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In this study we investigated the pedagogical context of whole-class teaching with computer

simulations. We examined relations between the attitudes and learning goals of teachers and their

students regarding the use of simulations in whole-class teaching, and how teachers implement

these simulations in their teaching practices. We observed lessons presented by 24 physics

teachers in which they used computer simulations. Students completed questionnaires about the

lesson, and each teacher was interviewed afterwards. These three data sources captured

implementation by the teacher, and the learning goals and attitudes of students and their teachers

regarding teaching with computer simulations. For each teacher, we calculated an Inquiry-Cycle-

Score (ICS) based on the occurrence and order of the inquiry activities of predicting, observing and

explaining during teaching, and a Student-Response-Rate (SRR) reflecting the level of active

student participation. Statistical analyses revealed positive correlations between the inquiry-based

character of the teaching approach and students’ attitudes regarding its contribution to their

motivation and insight, a negative correlation between the SRR and the ICS, and a positive

correlation between teachers’ attitudes about inquiry-based teaching with computer simulations

and learning goal congruence between the teacher and his/her students. This means that active

student participation is likely to be lower when the instruction more closely resembles the inquiry

cycle, and that teachers with a positive attitude about inquiry-based teaching with computer

simulations realize the importance of learning goal congruence.
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1. Introduction

Computer simulations offer an excellent opportunity for conducting scientific

inquiry, allowing students to develop their scientific literacy (de Jong & van Joolingen,

1998; Rutten, van Joolingen, & van der Veen, 2012). However, this requires that the

computer simulations allow interaction with the learners that lets them use the simu-

lation as a source for genuine inquiry activities (van Joolingen, de Jong, & Dimitrako-

poulou, 2007). As a result, classroom use of computer simulations often does not go

beyond the level of illustration (Windschitl, 2000). However, teachers’ use of compu-

ter simulations could provide an opportunity to stimulate their students to express

their ideas about a given domain or speculate on how to solve a problem (Smetana

& Bell, 2013). This might clarify students’ ideas and misconceptions for the

teacher. Supplementing classroom use of computer simulations with a teacher-led dis-

cussion allows for guiding the learners’ attention to important aspects of the research

process and connecting the different stages of inquiry learning (Gelbart, Brill, &

Yarden, 2009). However, what appears to have been sparsely researched is the most

effective classroom use of computer simulations (Adams, Paulson, & Wieman,

2008), how the learning processes can be mediated by the teacher (Hennessy,

2006), and how to integrate computer simulations into a physics curriculum

(Zacharia & Anderson, 2003). Moreover, much research on educational technology

seems to be based on the assumption that its use takes place in isolation from other

activities: in the absence of a teacher’s guidance, and detached from curriculum

and assessment structures (Hennessy, 2006).

Salinas (2008) provided a model that explains the added value new technologies

can have when used instructionally. This model proposes connections between the

learners’ needs, the levels of Bloom’s Taxonomy, the role of the instructor, and the

appropriate technology to be used. Simulations can provide a suitable technology

that can support the level of interaction needed for inquiry learning, but they

would need to be augmented with appropriate instruction or pedagogy. In such a

pedagogy, implementation of interactive activities can change the teacher’s role

from being a mere transmitter of information to becoming a facilitator of higher-

order thinking skills (Gokhale, 1996). Teaching and learning in the whole-class

setting can also be in line with a social-constructivist learning perspective, because

whole-class use of simulations promotes more socially mediated classroom inter-

actions (Smetana & Bell, 2013). While the central idea in constructivism is that

understanding is constructed in one’s own mind through ‘learning by doing’, the

focus in social constructivism is more on creating knowledge in a group setting by

knowledge sharing and distribution (Dori & Belcher, 2005). Inquiry-based whole-

class teaching can support constructivist-based learning processes such as active

and collaborative construction of knowledge, and connecting learning to students’

prior knowledge and their present environment (Walker, 2007).

Clear learning goals are crucial for effective teaching (Marzano, 1998). According

to Hmelo-Silver, Duncan, and Chinn (2007), it is important to prevent inquiry learn-

ing from resulting in a shift away from teaching a discipline as a body of knowledge:

1226 N. Rutten et al.
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both the processes and content of learning require adequate consideration. Combin-

ing the inquiry approach with concrete goals related to learning content means that

the environment in which learning takes place resembles the context in which it is

likely to be used. Salinas argued that his model facilitates the choice of appropriate

technologies for achieving learning goals. However, as Salinas also argued, one of

the main obstacles to the implementation of his model is that the teacher needs to

adapt his/her role appropriately: the learning goals that are associated with higher

levels of Bloom’s Taxonomy call for the teacher to take on a role that is less directive

and more supportive. In many current learning approaches for technology-supported

instruction, insufficient attention is given to the role that the teacher should fulfill

(Urhahne, Schanze, Bell, Mansfield, & Holmes, 2010). According to Salinas

(2008), educators do not have an adequate understanding of what pedagogical prin-

ciples should underlie the incorporation of such new technologies.

Teachers influence how students learn by varying the types of questions they ask.

King (1990, 1992) distinguished recall questions and critical thinking questions,

where recall questions require students to recall information that was presented

earlier, and critical thinking questions require them to analyze, apply, and evaluate

it. Creemers and Kyriakides (2006) made a related distinction between product ques-

tions and process questions, where product questions expect merely a single response

from a student, while process questions expect students to explain their answer as

well. Effective teachers not only pose many questions to their students to involve

them in discussion; they also ask relatively many process questions (Creemers &

Kyriakides, 2006).

When investigating teachers’ questioning in teaching, it is informative not only to

look at how often certain types of questions are posed, but also to determine how

these questions are sequenced and followed up. A possible question sequence in the

context of inquiry learning with computer simulations is: predict, observe, explain

(Hennessy et al., 2007). When students merely observe a computer simulation as a

whole class and subsequently listen to the explanation by the teacher, the learning

situation is comparable to a traditional demonstration (Crouch, Fagen, Callan, &

Mazur, 2004). Students’ ability to predict outcomes does not appear to depend

greatly on whether they have observed a demonstration or not. What appears to

have greater impact on that ability is whether students were asked to predict the out-

comes before observing and whether they had the opportunity to discuss the out-

comes after observing, but before the teacher’s explanation. Considering the

learning profits this yields, the extra time needed for predicting and discussing

seems more than worth it (Crouch, Watkins, Fagen, & Mazur, 2007). The value of

prediction questions may lie in stressing what is important, and in the construction

of a mental framework needed for exploring a phenomenon. Without such a frame-

work, the level of detail in a situation can be too high for a student to remember rel-

evant scientific ideas (Adams et al., 2008).

In the research literature, there is no general agreement on how inquiry learning

should be defined; several conceptualizations exist, each emphasizing different

aspects. Generally, the inquiry process starts with asking questions and generating

Inquiry-Based Whole-Class Teaching 1227
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hypotheses, continues with processes of investigation, and ends with conclusion and

evaluation (Bell, Urhahne, Schanze, & Ploetzner, 2010). Making predictions involves

reformulating a hypothesized relation between variables in such a way that it becomes

clear how a change in an independent variable influences a dependent variable, for

example, by using an ‘if-then’ statement (de Jong & van Joolingen, 1998). In this

study, we consider the occurrence of phases of the predict-observe-explain cycle

(P-O-E) in instruction as an indication of following the inquiry approach, as P-O-E

was observed to be an important principle in the majority of inquiry approaches by

Bell and colleagues (2010). However, we acknowledge that conceptualizing

inquiry-based instruction as resemblance to P-O-E means that there is no attention

to other aspects that a number of inquiry models emphasize, for example: planning,

modeling, and communicating results to others.

Along with the goals of learning about science subjects and about how science

works, use of an inquiry approach aims to counter students’ decreasing interest

and engagement in science. The level of engagement involved in inquiry learning

can positively influence students’ science-related attitudes (Osborne & Dillon,

2008; Rocard, 2007). Attitude toward a given instructional medium and instruc-

tional approach is an important factor influencing learning (Pyatt & Sims, 2012;

Trundle & Bell, 2010). An attitude is a tendency to evaluate an object in terms

of favorable or unfavorable attribute dimensions (Ajzen, 2001), which distinguishes

attitudes from beliefs or opinions (van Aalderen-Smeets, Walma van der Molen, &

Asma, 2012). In turn, teaching with computer simulations can positively impact

attitudes toward learning (Khan, 2011; Vogel et al., 2006; Zacharia & Anderson,

2003).

The purpose of the present study was to investigate relations between teachers’

use of computer simulations in whole-class teaching, and teachers’ and students’

attitudes and learning goals regarding such use of computer simulations. We

observed physics teachers, all teaching one lesson using one or more computer simu-

lations. Salinas (2008) argued that if teachers do succeed at appropriately tailoring

their role to introduced technology such as simulations, this allows for the emer-

gence of a ‘new learning environment’: one that is characterized not only by differ-

ent roles for the teacher and students, but also by higher student motivation and

improved learning outcomes. We wanted to know whether such presumed relations

can be revealed by investigating the inquiry-based character of teacher implemen-

tations, and the learning goals and attitudes of students and their teachers related to

teaching with computer simulations. With regard to learning goals, we focused on

congruence between teacher and student learning goals, as this is an important

aspect of the learning process. Learning can be disrupted by a lack of congruence

between students’ self-regulation and teachers’ external regulation of learning pro-

cesses (Vermunt & Verloop, 1999). Because our research approach of incorporating

multiple teachers’ inquiry-based, simulation-supported teaching practices as well as

considering contextual factors is unprecedented, we believe our study contributes to

the existing research literature.

1228 N. Rutten et al.
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2. Method

We focused our study on physics lessons conducted in Dutch secondary education. A

physics lesson was eligible for observation when a physics teacher planned to use at

least one computer simulation during whole-class interaction with the students.

Arrangements for one lesson observation and subsequent teacher interview were

made on the teachers’ initiative. The participating teachers mostly taught with simu-

lations from the PhET simulations suite available online (2014). Sometimes the tea-

chers used simulations from other websites, but in all cases these represented a physics

phenomenon in simplified form, and allowed for interactivity with the underlying

model by the possibility of influencing several variables (de Jong & van Joolingen,

1998). Although each simulation has its own peculiarities, we considered those in

this study as physics simulations in general, because our focus was not on the specific

characteristics of simulations themselves, but on the teachers using these according to

the P-O-E principle. The teachers mostly used simulations on mechanics, electricity,

or wave phenomena.

2.1. Participants

The participants in the study were 24 Dutch secondary education physics teachers

and the students in their classes. Most of the teachers were male (3 female, 21

male). Their ages ranged from 23 to 59 (M ¼ 39.4; SD ¼ 8.97), and their years of

experience from 1 to 35 (M ¼ 11.0; SD ¼ 9.82). The classes consisted of 7 to 27 stu-

dents (M ¼ 20.9; SD ¼ 4.55). In total, 501 students completed the study. The stu-

dents’ ages ranged from 12 to 19 (M ¼ 15.9; SD ¼ 1.40). The teachers were

recruited by direct mailings, calls on online groups, professional newsletters, and at

a professional physics education conference. As our recruitment was most successful

at this conference, participating teachers probably have a higher than average interest

in didactic development. Schools were distributed across the Netherlands.

2.2. Data Sources

To investigate relations among teachers’ and students’ attitudes and learning goals, and

the implementation of the computer simulation in class, we collected data from teacher

interviews, lesson observations, and student questionnaires. To prevent the interviews

from influencing what was done during class, lesson observations always preceded the

interviews. The teacher used at least one computer simulation during the observed

lesson; the teacher and the students were video recorded; the students completed

questionnaires during the last 15 minutes of the lesson; and after the lesson, the

teacher was interviewed for about half an hour.

2.2.1. Lesson observations. During the lesson, the researcher was positioned at the

back of the classroom with two cameras, filming how the teacher conducted the

lesson. At the front of the classroom, two cameras recorded students’ participation

Inquiry-Based Whole-Class Teaching 1229
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in the lesson. Recording began the moment the students entered the classroom and

stopped when they started completing their questionnaires at the end of the lesson.

2.2.2. Questionnaires. Students were given questionnaires at the end of the lesson.

Our questionnaire is based on four questionnaires (Apperson, Laws, & Scepansky,

2006; Davies, 2002; Maor & Fraser, 2005; Mucherah, 2003) that inquire about

topics related to using computer simulations and the experiences of students and tea-

chers. We selected questions from these questionnaires that are related to the teacher

role, to control over the lesson discourse, and to engagement in the lesson. The ques-

tionnaires consisted of 27 items that could be answered on a 5-point Likert scale, and

one open-ended question asking about what they considered were the three most

important things to be learned during that lesson. This open question was also

posed to the teacher. The purpose of this question was to determine learning goal

congruence.

2.2.3. Teacher interviews. After the observation of a physics lesson and students’

completion of the questionnaires, the teacher was interviewed. This semi-structured

interview took about 30 minutes. To allow for full transcription afterwards, the inter-

view was audio recorded. Along with several demographic questions, the interview

consisted of 12 questions about teaching with computer simulations in a whole-

class setting.

2.3. Data Analysis

2.3.1. Lesson observations. We analyzed the lesson observations to find out whether

the teaching approach resembled inquiry-based teaching. Table 1 shows the scheme

that we used to code the questions asked by the teacher. Any episode during which

the teacher addressed the whole class was eligible for coding.

All transcribed lesson observations were coded by the first author. Six of the tran-

scripts were double-coded by the second author and a student assistant. Because we

worked with three coders, we determined inter-rater reliability using Krippendorff’s

alpha. We calculated the reliability of our approach for coding the teacher questions

in three ways: our ability to discriminate between actual physics content questions

(recall, prediction, observation, and explanation) and other questions; our ability to dis-

criminate who answered questions (answered by the teacher, answered by the student,

and other); and our ability to discriminate between the different kinds of questions

(recall, prediction, observation, explanation, and other).

Our purpose in analyzing the observed lessons was to determine the extent to which

the teaching approach seen resembles inquiry-based teaching. Two aspects of the ped-

agogical approach that we consider to be essential for inquiry-based teaching are

active student participation and resemblance to the inquiry cycle. For each lesson

observation we calculated two scores providing an indication of these aspects: a

Student-Response-Rate (SRR) and an Inquiry-Cycle-Score (ICS). We calculated these

1230 N. Rutten et al.
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scores when the teacher asked at least three physics content questions. Active student

participation (SRR) relates to the percentage of physics-related teacher questions that

are answered by the students: [100 ∗ N teacher questions answered by student/(N teacher

questions answered by teacher + N teacher questions answered by student)]. We determined

resemblance of the teaching approach to the inquiry cycle (ICS) by making an inven-

tory of the extent to which the cycle of P-O-E was followed during the lesson. The

phases of this P-O-E cycle relate respectively to the inquiry cycle phases of ‘stating

a hypothesis’, ‘performing an experiment’, and ‘drawing conclusions’, and conse-

quently do not cover the phase of ‘orientation’. Hennessy et al. (2007) argue that

this P-O-E cycle is one of the pedagogical principles on which research on the use

of ICT in science has been based.

We assigned scores to sequences of coded questions by application of the following

hierarchical scoring system: weight of the sequence explanation ¼ 1; weight of obser-

vation-explanation ¼ 2; weight of prediction ¼ 3; weight of prediction-observation ¼ 4;

weight of prediction-explanation ¼ 5; weight of prediction-observation-explanation ¼ 6.

This scoring system is based on the following rationale: without the phase of prediction,

inquiry-based teaching is out of the question; observation can be considered as learn-

ing at a lower level of Bloom’s Taxonomy compared to prediction and explanation; but

observation does make an inquiry cycle more complete compared to a cycle in which

Table 1. Coding scheme for lesson observations

Codes Application Examples

Teacher questions that are related to physics

What kind of

question is it?

Recall Questions that students should be able to

answer with the knowledge they already

have

‘In what unit is this

variable measured?’

Prediction Students are asked to predict how a

phenomenon will develop further before

this has actually happened

‘What happens if that

variable is doubled?’

Observation The teacher inquires about what students

are observing at that moment

‘And what do you see

right now?’

Explanation Students are asked to explain why a

phenomenon has developed in a certain

way

‘Now how do you

explain this result?’

Who answers

the question?

Teacher The teacher’s question is answered by the teacher himself/herself

Student The teacher’s question is answered by a student

Teacher questions that are not related to physics or fall within the categories below

What kind of

question is it?

Other Students are personally addressed ‘Alison?’

Student answers are repeated back in the

form of a question

‘You’re saying a lower

frequency?’

The teacher checks whether subject-

matter is understood

‘Is that clear?’

The learning process is regulated ‘What have we seen

today?’

Inquiry-Based Whole-Class Teaching 1231
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explicit observation is lacking. For the determination of these sequences the recall and

other questions are ignored, and sequences of similar questions are combined, such as

an observation followed by an observation. Sequences only count when they are not

overlapped by a sequence of higher weight. For example, the sequence P-P-P-O-E-

E does not count as separate sequences of P, P-O, O-E, or E, as these are all over-

lapped by one P-O-E sequence.

2.3.2. Questionnaires. At the end of each lesson the students completed question-

naires. These questionnaires consisted of 27 items on a 5-point Likert scale, and

one open-ended question. We performed exploratory factor analysis to analyze the

responses to the items.

The open-ended question asked students what they considered were the three most

important things to be learned during that lesson. Each class’s teacher also answered

this question. The purpose of this open question was to investigate learning goal con-

gruence between the teacher and his/her students during the specific lesson. To

measure learning goal congruence we used cosine similarity (Manning & Schütze,

1999). In computing cosine similarity, word frequencies in two texts are represented

by vectors in a high-dimensional space. The cosine of the angle between these vectors

is taken as a measure for similarity, yielding a number between 0 (no similarity at all)

and 1 (perfect similarity). We computed both the congruence of learning goals within

the group of students themselves, and the congruence between the learning goals of

students with those of their teacher. We refer to these kinds of congruence as: learning

goal congruence group and learning goal congruence teacher. In computing cosine

similarity we converted the answers given by the students and teachers by taking

the following steps: we retained only the nouns in the student and teacher responses

(e.g. ‘interference’); we replaced synonyms, plurals, and diminutives by their syno-

nyms (e.g. ‘waves’ by ‘wave’); and we removed capitalization, special punctuation,

and multiple instances of the same word in one answer (e.g. replacing ‘Lorentz

force’ by ‘lorentz force’). We removed students with an empty answer sequence

before calculating the mean learning goal congruence group over an entire class,

because retaining empty answer sequences would otherwise inflate congruence

scores. There were no teachers with an empty answer sequence.

2.3.3. Teacher interviews. Teacher utterances were eligible for coding when an

utterance reflected the teacher’s thoughts on the effects of whole-class teaching and

learning with computer simulations. Utterances about the effects of teaching with

computer simulations were divided into those attributing positive effects (e.g. ‘A

simulation can easily be included to make your point’), those attributing negative

effects (e.g. ‘You do have the risk of not showing the setups anymore’), and those

stating that it does not make a difference compared to other educational means

(e.g. ‘I can’t say that grades increased because of using these things’). After having

inventoried these utterances in all of the interviews, we considered the extent to

which these views on the effects of computer simulations on teaching and learning

1232 N. Rutten et al.
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could be further specified according to more specific codes. In determining these

codes we attempted to maintain a balance between conceptual delineation of differing

themes and grouping together of conceptually related themes. This resulted in a

coding scheme with 10 negative-effect codes, 1 neutral code, and 23 positive-effect

codes (see our Supplemental Material accompanying the online version of this

article).

An example will clarify how the coding process functioned in practice. Consider the

following teacher statement: ‘By using computer simulations, I can quickly show some-

thing on my interactive whiteboard, and by influencing variables the students directly

notice what happens’. This statement was chunked and coded as follows: [By using

computer simulations, I can quickly show something on my interactive whiteboard]

¼ positive effect, and [by influencing variables the students directly notice what

happens] ¼ positive effect. Application of our coding scheme linked these statements

to the following codes: [By using computer simulations, I can quickly show something

on my interactive whiteboard] ¼ positive—time saving, and [by influencing variables the

students directly notice what happens] ¼ positive—direct feedback. As we are interested

in inquiry-based teaching with computer simulations, the codes most related to this

concept were aggregated into one measure, which we refer to as: N inquiry utterances.

We selected the codes for this aggregated measure by determining whether a code refers

to affordances that support inquiry activities.

2.4. Relating Pedagogical Aspects

We assume that students will have a more positive attitude toward teaching with com-

puter simulations when the teacher successfully adapts technology implementation

and teaching approach to each other. Another assumption is that the impression

one gets by interviewing a teacher about his/her attitude toward teaching with compu-

ter simulations to a certain extent resembles what a teacher actually does during a

lesson observation. Our third assumption is related to the important role the

teacher plays in aligning the use of computer simulations to learning goals

(Smetana & Bell, 2012). We assume that when a teacher succeeds at such congruence,

this will be reflected in positive attitudes expressed by the teachers and their students

about teaching with computer simulations. In short, we expect that what a teacher

does during implementation will be related to the learning goals and attitudes of

the teachers and their students. To investigate whether this is supported by our

data, we relate the types of data to each other by calculating correlations.

3. Results

3.1. Lesson Observations

Calculations of the inter-rater reliability of our approach for coding the teacher

questions revealed that our ability to discriminate between actual physics content

questions and other questions is .79 (95%CI: .65–.90), between by whom

Inquiry-Based Whole-Class Teaching 1233
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questions are answered is .75 (95%CI: .66–.83), and between the different kinds of

questions is .61 (95%CI: .55–.66). According to the criteria proposed by Strijbos

and Stahl (2007) and Strijbos (2009), these reliability results can respectively be inter-

preted as: excellent, excellent, and good. Initially, our data set consisted of 25 lesson

observations and interviews of teachers. Retaining only those observations with three

or more physics content questions resulted in the removal of one teacher from the data

set.

Table 2 provides an overview of inquiry-based question sequences in each of the

observed lessons. Two scores reflect each lesson’s active student participation

(SRR) and the extent to which the inquiry-cycle is evident (ICS).

3.2. Questionnaires

We analyzed the students’ answers to the 27 questionnaire items by performing

exploratory factor analysis based on Alpha factoring with an Oblimin with Kaiser Nor-

malization rotation method. This method of oblique rotation was chosen because we

expected the factors to be related. The correlation matrix revealed that there are no

variables that correlate too highly with other variables (R . .8), which would have

been an indication of multicollinearity. The KMO-measure of sampling adequacy is

Table 2. Teacher questions

aEach code refers to a type of teacher question abbreviated as follows: r ¼ recall, P ¼ prediction, O

¼ observation, and E ¼ explanation. Questions in bold refer to teacher questions answered by a

student; teacher questions that are not bold are answered by the teacher him-/herself. A darker shade

of gray represents higher resemblance to the inquiry cycle.
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Table 3. Pattern matrix for the exploratory factor analysis

Factor 1 2 3 4 5 6 7

I pay more attention during the

lesson when computer

simulations are used. (∗Mu)

.688

The use of a computer simulation

makes it easier to stay focused on

the lesson. (∗Ap)

.599

I like physics better when

computer simulations are used.

(∗Mu)

.596 .322

The use of computer simulations

supports my learning during the

lesson. (∗Ap)

.475

It’s fun when computer

simulations are used in teaching.

(∗Da)

.472 .361

Using computer simulations

helps me to improve my

knowledge of physics. (∗Mu)

.431 2.272

I was always able to predict the

course of the simulation. (∗Da)

.606

There is a clear link between the

simulation used and the subject

of the lesson. (∗Da)

.453 .291

I know what I have to remember

from this simulation. (∗Mu)

.373

Our teacher encourages us to

express our opinions. (∗Mu)

2.549

I feel free enough to express my

opinions during discussions.

(∗Mu)

2.479

–/– (Class discussions are

inhibited by the use of computer

simulations.) (∗Ap)

.433

Computer simulations clarify

complex matters. (∗Ma)

.284 .306 2.294

Our teacher uses computer

simulations to clarify a subject to

the class. (∗Mu)

.217

I also use computer simulations

outside formal class times. (∗Da)

Computer simulations make me

realize how complex reality really

is. (∗Ma)

2.601

Using computer simulations

helps me to better understand the

subject. (∗Da)

.345 2.454

(Continued)
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.906, which is very good (Kaiser, 1974). The significant result of Bartlett’s test of spheri-

city (x2(351) ¼ 375.29; p , .001) indicates that the correlation matrix is appropriate

for factor analysis. The data screening did not result in the exclusion of variables.

Because a clear point of inflexion in the curve could be discerned in the scree plot,

we chose to extract seven factors (Field, 2009) (see Table 3), which together

explain 4.0% of the total variance.

To measure reliability we calculated Cronbach’s alpha for each factor (see Table 3).

As Cronbach’s alpha should be at least .7, the scales for factors 2, 3, 4, and 6 are not

used for further analyses. The internal consistency of factor 1 is good, and for factors 5

Table 3. Continued

Factor 1 2 3 4 5 6 7

By using the simulation I learned

how reality works. (∗Da)

2.414

Computer simulations help me to

wonder about new things. (∗Ma)

2.388 .317

The use of computer simulations

helps with getting better grades.

(∗Ap)

2.308

There is enough time to discuss

with each other during the

simulation. (∗Da)

.753

During the simulation I have

enough time to think by myself

what will happen. (∗Ma)

.520

The use of computer simulations

increases my interest in the

subject of the lesson. (∗Ap)

.316 .524

When a computer simulation is

used, I get new ideas. (∗Ma)

2.302 .412

Using a computer simulation

makes me think about the

subject. (∗Ma)

2.311 .406

Computer simulations should be

used more often in other subjects.

(∗Da)

.214 .381

The use of computer simulations

can really get class discussions

going. (∗Ap)

2.342 .375

Cronbach’s alpha of the

questions with factor loadings in

bold

.824∗∗ .541 .425 .300 .724∗∗ .594 .719∗∗

Notes: Factor loadings , |.2| are suppressed; extraction method: alpha factoring; rotation method:

Oblimin with Kaiser normalization; ∗Ap ¼ Apperson, Laws, and Scepansky (2006); ∗Da ¼ Davies

(2002); ∗Ma ¼Maor and Fraser (2005); ∗Mu ¼Mucherah (2003); ∗∗labels for factors with

Cronbach’s alpha . .7: factor 1 ¼ motivation; factor 5 ¼ –/– (insight); factor 7 ¼ inspiration.
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and 7 acceptable (Field, 2009). We conceptually labeled factor 1 as representing

motivation, as it combines items on supporting attention, enjoyment, and learning.

Factor 5 combines items on realizing complexity, support of learning, and wonder-

ment and is therefore related to insight. However, as all related items load negatively

on the factor, we use the negative of the score of factor 5 as representing insight.

Finally, factor 7 represents inspiration, as items on supporting interest, creative think-

ing, and the learning process load high on this factor. Table 3 shows additional factor

details and the items that are related to each factor.

Table 4 shows the means of the learning goal congruence for each class. The

measure M learning goal congruence group does not take into account what the

teacher answered regarding the three most important things to be learned during

that lesson. This measure only compares the students’ answers with each other.

The measure M learning goal congruence teacher compares the students’ answers

with the answers of their teachers.

3.3. Teacher Interviews

Our Supplemental Material accompanying the online version of this article shows a

complete inventory of the results of coding the teacher interviews, from both quanti-

tative and qualitative perspectives. It provides insight into what kind of teacher utter-

ances the specific codes represent. The selection of codes that we report on in Table 4

specifically refer to the affordances of computer simulations for supporting inquiry-

based teaching: adjustable variables, direct feedback, illustration/visualization, supporting

predictions, visualization of invisible phenomena. We aggregated these codes into one

measure: N inquiry utterances.

3.4. Relating Pedagogical Aspects

To allow for calculation of correlations between variables, these variables need to be

measured at the same level (i.e. at the class or student level). All questionnaire vari-

ables are measured at the student level, and all variables based on the lesson obser-

vations and teacher interviews are measured at the class level. We therefore

converted the questionnaire variables to the class measurement level by calculating

the means per class for each variable. Table 5 shows a correlation matrix for all vari-

ables at the class measurement level.

We were primarily interested in significant correlations between variables derived

from different data sources. Our findings in Table 5 show that there are three

correlations that meet this criterion: the SRR significantly correlates with M factor

motivation (r ¼ .43, p (2-tailed) , .05), the ICS significantly correlates with M factor

insight (r ¼ .50, p (2-tailed) , .05), and N inquiry utterances significantly correlates

with M learning goal congruence teacher (r ¼ .55, p (2-tailed) , .01). Another note-

worthy correlation between variables belonging to the same data source is the significant

negative correlation between the SRR and the ICS (r ¼ 2.45, p (2-tailed) , .05). The

outcome variables in Table 5 do not correlate with teachers’ years of experience. There
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Table 4. Learning goal congruence and frequencies of coded teacher utterances

Teacher∗

Teacher Q N O R E I H S B K V W F M C A G X D T L P J U

M learning goal congruence Group∗∗ .42 .52 .66 .49 .58 .50 .59 .66 .32 .26 .38 .44 .61 .57 .51 .43 .46 .41 .67 .38 .72 .40 .69 .58

Teacher∗∗∗ .20 .00 .00 .17 .16 .06 .25 .19 .05 .05 .09 .12 .22 .24 .11 .07 .14 .05 .41 .07 .19 .16 .32 .40

Frequencies of coded teacher utterances relating to inquiry-based whole-class teaching with computer simulations Totals

Adjustable variables 1 1 0 1 0 0 0 2 1 1 5 1 3 3 5 1 2 3 0 1 1 4 9 9 54

Direct feedback 0 0 0 0 0 2 0 0 1 0 0 0 0 1 0 1 2 1 1 0 1 0 4 1 15

Illustration/visualization 0 1 3 2 5 1 5 4 2 3 2 7 4 6 5 6 3 3 7 10 10 9 5 5 108

Supporting predictions 0 0 0 2 0 2 0 0 2 1 0 1 0 0 1 1 4 3 0 0 0 0 2 2 21

Visualization of invisible phenomena 0 0 0 0 0 0 0 0 1 3 1 0 3 0 0 2 0 1 3 0 0 0 0 7 21

totals (¼N inquiry utterances) 1 2 3 5 5 5 5 6 7 8 8 9 10 10 11 11 11 11 11 11 12 13 20 24 219

Notes: ∗Teachers are ordered according to total coded teacher utterances relating to inquiry-based whole-class teaching with computer simulations; ∗∗M learning goal

congruence of students with each other; ∗∗∗M learning goal congruence of students with their teacher.
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Table 5. Pearson correlations

Data source Variable SRR ICS

M factor

motivation

M factor

insight

M factor

inspiration

M learning goal

congruence

group

M learning goal

congruence

teacher

N inquiry

utterances

Lesson

observations

SRR 1

ICS 2.45∗ 1

Questionnaires M factor

motivation

.43∗ .32 1

M factor insight .14 .50∗ .70∗∗ 1

M factor

inspiration

.22 .00 .62∗∗ .55∗∗ 1

M learning goal

congruence

group

2.21 .24 .07 .15 2.18 1

M learning goal

congruence

teacher

2.22 .11 .06 2.02 2.07 .55∗∗ 1

Teacher

interviews

N inquiry

utterances

2.27 .05 2.03 .04 2.11 .17 .55∗∗ 1

Note: Significant correlations between variables from different data sources are printed in bold; N ¼ 24.

∗p , .05 (2-tailed).

∗∗p , .01 (2-tailed).
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is a significant negative correlation between class size and M factor motivation (r ¼

2.47, p (2-tailed) , .05). Class size does not correlate with the SRR.

4. Limitations

When coding the questions posed by the teacher, we determined the type of each ques-

tion (i.e. recall, prediction, observation, explanation, or other), by whom it was answered,

and the sequences in which these questions were structured (i.e. the extent to which

they approached the inquiry cycle). In the data analysis process the questions were

coded, the sequences in which these are structured were weighted, and eventually

two scores were calculated for each lesson. We acknowledge that in this process the

information regarding what the questions were actually about was lost. Therefore, it

is possible that a sequence that we consider P-O-E could, for example, span different

conceptual domains, because of a switch to a different topic between an observation

question and an explanation question. In this study, we chose to focus on the typologi-

cal level to prevent the introduction of an extra source of subjectivity, which would

result from additional coding on a conceptual level.

The system we used to assign weights to different sequences of questions is based on

the assumption that the most preferable teaching approach follows the complete cycle

of prediction-observation-explanation. However, as Chen (2010) argues, portraying

inquiry learning as a deductive relationship between the tested hypothesis and evidence

runs the risk of conveying an oversimplified view of scientific inquiry. Preferably, the

tested hypothesis, evidence, and associated experimental conditions are inspected as

a whole, supporting epistemological authenticity. This means that there is no fixed

order in which inquiry learning activities necessarily take place: one inquiry learning

activity is not automatically followed by another. In authentic inquiry learning, each

learning activity is followed by determining what other learning activity is most appro-

priate to execute next. Our system of weighing sequences is suitable for measuring the

extent to which the P-O-E cycle is approached, but capturing this epistemological auth-

enticity on a higher level requires searching for alternative data analysis approaches.

The epistemological authenticity of measuring scientific inquiry could also benefit

from going beyond the aspects of predict, observe, and explain, for example, by including

processes such as planning, modeling, and communicating results to others.

The factor analysis we performed on the answers to the questionnaires resulted in

three reliable factors: motivation, insight, and inspiration. However, these constructs are

based on a relatively small number of items (6, 5, and 5, respectively). Performing

follow-up studies with questionnaires that are specifically developed for measuring

these constructs would do more justice to their multi-faceted nature.

5. Discussion and Conclusions

We used an open-ended question to inquire about what students and their teachers

considered to be the three most important things to learn during the lesson. By calcu-

lating the cosine similarity between the answers of the students and their teachers, we
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wanted to find out whether there was learning goal congruence. We believe that it

makes sense to expect that when answering the question about the three most impor-

tant things to learn, students will think more about the concrete lesson they have just

received, and teachers will answer it by taking more of a bird-eye’s view on the goals of

the curriculum. If so, then that would lead to higher learning goal congruence

between the students themselves, compared to the congruence between students

and their teacher. Table 4 does show that the scores on M learning goal congruence

group are structurally higher compared to the scores on M learning goal congruence

teacher, but this does not mean this bird-eye’s view assumption is correct, as the learn-

ing goal congruence scores for group and teacher are calculated in slightly different

ways, making it impossible to compare them. Nevertheless, these two measures sig-

nificantly correlate with each other (r ¼ .55, p (2-tailed) , .01), which is an interest-

ing finding in itself: apparently, our approach to calculating learning goal congruence

among the students provides a good indication of congruence between the learning

goals of the students and their teacher.

Reviews of the literature on the learning effects of computer simulations (Rutten

et al., 2012; Smetana & Bell, 2012) found that most research of the past decade

focused on individuals or small groups interacting with simulations. Very few

studies reviewed considered the role of a teacher in a whole-class setting. Whereas

the studies we reviewed provide information that is relevant to the design and learning

effects of simulations, they lack ecological validity in the sense that they do not include

the classroom dynamics in realistic teaching situations. The present study aims at

filling this gap by relating the attitudes and learning goals of teachers and their stu-

dents with what teachers actually do while teaching with computer simulations,

using multiple data sources. We ‘zoomed out’ to the context of teaching practices

and found four relations between pedagogical aspects related to inquiry-based teach-

ing with computer simulations:

(1) Active student participation during implementation of computer simulations in

teaching relates to students’ positive attitude about its contribution to their

motivation.

(2) Implementation of computer simulations in teaching that resembles the inquiry

cycle relates to students’ positive attitude about its contribution to their insight.

(3) Active student participation during implementation of computer simulations in

teaching relates to low resemblance to the inquiry cycle, and vice versa.

(4) Learning goal congruence between a teacher and his/her students relates to

the teacher’s positive attitude about inquiry-based teaching with computer

simulations.

The number of students in the class negatively relates to students’ attitudes about

the motivational contribution of teaching with computer simulations. However, we

did not find a correlation between class size and active student participation (SRR).

Apparently, students in large classes are less convinced that teaching with computer

simulations contributes to their motivation. When class size and active student
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participation are indeed unrelated, giving extra attention in large classes to providing

students with the opportunity to answer teacher questions themselves could be a way

to counter the negative impact of class size on students’ attitude about the motiva-

tional contribution of teaching with simulations.

In the present study we did not experimentally manipulate teaching practices. Con-

sequently, we cannot make claims about causal relations. However, the approach

taken in this study allowed us to observe teachers while they enacted their preferred

way of teaching, unconstrained by imposed experimental conditions on teaching prac-

tices. During the lessons observed for the present study, the teachers were free in their

choice of computer simulations and in their approach to teaching with them, supply-

ing ecological validity. Our study shows that simply observing teaching practices sup-

ported by computer simulations without experimentally manipulating them allows

interesting relations between pedagogical aspects to surface. Nevertheless, it

remains interesting and necessary to investigate whether intervening in simulation-

based teaching will expose similar relations.

Students have a more positive attitude to teaching with computer simulations in

terms of contributions to their motivation and insight when the teaching approach

has an inquiry-based character. An explanation based on Salinas’ framework

(2008) is that apparently in such a case the teacher’s role is successfully tailored to

the introduced technology, as inquiry-based teaching implies more active student par-

ticipation. According to the framework, such a teaching approach precisely suits the

affordances of computer simulations for optimally supporting the achievement of

learning goals. However, our results show that teachers implement computer simu-

lations generally by having their teaching approach resemble the inquiry cycle or by

having their students participate more actively, but rarely by incorporating both

aspects of inquiry-based teaching. Apparently, it is rather difficult to combine teach-

ing according to the inquiry cycle with a shift of control to the students by having them

answer the questions posed by the teacher. This combination seems hard, compared

to having students answer questions without an inquiry-related character, for

example, recall questions. The relations that we found between aspects of simu-

lation-supported inquiry teaching and students’ positive attitudes about this teaching

approach are in line with the assumption that inquiry teaching approaches can

increase students’ engagement and interest in science subjects (Osborne & Dillon,

2008; Rocard, 2007). Our study sheds new light on introducing inquiry teaching

by stressing the necessity to separately consider the extent to which learning activities

approach the inquiry cycle, and the extent to which teachers provide students with the

opportunity to answer the questions they pose. Our finding that these aspects of

inquiry learning can be incompatible can be relevant for teacher training.

We found that teachers’ positive attitude to teaching according to an inquiry

approach co-occurs with congruence of learning goals between the students and the

teacher. On an attitudinal level, this finding is in line with the reasoning by Hmelo-

Silver et al. (2007), who stressed the importance of combining teaching the content

of a body of knowledge, for example, about physics, with a teaching approach resem-

bling its likely context of use. In this way, concrete learning goals and inquiry teaching
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processes are combined. Future research could focus on whether informing teachers

about the importance of learning goal congruence and the positive effects of teaching

with computer simulations according to an inquiry-based approach results in inquiry-

based teaching in practice, in more positive attitudes about inquiry-based teaching

with computer simulations, and in higher learning outcomes.
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