamic output-based event-

controller has to achieve: triggering condition in the sense of [5], [7], [16]. The wiey-
(i) an input-to-state stability property of a set aroundyiri ing mechanism enforces the existence of a strictly positive
with respect to the external disturbances; lower bound on the inter-transmission times, which exctude

(i) the existence of a strictly positive lower bound on theZ€no behaviour for the transmission instants. To achieve a
inter-event times in order to exclude the presence Similar property for the zoom instants, the quantizer only
Zeno behavior. updates the zoom variable at transmission instants. Indeed

The latter objective is particularly challenging when théhe quantizer update is performed before the feedback-infor

system is affected by exogenous inputs [2] and/or wheation is being transmitted to the controller, Whl_ch ensure
that the broadcasted message to the controller is cortect. |
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measurement is not exactly the same as the most recenWWe use the following definition of..-norm for hybrid
value received by the controller. signals [3], [15].

Although the synthesis of the combined event-triggerefefinition 1. For a hybrid signakw, with domaindomw €

controllers and dynamic quantizers is relevant in practu:R>0 x N, and a scalarT’ € R, the T-truncated.., norm

few _results in the literature have addressed this probler&fgiven by

In this context, we are only aware of [13], [18], [19]. The

techniques of [13], [18] are dedicated to event-triggetade lwiry]loe := max ess sup lw(t, §)I,
feedbackcontrollers and the authors of [18] only focus on (t,5)€domuw\T'(w), t+5<T @
the zoom-in stage _vvhiIe the authors of [13] assume that sup (. )|

the plant dynamics is not affected by external disturbances (t.4) €T (w). t-45<T ’ ’

The developed approach in [19] does not take into account

the effect of exogenous inputs on the control system or th¥hereI’(w) denotes the set of allt, j) such that(t, ;) €
practical aspects that we consider in (i)-(vi). To the bdst Flomw and(;,j+1) € domw. TheLo norm ofw is given by
our knowledge, this is the first work on the design of input!®llec := TEH}*H“’[T] [loos WhereT™ := sup{t +j : (t,]j) €
to-state stabilizing event-triggered controllers witeynic domw}. Moreover, we say that € £, whenever the above
guantization of theoutput feedbacknformation that deals limit exists and is finite. O
with all the previously mentioned issues in (i)-(vi).

The design strategy reveals a tradeoff between the amoun
of transmissions and the precision of the quantized inferm#&efinition 2. Consider the hybrid system (1) and a sétC
tion. The effectiveness of the approach is illustrated on B"~. The setA is input-to-state stable (ISS) w.rt: if there
numerical example. existg € KL and € K such that, for each:(0,0) € X C
R™ and w € L, each maximal solution paifz,w) is
complete and satisfies for alt, j) € domz

tWe adopt the following ISS notion for hybrid systems [3].

Il. PRELIMINARIES
Let R := (—00,00), Ry := [0,00), N := {0,1,2,...}

andNxg == {1,2,...}. A continuous functiony : Ry, — |2 (t, §)| 4 <max {B(|x(0,0)].4,t + 5), ¥ ([[wll)} . ()
R, is of classK if it is zero at zero and strictly increasing. O
It is of classK if, in addition, v(s) — oo ass — oc. Ill. PROBLEM FORMULATION

A continuous functiony : R, — R is of classKL if Consider the LTI plant model
for each fixedt € Ry, 7(-,¢) is of classK, and (s, .)
is nonincreasing and satisfies, for each fixede R,
tligo ~(s,t) = 0. We denote the minimum and maximumwherez, € R"» is the plant statey € R™ is the control

eigenvalues of the real symmetric matrixas A (A) and  iNPUt, w € R™* is an unknown plant disturbancg,c R™

Amax(A), respectively. We writed” to denote the transpose iS the measured output, ant},, B, Cp,, E, are matrices of

of A, and I, stands for the identity matrix of dimension @Ppropriate dimensions. The disturbancés assumed to be

n. The symbolx stands for symmetric blocks. We write Lebesgue measurable and locally bounded. We design the

(z,y) € R™+% to represent the vectopr?,yZ]7 for dynamic controller

x € R™ andy € R™. For a vectorz € R"», we denote i.= Az, + B w=C.z.+ D.i 5

by |z| := vzTz its Euclidean norm and, for a matrix ¢ e el o e )

A € R™™ |A] = /Amax(ATA). Given a setd c R* Wwherez, € R is the controller statej, € R"» denotes the

and a vectorz € R”, the distance oft to A is defined last transmitted and quantized valueyofaind A, B, Cc, D,

as |r|4 := inf,eq|r — y|. We use the followingceiling —are matrices of appropriate dimensions. The controller (5)

function: [z] = min{k € N: k > z}. is designed by an emulation approach in the sense that we
We consider hybrid systems of the following form [3], [8] @ssume that the closed-loop system given by (4) and (5)

is stable when the effects of both the quantization and the
i=F(z,w) z€C, xT€Gx) ze€D, (1) network are absent, i.e. whep = y.

ip = Apzp + Bpu + Epw, y = Cpzp, (4)

wherez € R™= is the statew € R™» is an exogenous input, A. Setup description

C is the flow set,F" is the flow map,D is the jump set e consider the scenario where the controller is directly
andG is the jump map. Solutions to system (1) are definedonnected to the plant while the output measuremeis

on hybrid time domainsWe call a subsey C R, x N transmitted to the controller over a digital communication
a compact hybrid time domaiif £ = U;.';Ol([tj,tjﬂ],j) channel at discrete time instants,k € N. Due to the

for some finite sequence of timé&s= t, < t; < ... <ty digital nature of the network, the value af is subject

and it is ahybrid time domainif for all (T,J) € E,EN to quantization before being transmitted to the controller
([0,7] x {0,1,...,J}) is a compact hybrid time domain. A Hence, att;,k € N, the current value of; is quantized,
hybrid signalis a function defined on a hybrid time domain.encoded and the resulting encrypted data is sent over the
For more details on properties of solutions to hybrid systemhannel. The decoder on the other side of the network
(1), we refer the reader to [3], [8]. reconstruct the received encrypted message and delivers th



guantized feedback information to the controller, whicksus quantizer is not saturated. The quantization overall aevic
value to updatey, in the control law (5), see Figure 1. consists of two units being an encoder at the sensor side
The value ofy, is kept constant between two consecutiveand a decoder at the controller side. The encoder adapts the
transmission instants by means of zero-order-hold (ZOH).zoom variable. at transmission instantg, k € N according

to the magnitude of the output measurementss follows

Qe @0 pty) max{[y(te)], Ao} < linpa(tr)
p(ty) =
Qe " () [y(t)] = Loups(tr),
9)
where Q" (W) qrealvi) 5 0 are the zoom-in and zoom-
out factors, respectively, at each update instantith Q, €
(0,1),Q0ut > 1 and functionssin , kout : R™ x R — N are
to be designed. The parametdrs< (i, < lout < M are
used to define the zoom-in surface and the zoom-out surface,
respectively. The constart, > 0 can be arbitrarily chosen,
typically small.
When the magnitude of the plant outpl{ is near the

Fig. 1. Quantized networked control system

B. Event-triggering mechanism quantizer range\/ n, (determined by the zoom-out surface
The sequence of transmission instamisk € N is foutpr) we multiply u by a zoom-out factofget V) > 1,

past (true) values of the output measuremgennd the last the"propertyiyl < Mp. This action is known as the “zoom-
broadcasted (quantized) valgg The triggering mechanism OUt” stage. On the other hand, whey) becomes relatively
is dynamic in the sense of [5], [7], [16] and takes thesmall compared to the quantizer rangéy (determined

following form by the zoom-in surfacei, 1), we decrease the range by
multiplying 1. by a zoom-in factor;," wn) ¢ (0,1) such
the1 = inf{t >t + T | n(t) <0}, (6) that more precise information can be transmitted. Thisacti

is known as the “zoom-in” stage, see, e.g., [12] for more
details. Observe that ifi < % Nno zoom-in event occurs.
Fssentially, we stop zooming-in when the valueyég known
sufficiently accurate and is very close to zero. This propert
ensures that the value 6f." w:1) s finite (especially when
n=V(0) te (tp,trt1), n(tf) =mno(o) (7) y crosses zero).

Observe that the zoom variablein (9) is only updated
at transmission instantg,, k. € N and if the zoom-in or
the zoom-out condition is met. Consequently, the intemzoo
times are lower bounded by the minimum inter-transmission
C. Dynamic quantization time T ensured by the event-triggering condition (6). Be-

At each transmission instant, k € N, the current output WEen two consecutive zoom actions, the varigblis held
measuremeny is quantized before being broadcasted ovefonstant, i.e4 = 0 during the inter-zoom times. To decode
the network by means of dynamic quantizers. In other word&1€ transpl(tte? mfﬁorr(natl)on in a successful manner, therzoo
a dynamic variabley € R., (referred to as the zoom factorsy’ I Qo1 are also sent at each transmission
variable) is used to adjust the initial quantizer radge> 0 instantty,k € N, see Figure 1. We assume that the zoom
and the initial quantizer resolutiod > 0 based on the variables of both the encoder and the decoder are initthlize
magnitude of the output measuremgnHence, the dynamic at the same value, see Remark 1 in [10] for an in-depth
range and the dynamic resolution of the quantizer are givéiiscussion on this point.
by My and Ap, respectively. This leads to the quantizeD. Problem statement

function ¢,,, which is defined asg,,(y) := uq (%) where  Our objective is to design both the event-triggering con-
q:R™ — @Q C R™ is a piecewise constant function with dition, i.e. to define the timg" and the functionsl' and
Q is a finite subset oR™v. We assume that the functian 1, in (6)-(7), and the dynamic quantization strategy, i.e. to
satisfies the following assumption, see also [10], [12]][14 define the parametersy, fin , four and the functions, , xout

whereto = 0,7 > 0,7 € Ryo- The constanttim& > 0 is a
strictly positive lower bound on the inter-transmissianés
of the outputy that we enforce to prevent the occurrence o
Zeno. The variable is the solution to the dynamical system

for some functionsl andnyg, which are specified in Section
V and o € R" represents locally available information at
the event-triggering mechanism.

Assumption 1. For all y € R™ it holds that in (9), such that objectives (i)-(vi) mentioned in Secticaré
' satisfied for the resulting closed-loop system.
<M = fqly) -yl <A (%) IV. HYBRID MODEL

This assumption means that the magnitude of the quanti-In this section, we explain how to formulate the closed-
zation errorq(y) — y| is upper bounded by as long as the loop system as a hybrid dynamical model [8]. We define the



sampling-induced error ag := g, —q,(y), which is reset to
zero at each transmission instaptk € N. We also define
the quantization error as, := ¢,(y) — y. Hence, the total

We note that when the zoom-in condition is satisfied,
i.e. max{|y|, Ao} < finp, we have thati, (y,u) = 1 and
dout (y, ) = —1. Consequentlysout (y, 1) = 0 and henceu

(true) error is given by is updated topt = Q")) and the functionsi, (y, 1)
(10) ensures thaimax{|y|, Ao} > flinp™. Similarly, when the
zoom-out condition is verified &, i.e.|y| > foutpt, We have
Between two transmission instants, due to the ZOH, tH@atdin (y, 1) = —1 anddout(y, ) = 1. Then,xin (y, 1) = 0
dynamics of is ¢ = —y = —C,,, and at each transmission and . is updated tou " = Q1) ), and the definition of
instant, we have that" = ¢, sinceg;” = ¢, (y). We note that  kout (y, 1) ensures thaty| > lowu™. When neither of the
e is not necessarily reset to Ofat k € N due to the effect of zoom conditions is violated, i.enax{|y|, Ao} > fin v and

e=es+eq =19, — Y.

guantization. This phenomenon induces nontrivial diftiesl

|y| < loutit, We have thatsin (yalu) = Rout (yaﬂ) =0 and

and requires careful handling since it may have a negativeence,u™ = p.

impact on the closed-loop stability. Let= (z,, z.) € R™=.
Then, in view of (4), (5), (10), the flow dynamics ofande
are given byt = Ayx+Bie+&w andé = Asx+Boe+Ew,

|4, +B,D.C, B,C, | BpD,
where A; = [ B.C, A , By = B. |
E
& = OPL Az = [-Cp(Ap + B,D.Cy) — CpB,C],
By := —CpB,D., and&; := —C, E,.

We introduce an auxiliary variable € R, to describe

Observe that, in view of (12), the boolean variable
ensures that the zoom variableis first updated before a
transmission is allowed at any transmission instank € N.

For instance, wheg € D andp = 0, the system will jump
according to the jump ma@,,(£) in which only the quantizer
variable s is updated ang is changed to 1. Consequently,
the state¢ enters the jump set € D andp = 1 where the
system jumps according 6,,(¢) in which a transmission is
released ang is reset to 0. Hence, the same order of jumps

the time elapsed since the last transmission instant, whi¢l maintained at the next time instant & € N.

has the dynamics fok € N, + = 1 for ¢t € (¢x,tx+1) and
7(t}) = 0. We also use a boolean varialgec {0,1} to

V. MAIN RESULT

order the sequence of jump events in the sense that the zoom .
variabley is updated beforg is transmitted, when a zoom- A. Assumptions

in/zoom-out is required at any transmission instgntLet

We make the following assumption on system (12).

¢ = (z,e,u,7,m,p) € X be the concatenation of the state

variables, withX = R™ x R™ xRy 5 xRy xRy 5% {0,1}.
In view of (6) and (7), the flow sef and the jump seD
are given by

C:= {§€X:(TE[O,T] orn = 0) andpzo}

(11)
D= {56X:(7>Tandn<0) Orpzl}.
Then, we obtain the hybrid system
Az + Bie + E1w
Asx + Boe + E;w
: 0
§= 1 § € C
¥ (o)
0
{G#(g)}, for EcDAp=0
£t e £eD,
{Gy(g)}, for EcDAp=1
(12)

where G,(§) = (z,e, Q" <y*“>933:‘<y7“>u,7,n,1) and
Gy(&) := (z,eq,1,0,m0(0),0). The functionskin , kout are
computed as follows

lo max JA Cin b
Rin (y,,u) = maX{O,(Sin (yhu)}’V g( {lyl,A0}/( /))—‘

log Qin

log (Iyl/(fomu))—‘

Kout (Y, 1) = maX{Oﬁout(y»N)}[ Tog Qout

(13)
wheredin (y, 1) := sgn(lin pp — max{[y[, Ao}), dout (y, ) :=
sgn(|y| — Loutp)-

Assumption 2. Consider system (12). There exist
€z,€y,€w,y > 0 and a positive definite symmetric
real matrix P such that

% * *
BT P -2, *
ETP+ET Ay 0 ETE —euln,

<0, (14)

whereY ;= ATP + PA; +¢,1,,, + AT As + syUZUp with
C,:=[C, 0] O
Assumption 2 establishes dl3-gain stability property for

the system: = Az + Bie+ & 1w from (Jef, |w]) to (| Azx +
Bse + Euw|, |y|), see also, e.g., [1], [4], [5].

B. Design conditions for the event-triggering mechanism

The dynamics of the triggering functionin (7) is defined
by the functions¥ and,, which are given by, see also [5]

W(o) o § v ol A5} = On, re0,7],
Eymax{|y|27A%} — Fle|* — o, =T
noe) :== v = Nlel?,
(15)

whereo := (y,e,7,m), ¥ > 0 can be arbitrarily chosen,
A€ (0,1), A € MNATYH, 7 = 9% + 922 + 29AL with
L:=L+vforanyv >0 andL := |By|, and the constant

~ comes from Assumption 2. The constant tiffiés given



by T'= T (A, X7, Ji), where that Assumptions 1, 2 are satisfied and the dynamic quantizer

. N is designed as in (18)-(20). Then for amy € L. and
—t(%) v>L  £0,0) € X with X :={ €X |e=0,7=0,7p=0p=
TOA L) =4 1128 Lo 0}, it holds tha’t | |
LAAFAFA+T i (1) for all (¢,5) € dom¢ and &(t,j) € D, with p = 1,
r(1—A\ 7 . . N
ﬁarctanh (%(Ai?\)ﬂl\i) y<L les(t, )| > Au(t, j) = |€q(t,_])|,. )
(16) (2) the setd = {¢ € X: R({) < c} is input-to-state stable
ith 12 The ti < - ) w.r.t. w, where R(€) := 2T Pz + y¢le|? + n with ¢ :=
with r := ’(f) - 1’. e tlmeT(_A,.)\,ij) corresponds (Ama;f(xph +7X)A§ for any Ag > /%A, € € (0,1)
to themaximally allowable transmission interval (MATGf and P, v, e,, ¢, as in Assumption 2;
time-triggered controllers [4]. The expression®fin (16),  (3) the zoom-in/zoom-out condition is not immediately vio-
we drop the arguments of for brevity, is derived as the lated after the zoom-out/zoom-in action:
time 7 it takes for a decreasing functlgn: Ryy— Ry, to (4) the hybrid signalg, xin (y, 1) and rou (y, 1) are all in
decrease fronp(0) = A~! to ¢(7) = A, where¢ has the Lo
dynamics, see also [4] (5) solutions aret-complete, i.esup, domé = cc.
a [ 2o =@+ relT] o -
dr 0 T>T. Property (1) states that at each transmission instant, the

R current quantized information is not exactly the same as the

Note that whem\ = X in (16), we recover the MATI bound previously transmitted value ds,(t,j)| > |e,(t,j)|. Prop-
of the time-triggered controllers in [4]. ~ erty (2) means that an ISS with respectutois guaranteed

We observe that, in view of (16), wheh € [A\,A\"!)  for the set.A whose size depends ofyy. This is due to
is increased, the guaranteed minimum tiffidetween two the fact thaty does not eventually go to O since we stop
transmission instants will be reduced. However, by indrégs zooming-in whernu < % according to (9), which is also the
A, the value ofr in (15) will increase. Consequently, this case in, e.g., [11], [12]. Property (3) means that chatterin
may lead to increase the time it takes fpito decrease to like behaviour between the zoom-in and the zoom-out stages
0, i.e. may enlarge the inter-transmission times. Henae, thioes not occur. Property (4) shows that the zoom variable
tuning of A may generate a tradeoff between the guarante@dmains bounded and the values«gf (y, 1) androut (v, 1),
minimum inter-transmission tim& and the average trans- which will be transmitted, are finite. Finally, property (5)
mission times. means that the time domain of solutions to system (11)-(12)

C. Design conditions for the dynamic quantizer 's unbounded.

We design the quantizer initial range, the initial reso- Reémark 1. Note that, in view of (16), (18), the design
lution A, the zoom-in parametefs, , Qin , and the zoom-out parameter)\ creates a tradeoff between transmissions and

parametergou, Qou as follows, for somes > 1 guantization. When is reduced, the value d&f in (16) will
’ ’ increase, which may result in a reduction in the amount of
M > (k +2¢/7/ (V&0 A)A (18) transmissions. However, by reducing the right-hand side
lin = Qin (M — KA), lout =M — A (19) of (18) will also increase. Hence, the value Afneeds to
be decreased, i.e. finer quantization is required, in order t
> 1, ((Qin Qout — )M + A)/(Qin Qout A 20
o > max {1, (Qin Qour = M + A)/(2in Qoue A)} (20) ensure that (18) holds. O

for any Qin € (0,1) andQo > 1 such that (20) holds.

Condition (18) means that the quantizer has sufficiently V1. TLLUSTRATIVE EXAMPLE

many quantization regions such that the quantizer initial Consider the LTI system (4)-(5) withl,, = _02 _11 .
rangeM becomes sufficiently large compared to the initial 0 0 0 —9
resolutionA. Condition (19) is used to define the zoom-inB, = [ 1], C, =1 0], E, = H A, = {O NE

and the zoom-out surfaces, and satisfies i, < lout < M. 5
Condition (20) is useful to ensure that the chattering-likés, = 1 C.=[-1 —2|, andD, = 0. By following the

behaviour between the zoom-in. and the zoom-out aaio%alyms in Section IV, we derive the hybrid model (12).
does not occur. Note that (20) simply holds if we tdkg Then, by solving the LMI (14), we obtais, = 0.67,

andQour such thatlin Qour < 1. L =0,~ = 49655 We take) — 0.5, X = 0.6, v = 0.01
D. Stability result and we compute the value @f by using (16), which yields
We obtain the following result. The proof is omitted dueT = 0.1139. Furthermore, we obtaify = ?’3'5917' Finally,
to space constraints. we sety = Q.Ol f';lnd henge aII. the required parameters for
the event-triggering functions in (15) are defined. Next, we
Theorem 1. Consider system (12) with the flow and theset the range of the quantizer to B¢ = 100 and we
jump sets as in (11) with, 7, specified in (15) and” = take A = 1.5, Ag = 1078, Qin = 0.5,Qot = 2 and
T(M\ A7, L) with T(\, X, v, L) as defined in (16). Suppose s = 2, which verify (18), (20) and lead té, = 48.5 and



lout = 98.5. We run simulations for 50 seconds with thethe zoom-out actions is avoided and the redundant access
of the network is prevented. Future work will focus on the

initial conditionsz(0,0) = (—20, 20, 10, —10), e(0,0) = 0,

n(0,0) = 0, 7(0,0) = 0, u(0,0) = 1 and with random extension of the obtained result to the case where the plant
disturbances satisfying|w| < 0.5. The observed minimum output is distributed and transmitted over different chesn

inter-transmission time is,,;, = 0.1295 and the average
inter-transmission times isag = 0.3218. We note that
Tmin > T, which supports the discussion in Section V- [1]
B on the choice of\. The state trajectories of the plant
and the dynamic controller are shown in Fig. 2, where the
state asymptotically converges to a small neighbourhood t¢!
the origin. Fig. 3 shows that the zoom actions are only
implemented at transmission instants and the constantfime [3]
acts as a lower bound on both the inter-transmission and the
inter-zoom times. The tradeoff between transmissions an
guantization is presented in Fig. 4. We note that smaller
values of A, i.e. more quantized regions, leads to larger
values ofT’, i.e. the guaranteed minimum time between two
consecutive transmissions/zooms is enlarged, and visayer
see Remark 1. ]
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Fig. 2. State trajectory for the plant and the controller.
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3 : : : :
—>o transmission

g || —e zoom-in
= 2|| —x zoom-out ] [11]
£
Bl g [12]
PARYY P X $ | ?e%s8

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5 [13]

Transmission/Zoom instants

Fig. 3. Transmission/Zoom instants for the first 5 s. [14]

[15]

[16]

Quantizer resolution A

- [17]

0.5

.
0.2
Minimum and average inter-transmission times

0 0.1 0.3 0.4 0.6

(18]
Fig. 4. Tradeoff curve between quantizatiak, and transmissiong;, Tavg -

[19]

VIl. CONCLUSION
We have considered input-to-state stabilization of linear

systems with quantized output feedback and using event-
triggered controllers to reduce the network utilizatiomeT
proposed approach ensures the existence of a strictlyiv@osit
lower bound on the inter-transmission times and on the-inter
zoom times. The zoom parameter of the dynamic quantizer is
shown to be bounded. Chattering between the zoom-in and
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