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SUMMARY

This article focuses on the synthesis of computationally friendly sub-optimal nonlinear model predictive
control (NMPC) algorithms with guaranteed robust stability. To analyse the robustness of the MPC
closed-loop system, we employ the input-to-state stability (ISS) framework. To design ISS sub-optimal
NMPC schemes, a new Lyapunov-based method is proposed. ISS is ensured via a set of constraints, which
can be specified as a finite number of linear inequalities for input affine nonlinear systems. Furthermore,
the method allows for online optimization over the ISS gain of the resulting closed-loop system. The
potential of the developed theory for the control of fast nonlinear systems, with sampling periods below
1ms, is illustrated by applying it to control a Buck-Boost DC–DC converter. Copyright # 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the essential properties of nonlinear model predictive control (NMPC) is the stability of
the closed-loop system. Perhaps the most embraced stabilization method is the so-called
terminal cost and constraint set approach, see, for example, the survey [1]. This method uses the
value function of the MPC cost as a candidate Lyapunov function for the closed-loop system
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and achieves stability via a particular terminal cost and an additional constraint on the terminal
state, i.e. the predicted state at the end of the prediction horizon. Its advantage consists in the
fact that initial feasibility of the NMPC optimization problem implies recursive feasibility, and
the finite horizon MPC cost can be a good approximation of the infinite horizon MPC cost by
suitable selection of the terminal cost. However, these properties are only guaranteed under the
standing assumption that the global optimum of the MPC optimization problem is attained at
each sampling instant. Clearly, when dealing with nonlinear prediction models and hard
constraints, it is difficult, if not impossible, to guarantee that this assumption holds, as
numerical solvers usually provide (in the limited computational time available) a feasible, sub-
optimal input sequence. Such a sub-optimal input sequence needs to have certain properties to
still guarantee stability of the MPC closed-loop system. Therefore, in practice, especially for fast
nonlinear systems, there is a need for sub-optimal NMPC algorithms based on simpler
optimization problems, which can be solved faster, and that still have an a priori stability
guarantee.

An important result regarding sub-optimal NMPC was presented in [2], where it is shown that
feasibility of the NMPC optimization problem rather than optimality is sufficient for stability.
To be precise, in [2], stability is achieved without requiring optimality via an additional
constraint that forces the MPC value function to decrease at each sampling instant. However,
when nonlinear prediction models are used, this constraint becomes highly nonlinear and
difficult to implement from a computational point of view, as the MPC value function depends
on the whole sequence of predicted future inputs. Regarding the MPC algorithms of [2], two
issues remain to be investigated: how to guarantee robust stability for the closed-loop system and
how to decrease the computational burden, so that implementation becomes possible for fast
systems.

This paper proposes new solutions for designing input-to-state stabilizing (ISS) [3, 4] and
computationally friendly sub-optimal MPC algorithms. We achieve this goal via new, simpler
stabilizing constraints, which can be implemented as a finite number of linear inequalities for
input affine nonlinear systems. The method uses an infinity norm-based artificial Lyapunov
function, which can be computed off-line. The resulting ISS constraints only depend on the
measured state and the first element of the sub-optimal sequence of the predicted future inputs,
which results in a considerable simplification with respect to [2].

The proposed ISS NMPC scheme belongs to the category of inherently robust MPC, as
opposed to min–max MPC [1]. By this we mean that knowledge about disturbances is not taken
into account when computing the control law. However, in the case of disturbances that take
values in a bounded, polyhedral set, we show how the developed MPC scheme can be modified
to incorporate feedback to disturbances. This is achieved via additional constraints that allow
for online optimization of the ISS gain [4] of the MPC closed-loop system.

To illustrate the potential for applications to fast nonlinear systems, with sampling periods
below 1ms, the developed theory is applied to control a Buck-Boost DC–DC converter. This
type of DC–DC converter is currently used in a wide variety of relevant processes, including
electric and hybrid vehicles, solar plants, DC motor drives, switched-mode DC power supplies
and many more [5]. Existing control techniques for DC–DC converters mainly rely on PID
controllers, which cannot always cope with the desired control objectives: a very fast start-up
response with no overshoot and good robust performance in steady state, while satisfying
constraints on the inductor current and the duty cycle. With the algorithms developed in this
article, we manage to obtain good start-up behaviour and performance in the presence of
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significant load and additive disturbances. Moreover, a preliminary estimate shows that the
required NMPC calculations can safely be performed within the very short sampling time of
0.65ms. This indicates that new application domains for fast systems are opened up for NMPC,
next to the traditional (slower) process control applications.

1.1. Notation and basic definitions

Let R; Rþ; Z and Zþ denote the field of real numbers, the set of non-negative reals, the
set of integer numbers and the set of non-negative integers, respectively. We use the notations
Z5c1 and Zðc1;c2� to denote the sets fk 2 Zþjk5c1g and fk 2 Zþjc15k4c2g; respectively, for some
c1; c2 2 Zþ:

We denote the Hölder p-norm of a vector x 2 Rn as jjxjjp: Let ½x�i; i ¼ 1; . . . ; n denote the ith
component of a vector x 2 Rn and let j � j denote the absolute value. In the remainder of this
article, we use jj � jj to denote the 1-norm jj � jj1; for shortness. For a sequence ðz0; z1; . . .Þ ¼:
fzjgj2Zþ with zj 2 Rl ; let jjfzjgj2Zþjj :¼ supfjjzjjjjj 2 Zþg: Furthermore, z½k� denotes the truncation
of fzjgj2Zþ at time k 2 Zþ; i.e. z½k� ¼ fzjgj2Z½0;k�

: For an arbitrary sequence u :¼ ðu0; u1; . . .Þ ¼
fujgj2Zþ ; we use uðjÞ to denote uj : For a matrix Z 2 Rm�n; let jjZjj :¼ supx=0 jjZxjj=jjxjj denote its
corresponding induced matrix norm. It is well known that jjZjj1 ¼ max14i4m

Pn
j¼1 jZ

fijgj;
where Zfijg is the ijth entry of Z:

For a set S � Rn; we denote by @S the boundary, by intðSÞ the interior and by clðSÞ the
closure of S: A polyhedron (or a polyhedral set) in Rn is a set obtained as the intersection of a
finite number of open and/or closed half-spaces. Given ðnþ 1Þ affinely independent points ðy0;
. . . ; ynÞ of Rn; i.e. ð1 y>0 Þ

>; . . . ; ð1 y>n Þ
> are linearly independent in Rnþ1; we define a simplex S as

S :¼ Coðy0; . . . ; ynÞ :¼ x 2 Rn x ¼
Xn
l¼0

mlyl ;
Xn
l¼0

ml ¼ 1;ml50 for l ¼ 0; 1; . . . ; n

�����
( )

where Coð�Þ denotes the convex hull.
A function j : Rþ ! Rþ belongs to classK if it is continuous, strictly increasing and jð0Þ ¼ 0:

A function b : Rþ � Rþ ! Rþ belongs to class KL if for each fixed k 2 Rþ; bð�; kÞ 2K and for
each fixed s 2 Rþ; bðs; �Þ is non-increasing and limk!1 bðs; kÞ ¼ 0:

2. INPUT-TO-STATE STABILITY PRELIMINARIES

Consider the discrete-time perturbed nonlinear system described by

xkþ1 2 Gðxk;wkÞ; k 2 Zþ ð1Þ

where xk 2 Rn is the state, wk 2 Rl is an unknown disturbance input and G : Rn
� Rl +Rn is an

arbitrary nonlinear, possibly discontinuous, set-valued function. For simplicity of notation, we
assume that the origin is an equilibrium in (1) for zero disturbance, i.e. Gð0; 0Þ ¼ 0: Consider the
case when wk takes values at all times k 2 Zþ in a bounded set W � Rl :

Definition 2.1 (Robust positive invariance (RPI))
We call a setP � Rn robustly positively invariant for system (1) with respect to W if for all x 2 P
it holds that Gðx;wÞ � P for all disturbances w 2W:
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Definition 2.2 (Regional ISS (Magni et al. [6], Lazar [7], Limon et al. [8]))
Let X with 0 2 intðXÞ and W be subsets of Rn and Rl ; respectively. We call system (1) ISS in X

for disturbances in W if there exist a KL-function bð�; �Þ and a K-function gð�Þ such that, for
each x0 2 X and all fwjgj2Zþ with wj 2W for all j 2 Zþ; it holds that the corresponding state
trajectories fxkgk2Zþ satisfy jjxkjj4bðjjx0jj; kÞ þ gðjjw½k�1�jjÞ; 8k 2 Z51:

We call the K-function gð�Þ an ISS gain of system (1). The following conditions for regional
ISS will be used throughout the article to establish ISS of MPC closed-loop systems.

Theorem 2.3
Let W be a subset of Rl and let X be a RPI set for (1) with respect to W with 0 2 intðXÞ:
Furthermore, let a1ðsÞ :¼ asd; a2ðsÞ :¼ bsd; a3ðsÞ :¼ csd for some a; b; c; d > 0; s 2K and let V :
Rn
! Rþ with Vð0Þ ¼ 0 be a function such that

a1ðjjxjjÞ4VðxÞ4a2ðjjxjjÞ ð2aÞ

VðxþÞ � VðxÞ4� a3ðjjxjjÞ þ sðjjwjjÞ ð2bÞ

for all x 2 X; w 2W and all xþ 2 Gðx;wÞ: Then system (1) is ISS in X for disturbances in W:

The proof of Theorem 2.3 is similar in nature to the proof given in [6–8] by replacing the
difference equation by a difference inclusion (1) and is omitted here for brevity. We call a
function Vð�Þ that satisfies the hypothesis of Theorem 2.3 an ISS Lyapunov function.

3. SUB-OPTIMAL NONLINEAR MODEL PREDICTIVE CONTROL

We consider nominal and perturbed discrete-time nonlinear systems of the form:

xkþ1 ¼ f ðxkÞ þ gðxkÞuk; k 2 Zþ ð3aÞ

*xkþ1 ¼ f ð *xkÞ þ gð *xkÞuk þ wk; k 2 Zþ ð3bÞ

where xk; *xk 2 Rn; uk 2 Rm and wk 2W � Rn are the state, the input and the additive
disturbance, respectively, at discrete time k 2 Zþ; and f : Rn

! Rn; g : Rn
! Rn�m are nonlinear

functions with f ð0Þ ¼ 0:We will consider the case when sub-optimal NMPC is used to generate
the input uk in (3). We assume that the state and the input vectors are constrained for both
systems (3a) and (3b), in a compact subset X of Rn and a compact subset U of Rm; respectively,
which contain the origin in their interior. For a fixed N 2 Z51; let xkðxk; ukÞ :¼ ðx1jk; . . . ;xNjkÞ
denote the state sequence generated by the nominal system (3a) from initial state x0jk :¼ xk and
by applying an input sequence uk :¼ ðu0jk; . . . ; uN�1jkÞ: Let F : Rn

! Rþ with Fð0Þ ¼ 0 and L :
Rn
� Rm

! Rþ with Lð0; 0Þ ¼ 0 be arbitrary mappings. At time k 2 Zþ let xk 2 X be given. The
basic NMPC scenario consists in minimizing at each sampling instant k 2 Zþ a finite horizon
cost function of the form

Jðxk; ukÞ :¼ FðxNjkÞ þ
XN�1
i¼0

Lðxijk; uijkÞ ð4Þ
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with prediction model (3a) and initial state x0jk :¼ xk; over all input sequences uk; subject to
state and input constraints. In the MPC literature [1], Fð�Þ is called the terminal cost, Lð�; �Þ is
called the stage cost and N is called the prediction horizon. Let Xf ðNÞ � X denote the set of
feasible states with respect to the above optimization problem. Then, VMPC : Xf ðNÞ ! Rþ;
VMPCðxkÞ :¼ infuk Jðxk; ukÞ is the MPC value function corresponding to the cost (4). If there
exists an optimal sequence of controls unk :¼ ðu

n
0jk; u

n
1jk; . . . ; u

n
N�1jkÞ that minimizes (4), the

infimum above is a minimum and VMPCðxkÞ ¼ Jðxk; unkÞ: Then, an optimal MPC control law is
defined as uMPCðxkÞ :¼ un0jk; k 2 Zþ: Sufficient conditions for the existence of an optimal
sequence for NMPC can be found in [9]. Stability of the resulting MPC closed-loop system is
usually guaranteed by adding a particular constraint on the terminal state xNjk; see, for example,
the survey [1].

As mentioned in the Introduction, in practice, the available solvers provide only a feasible,
sub-optimal sequence of inputs %uk :¼ ð%u0jk; %u1jk; . . . ; %uN�1jkÞ and the control applied to the plant,
i.e. %u0jk; is a sub-optimal MPC control. The resulting value function is then %VðxkÞ :¼ Jðxk; %ukÞ:
The stability of the resulting MPC closed-loop system may be unclear now, or may even be lost.
Our goal is to develop a sub-optimal NMPC algorithm that still guarantees robust stability a
priori.

3.1. Sub-optimal NMPC algorithm and input-to-state stability aspects

In this article we consider 1-norm-based MPC costs, i.e.

FðxÞ :¼ jjPxjj and Lðx; uÞ :¼ jjQxjj þ jjRuujj ð5Þ

where P 2 Rp�n; Q 2 Rq�n and Ru 2 Rru�m are assumed to be known matrices that have full-
column rank. In what follows we will employ an1-norm-based ISS Lyapunov function of the
form VðxÞ :¼ jjPVxjj; where PV 2 Rpv�n is a full-column rank matrix. Let QV 2 Rqv�n be a
known matrix with full-column rank.

Algorithm 3.1 (ISS sub-optimal NMPC)
Step 1: At time k 2 Zþ measure the state xk; let x0jk :¼ xk and find a control sequence
uk ¼ ðu0jk; . . . ; uN�1jkÞ that satisfies (optionally, also minimizes the cost (4)–(5)):

xiþ1jk ¼ f ðxijkÞ þ gðxijkÞuijk; i ¼ 0; . . . ;N � 1 ð6aÞ

jjPV ðf ðx0jkÞ þ gðx0jkÞu0jkÞjj � jjPVx0jkjj4� jjQVx0jkjj ð6bÞ

xijk 2 X; i ¼ 1; . . . ;N ð6cÞ

uijk 2 U; i ¼ 0; . . . ;N � 1 ð6dÞ

Step 2: Let PðxkÞ :¼ fu 2 fR
m
gN ju satisfies ð6Þg and let pðxkÞ :¼ fuð0Þ 2 Rm

ju 2 PðxkÞg: Select
a feasible sequence of inputs %uk :¼ ð%u0jk; %u1jk; . . . ; %uN�1jkÞ 2 PðxkÞ and apply the input %u0jk 2 pðxkÞ
to the perturbed system (3b), increment k by one and go to Step 1.

Let eXf ðNÞ � X with 0 2 intðeXf ðNÞÞ be a set of states x for which the optimization problem in
Step 1 of Algorithm 3.1 is recursively feasible for system xkþ1 2 hðxk; pðxkÞ;wkÞ; k 2 Zþ; for any
wk 2W: Here, hðx;pðxÞ;wÞ :¼ ff ðxÞ þ gðxÞuþ wjx 2 eXf ðNÞ; u 2 pðxÞg denotes the set-valued
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map corresponding to the perturbed system (3b) in closed-loop with the set-valued sub-optimal
MPC control law pð�Þ: Notice that eXf ðNÞ is an RPI set for xkþ1 2 hðxk; pðxkÞ;wkÞ; wk 2W;
k 2 Zþ:

Theorem 3.2
The closed-loop system xkþ1 2 hðxk;pðxkÞ;wkÞ is ISS in eXf ðNÞ for disturbances in W:

Proof
The proof consists in showing that VðxÞ ¼ jjPVxjj is an ISS Lyapunov function for the system
xkþ1 2 hðxk; pðxkÞ;wkÞ: Since PV has full-column rank, there exist c25c1 > 0 such that c1jjxjj4
jjPVxjj4c2jjxjj for all x: For example, c2 ¼ jjPV jj and c1 ¼ lv=

ffiffiffiffiffi
pv
p

; where lv > 0 is the
smallest singular value of PV : Hence, Vð�Þ satisfies condition (2a) for a1ðjjxjjÞ :¼ c1jjxjj and
a2ðjjxjjÞ :¼ c2jjxjj: Next, we show that Vð�Þ satisfies condition (2b). From constraint (6b) and
using the triangle inequality, we have that for any xkþ1 ¼ hðxk; %uk;wkÞ with xk 2 eXf ðNÞ; wk 2W

and %uk 2 pðxkÞ:

Vðxkþ1Þ � VðxkÞ ¼Vðf ðxkÞ þ gðxkÞ%uk þ wkÞ � VðxkÞ ¼ jjPV ðf ðxkÞ þ gðxkÞ%uk þ wkÞjj � jjPVxkjj

4 jjPV ðf ðxkÞ þ gðxkÞ%ukÞjj þ jjPVwkjj � jjPVxkjj4� jjQVxkjj þ jjPVwkjj

4 � a3ðjjxkjjÞ þ sðjjwkjjÞ

where a3ðsÞ :¼ xs; with x such that jjQVxjj5xjjxjj for all x; and sðsÞ :¼ c2s: The statement then
follows from Theorem 2.3. &

Remark 3.3
In Step 1 of Algorithm 3.1, one has to search for a feasible sequence of inputs, which is sufficient
for guaranteeing ISS of the closed-loop system, as stated in Theorem 3.2. In other words,
recursive feasibility implies ISS.

To implement Algorithm 3.1, one has to specify the matrices PV (the weight of the artificial
Lyapunov function) and QV (a weight that is related to the decrease of the Lyapunov function).
Next, for a known QV ; we present a procedure for computing the 1-norm-based artificial
Lyapunov function Vð�Þ: Let

xkþ1 ¼ Axk þ Buk; k 2 Zþ ð7Þ

where A 2 Rn�n; B 2 Rn�m; be a linear approximation of (3a) around ½0 0�>: For a given
full-column rank matrix QV ; to compute the matrix PV ; we consider a linear state feedback
uk ¼ Kxk;K 2 Rm�n; k 2 Zþ; and we make use of the following result.

Lemma 3.4 (Lazar et al. [10])
Suppose that a full-column rank matrix PV 2 Rpv�n and a gain K 2 Rm�n satisfy

1� jjPV ðAþ BKÞP�LV jj � jjQVP
�L
V jj50 ð8Þ

where P�LV :¼ ðP>VPV Þ
�1P>V is the left Moore–Penrose inverse of PV : Then, it holds that

jjPV ðAþ BKÞxjj � jjPVxjj4� jjQVxjj for all x
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and the function VðxÞ ¼ jjPVxjj is an ISS Lyapunov function for the system xkþ1 ¼
ðAþ BKÞxk þ wk:

For ways to find a solution to inequality (8), we refer the interested reader to [10]. Notice that
the result of Lemma 3.4 provides a local ISS Lyapunov function, i.e. VðxÞ ¼ jjPVxjj; for the
nonlinear system (3b) in closed loop with an explicit state feedback. Solving online
the optimization problem in Step 1 of Algorithm 3.1 amounts to finding a control action
that makes Vð�Þ a global ISS Lyapunov function for the resulting closed-loop system
corresponding to (3b).

3.2. Computational aspects

From a numerical point of view, the proposed ISS sub-optimal MPC scheme has the advantage
that the ISS constraint (6b) can be written for any value of N 2 Z51 as a finite number of
linear inequalities, for the considered class of nonlinear systems (3). Since by definition
jjxjj1 ¼ maxi2Z½1;n� j½x�ij; for a constraint jjxjj14c with c > 0 to be satisfied, it is necessary and
sufficient to require that �½x�i4c for all i 2 Z½1;n�; in total, this results in 2n linear inequalities
in x: Therefore, as x0jk in (6b) is just the measured state, which is known at every k 2 Zþ; (6b) is
equivalent to

�½PV ðf ðx0jkÞ þ gðx0jkÞu0jkÞ�i4jjPVx0jkjj � jjQVx0jkjj 8i 2 Z½1;pv� ð9Þ

which yields 2pv linear inequalities in the control variable u0jk:
Interestingly, for N ¼ 1; the optimization problem that has to be solved at Step 1 of

Algorithm 3.1 can be formulated as a single linear program, since the nonlinear system (3) is
affine with respect to the input. This problem remains a linear program if one optimizes over the
cost (4) defined using infinity norms, which, for N ¼ 1; is given by

Jðxk; u0jkÞ ¼ jjPðf ðx0jkÞ þ gðx0jkÞu0jkÞjj þ jjQx0jkjj þ jjRuu0jkjj

Instead of minimizing Jðxk; u0jkÞ one can introduce two auxiliary optimization variables E1 and
E2 and solve the following optimization problem instead:

min E1 þ E2

s:t: ð6aÞ; ð6cÞ; ð6dÞ; ð9Þ

E150; E250

� E14jjPðf ðx0jkÞ þ gðx0jkÞu0jkÞjj þ jjQx0jkjj4E1

� E24jjRuu0jkjj4E2

Using the technique for rewriting inequalities that include 1-norms as linear inequalities in
combination with the above optimization problem, one can formulate a linear program whose
solution minimizes the cost (4) for N ¼ 1 and it satisfies all constraints in (6). For N > 1; the
corresponding sub-optimal NMPC set-up yields a nonlinear optimization problem subject to
linear constraints on top of the prediction constraints, which is still better than additional
nonlinear (stabilization) constraints.
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4. ONLINE OPTIMIZATION OF THE CLOSED-LOOP ISS GAIN

The ISS sub-optimal NMPC scheme presented in the previous section can be categorized in the
class of inherently robust MPC frameworks, as opposed to the min–max MPC set-ups [1]. By
this we mean that knowledge about disturbances is not incorporated in the computation of the
control signal. Indeed, in case of Algorithm 3.1, the ISS gain of the closed-loop system will only
depend on the gain of the sð�Þ function, i.e. the constant c2 ¼ jjPV jj (see [7] for details).

However, when bounds on the disturbances are known, it would be desirable to use this
knowledge to minimize the ISS gain of sð�Þ online and, therefore, introduce feedback to
disturbances.

A solution for achieving this goal would be to consider a specific type of K-function, for
example, sðsÞ :¼ Zks (here, the gain Zk is now chosen to be a function of time), add the following
constraint to Algorithm 3.1:

jjPV ðf ðx0jkÞ þ gðx0jkÞu0jk þ wÞjj � jjPVx0jkjj þ jjQVx0jkjj � Zkjjwjj40 8w 2W ð10Þ

and minimize the gain Zk > 0 at every instant k 2 Zþ:Unfortunately, it is difficult to translate the
above constraint into a finite number of (linear) inequalities (for example, if W is a polyhedron,
using its vertices) due to the fact that the left-hand term in (10) is not a convex function of w:
Indeed, the left-hand term in (10) contains the difference of two convex functions of w; i.e.
jjPV ðf ðx0jkÞ þ gðx0jkÞu0jk þ wÞjj and Zkjjwjj; which is generally not convex.

To incorporate feedback to disturbances and still preserve the computational advantages of
Algorithm 3.1, we propose the following modification to Algorithm 3.1, for the case when W is a
compact polyhedron with a non-empty interior containing the origin. Let we; e ¼ 1; . . . ;E; be
the vertices of W; suppose that E > n (with n the dimension of the state) and let lek50; k 2 Zþ;
be optimization variables associated with each vertex we: We will add the following constraints
to the optimization problem in Step 1 of Algorithm 3.1:

jjPV ðf ðx0jkÞ þ gðx0jkÞu0jk þ weÞjj � jjPVx0jkjj þ jjQVx0jkjj � lek40; e ¼ 1; . . . ;E ð11Þ

and aim at obtaining small values for lek: Next, consider a finite set of simplices S1; . . . ;SM with
each simplex Si equal to the convex hull of a subset of the vertices of W and the origin and such
that

SM
i¼1 Si ¼W: More precisely, Si ¼ Cof0;wei;1 ; . . . ;wei;ng and fwei;1 ; . . . ;wei;ng � fw1; . . . ;wEg

(i.e. fei;1; . . . ; ei;ng � f1; . . . ;Eg) with wei;1 ; . . . ;wei;n linearly independent. For each simplex Si; we
define the matrix Wi :¼ ½wei;1 . . . wei;n � 2 Rn�n; which is invertible.

Lemma 4.1
If for k 2 Zþ and the measured state xk ¼ x0jk there exist u0jk and lek; e ¼ 1; . . . ;E; such that (6b)
and (11) hold, then (10) holds with

Zk :¼ max
i¼1;...;M

jj%likW
�1
i jj ð12Þ

where %lik :¼ ½l
ei;1
k . . . lei;nk � 2 R1�n and jj � jj is the corresponding induced matrix norm.

Proof
Let x0jk be given and suppose (11) holds for lek; e ¼ 1; . . . ;E: Let w 2W ¼

SM
i¼1 Si: Hence, there

exists an i such that w 2 Si ¼ Cof0;wei;1 ; . . . ;wei;ng; which means that there exist non-negative
numbers m0; m1; . . . ; mn with

P
j¼0;1;...;n mj ¼ 1 such that w ¼

P
j¼1;...;n mjw

ei;j þ m00 ¼
P

j¼1;...;n

mjw
ei;j : In matrix notation, we have w ¼Wi½m1 . . . mn�

> and thus ½m1 . . . mn�
> ¼W�1i w:
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By multiplying each inequality in (11) corresponding to the index ei;j and inequality (6b) (which
corresponds to 0) with mj50; j ¼ 0; 1; . . . ; n; summing up, using

P
j¼0;1;...;n mj ¼ 1 and the triangle

inequality yields

jjPV ðf ðx0jkÞ þ gðx0jkÞu0jk þ wÞjj � jjPVx0jkjj þ jjQVx0jkjj �
X

j¼1;...;n

mjl
ei;j
k 40

or equivalently,

jjPV ðf ðx0jkÞ þ gðx0jkÞu0jk þ wÞjj � jjPVx0jkjj þ jjQVx0jkjj � %lik½m1 . . . mn�
>40

Using that ½m1 . . . mn�
> ¼W�1i w; mj50 and lei;jk 50; we obtain (10) for Zk as in (12). &

Note that, according to Theorem 2.3, if Zk4Zn for all k5k0; for some k0 2 Zþ; an ISS gain is
guaranteed. Since Zk is coupled to lek; e ¼ 1; . . . ;E; via (12), small lek; e ¼ 1; . . . ;E; will result in a
small ISS gain of the closed-loop system and thus, in optimized robustness to disturbances. As
Zk is minimized online at each instant k 2 Zþ; via the variables lek; e ¼ 1; . . . ;E; constraint (11)
introduces feedback to disturbances. Define Lk :¼ ½l

1
k . . . lEk �

> and let Rl be a known full-
column rank matrix of appropriate dimensions. Relation (12) can be used to provide insight into
how to choose Rl: Now consider the following cost:

Jðxk; uk;LkÞ :¼ jjPxNjkjj þ
XN�1
i¼0

fjjQxijkjj þ jjRuuijkjjg þ jjRlLkjj ð13Þ

Algorithm 4.2 (Feedback ISS sub-optimal NMPC)
Step 1: At time k 2 Zþ measure the state xk: Let x0jk :¼ xk and find a control sequence uk ¼

ðu0jk; . . . ; uN�1jkÞ and optimization variables l1k; . . . ; l
E
k that minimize the cost (13) and satisfy

xiþ1jk ¼ f ðxijkÞ þ gðxijkÞuijk; i ¼ 0; . . . ;N � 1 ð14aÞ

jjPV ðf ðx0jkÞ þ gðx0jkÞu0jkÞjj � jjPVx0jkjj4� jjQVx0jkjj ð14bÞ

jjPV ðf ðx0jkÞ þ gðx0jkÞu0jk þ weÞjj � jjPVx0jkjj þ jjQVx0jkjj � lek40; e ¼ 1; . . . ;E ð14cÞ

xijk 2 X; i ¼ 1; . . . ;N ð14dÞ

uijk 2 U; i ¼ 0; . . . ;N � 1 ð14eÞ

lek50; e ¼ 1; . . . ;E ð14fÞ

Step 2: Let PðxkÞ :¼ fu 2 fR
m
gN ju satisfies ð14Þg and let pðxkÞ :¼ fuð0Þ 2 Rm

ju 2 PðxkÞg: Select a
feasible sequence of inputs %uk :¼ ð%u0jk; %u1jk; . . . ; %uN�1jkÞ 2 PðxkÞ and apply the input %u0jk 2 pðxkÞ
to the perturbed system (3b), increment k by one and go to Step 1.

Remark 4.3
Algorithm 3.1 alone is beneficial as it focusses on performance and it also provides an ISS
guarantee. In Algorithm 4.2 we make a trade-off between robustness (suppressing disturbances
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adequately) via a small Zk on one hand and performance on the other. Besides enhancing
robustness, constraint (14c) also ensures that Algorithm 4.2 recovers performance if the state of
the closed-loop system approaches the origin. Roughly speaking, when x0jk � 0; Algorithm 4.2
will produce a control action u0jk � 0 (because of constraint (14b) and minimization of cost (13))
and constraint (14c) yields jjPVw

ejj � lek40; e ¼ 1; . . . ;E: Thus, Algorithm 4.2 will not minimize
each variable lek below the corresponding value jjPVw

ejj; e ¼ 1; . . . ;E; which is already implied
by (14b) (see proof of Theorem 3.2). Hence, Algorithm 4.2 approaches Algorithm 3.1 for small
x0jk: This property is desirable, since it is known from min–max MPC [1] that considering a
worst-case disturbance scenario in the MPC algorithm leads to poor performance when the
disturbance is small or vanishes in reality.

Remark 4.4
The additional feedback ISS constraints (14c) can still be specified via a finite number of linear
inequalities in the variables u0jk; l

1
k; . . . ; l

E
k and thus, for N ¼ 1; Algorithm 4.2 can be formulated

as a single linear program.

5. APPLICATION TO THE CONTROL OF DC–DC CONVERTERS

5.1. Buck-Boost DC–DC power converters

DC–DC converters are extensively used in power supplies for electronic equipment to
control the energy flow between two DC systems. Buck-Boost DC–DC converters are currently
used in a wide variety of relevant processes, including electric and hybrid vehicles, solar plants,
DC motor drives, switched-mode DC power supplies and many more [5]. In Figure 1 a
schematic representation of an ideal Buck-Boost circuit (i.e. neglecting the parasitic
components) is drawn.

The following discrete-time nonlinear-averaged model of the converter, which was developed
in [11], is used as prediction model:

xmkþ1 ¼

xm1;k þ
T

L
xm2;k �

T

L
ðxm2;k � VinÞu

m
k

�
T

C
xm1;k þ

T

C
xm1;ku

m
k þ 1�

T

RC

� �
xm2;k

2664
3775; k 2 Zþ ð15Þ

where xmk ¼ ½x
m
1;k xm2;k�

> 2 R2 and umk 2 R are the state and the input, respectively. The state xm1
represents the current flowing through the inductor (iL), x

m
2 represents the output voltage (vo)

+
–

+

vo

–C

ic

iL

L

ON /OF F
vin

R

Figure 1. A schematic view of a Buck-Boost converter.
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and um represents the duty cycle (i.e. the fraction of the sampling period during which the
transistor is kept ON). The sampling period is T ¼ 0:65 ms: The parameters of the circuit are
the inductance L ¼ 4:2 mH; the capacitance C ¼ 2200 mF; the load resistance R ¼ 165O and the
source input voltage vin; with nominal value Vin ¼ 15 V:

5.2. Control goal and MPC scheme set-up

The control objective is twofold: at start-up, a desired value of the output voltage, i.e. xss2 ; should
be reached as fast as possible and with minimum overshoot; after the output voltage reaches the
desired value, it must be kept close to the operating point, i.e. within a range of �3% around xss2
(the industrial operating margin for DC–DC converters) despite changes in the load R (within a
50% range around the nominal value) and disturbances. Note that for a desired output voltage
value xss2 one can obtain the steady-state duty cycle and inductor current as

uss ¼
xss2

xss2 � Vin
; xss1 ¼

xss2
Rðuss � 1Þ

ð16Þ

Furthermore, the following physical constraints must be fulfilled at all times k 2 Zþ:

xm1;k 2 ½0:01; 5�; xm2;k 2 ½�20; 0�; umk 2 ½0:1; 0:9� ð17Þ

To implement the NMPC algorithms, we first perform the following coordinate transformation
on (15):

x1;k ¼ xm1;k � xss1 ; x2;k ¼ xm2;k � xss2 ; uk ¼ umk � uss ð18Þ

We obtain the following system description:

xkþ1 ¼

x1;k þ ax2;k þ b�
T

L
x2;k

� �
uk

T

C
x1;k þ g

� �
uk þ 1�

T

RC

� �
x2;k þ dx1;k

26664
37775 ð19Þ

where the constants a; b; g and d depend on the fixed steady-state value xss2 as follows:

a ¼
T

L
1�

xss2
xss2 � Vin

� �
; b ¼

T

L
ðVin � xss2 Þ; g ¼

T

RCVin
xss2 ðx

ss
2 � VinÞ; d ¼

T

C

xss2
xss2 � Vin

� 1

� �
Using (16) and (18), the constraints given in (17) can be converted to

x1;k 2 ½
%
bx1 ; %bx1 �; x2;k 2 ½

%
bx2 ; %bx2 �; uk 2 ½

%
bu; %bu� ð20Þ

for suitable constants, see [7] for details.
The control objective can now be formulated as to robustly stabilize (19) around the

equilibrium ½0 0�> while fulfilling the constraints given in (20).
To apply Algorithm 3.1, we have to compute an1-norm-based artificial Lyapunov function.

We will use Lemma 3.4 and linearize system (19) around the equilibrium ½0 0�> (for zero input
uk ¼ 0 2 ½

%
bu; %bu�). The linearized equations are

Dxkþ1 ¼ ADxk þ BDuk ð21Þ
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where Dxk and Duk represent ‘small’ deviations from the equilibrium ½0 0�> and zero input
uk ¼ 0; respectively. The matrices A and B are given by

A :¼
@f

@x

����x¼0;
u¼0

¼

1 a

d 1�
T

RC

264
375; B :¼

@f

@u

����x¼0;
u¼0

¼
b

g

" #

For the linear model corresponding to a steady-state output voltage xss2 ¼ �4 V (which yields
uss ¼ 0:2105 and xss1 ¼ 0:0307 A), we apply the method of [10] to find the matrix PV and the
feedback gain K satisfying (8) for QV ¼ 0:001 1

0
0
1

� �
: This gives

PV ¼
0:9197 �0:6895

�0:5815 1:8109

" #
and K ¼ ½�0:4648 0:4125�

The MPC cost matrices have been chosen to ensure a good performance: P ¼ 1
0

0
4

� �
; Q ¼ 1

0
0
2

� �
and Ru ¼ 0:1; and independent of PV and QV :

To test robustness, during the simulation we perturb the system with an additive disturbance
on the inductor current and we perform a load change. The disturbance set is W :¼ fw 2
R2
jw ¼ ½w1 w2�

>; � 0:14w1;w240g: For simplicity, we kept the second element of the
disturbance vector equal to zero at all times and we employed a single feedback optimization
variable lk in Algorithm 4.2, corresponding to the vertex w ¼ ½�0:1 0�>: The corresponding
weight matrix was taken as Rl ¼ 1:

To assess the real-time applicability of the developed theory for this type of (very) fast systems
with a sampling period well below 1ms, we chose N ¼ 1 and we formulated the optimization
problems in Step 1 of Algorithm 3.1 and Algorithm 4.2 as linear programming (LP) problems,
via the approach of Section 3.2. The LP problem corresponding to Algorithm 3.1 has 3
optimization variables and 14 constraints, while the LP problem corresponding to Algorithm
4.2 has 5 optimization variables and 20 constraints. Here, we did not count the lower and upper
bounds on the optimization variables, which are given directly as arguments of the LP solver.

5.3. Simulation results

In one simulation, we first tested the start-up behaviour (see Figure 2) and then, after reaching
the desired operating point, we tested the disturbance rejection (see Figure 3).

Note that, although the simulations were performed for the transformed system (19), we
chose to plot all variables in the original coordinates corresponding to system (15), which have
more physical meaning.

During start-up, when no disturbance acts on the system and the value of the load remains
unchanged, the differences between the feedback ISS sub-optimal NMPC scheme and the
inherently ISS sub-optimal NMPC scheme are very small, as expected. Both schemes provide a
very good start-up response.

However, the difference in performance is significant in the second part of the simulation,
when the dynamics were simultaneously affected by an asymptotically decreasing (in norm)
additive disturbance of the form w ¼ ½w1 0�> (see Figure 4 for a plot of w1 versus time) and
a 50% drop of the load (i.e. R ¼ 82:5O) for k ¼ 80 ð0:052 sÞ; 81; . . . ; 120 ð0:078 sÞ: For
k > 120 ð0:078 sÞ the disturbance was set equal to zero and the load was set to its nominal
value (i.e. R ¼ 165O) to show that the closed-loop system is ISS, i.e. that the asymptotic
stability is recovered when the disturbance input vanishes.
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While the inherently ISS NMPC scheme does not manage to keep the output voltage
within the desired operating range, the feedback ISS NMPC scheme achieves very
good performance in spite of significant additive and parametric disturbances (changes in the
load R).

The smooth transition between activation=deactivation of the feedback to disturbances works
as explained in Remark 4.3 (see Figure 4 for a plot of lk). One can observe in Figure 4 that when
the state reaches the desired operating point, lk satisfies lk5jjPV ½�0:1 0�>jj ¼ 0:091:

5.4. Evaluation of the computation time

The LP problems for the sub-optimal NMPC optimization problems in Step 1 of Algorithm 3.1
and Algorithm 4.2 were always solvedz within the allowed sampling interval, with an worst-case
CPU time over 20 runs of 0.6314ms. In total, 4000 LPs were solved.

The good closed-loop performance obtained for N ¼ 1 and the small computational time
estimate is encouraging for further development of the real-time application of the presented
theory to control DC–DC power converters, especially using faster platforms, such as Digital
Signal Processors.
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Figure 2. Start-up: State trajectories and sub-optimal NMPC input histories for N ¼ 1}solid lines,
desired steady-state values and constraints}dotted lines.

zThe simulation platform was Matlab 7.0.4 (R14) (CDD Dual Simplex LP solver) running on a Linux Fedora Core 5
operating system powered by an Intel Pentium 4 with a 3.2GHz CPU.
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Figure 3. Disturbance rejection: State trajectories and sub-optimal NMPC input histories for N ¼ 1}so-
lid lines, desired steady-state values, constraints and industrial operating margins for DC–DC converters

(�3% of the desired output voltage)}dotted lines.
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6. CONCLUSIONS

A Lyapunov-based approach for designing computationally friendly sub-optimal NMPC
algorithms with an a priori ISS guarantee was presented. The input-to-state stabilization
constraints can be written as a finite number of linear inequalities for the class of input affine
nonlinear systems. To enhance robust performance, we developed a sub-optimal NMPC scheme
that optimizes online over the closed-loop ISS gain. This scheme incorporates feedback to
disturbances and results in a better trade-off between robustness and performance. The trade-off
varies with the distance to the setpoint: when the distance is large, more robustness is provided;
when the distance is small, the scheme ‘selects’ more performance. A case study on the control of
a Buck-Boost DC–DC power converter that includes preliminary real-time numerical data was
presented to illustrate the potential of the developed theory for real-time applications.
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