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1. Introduction

Suppose that P and Q are closed regular polygons. We say that P is inscribed
in Q if every vertex of P lies on the perimeter of Q. Note that P and Q are not
assumed to be concentric or to have a common axis of symmetry. We present
the necessary and sufficient conditions on m and n for inscribing a regular
m-gon in a regular n-gon. Näıvely we expected this problem to be solved in
the time of Euclid, but it seems to be not completely solved. The solutions for
inscribing triangles and squares in polygons are well-known, (see, e.g., puzzles
by Martin Gardner in Scientific American [3], specifically for the case of a
square or rectangle in a triangle) and also the case where m divides n is obvi-
ous. However these are not the only possible cases. We present a statement of
the complete solution to the problem:

Theorem. Suppose that m,n ≥ 3. A regular m-gon can be inscribed in a reg-
ular n-gon if and only if one of the following mutually exclusive conditions is
satisfied:

(a) m = 3;
(b) m = 4;
(c) m ≥ 5 and m divides n;
(d) m ≥ 6 is even and n is an odd multiple of m/2. (Note that this includes

the case n = m/2.)

In cases (c) and (d) the polygons are necessarily concentric and in case (d)
they share a common axis of symmetry. In case (d) we insist that n be an odd
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multiple of m/2 because if n is an even multiple of m/2, then n is a multiple
of m, which is already covered in case (c).

Our proof of the result is based on a simple application of the Pigeon-hole
Principle.

2. Solution of problem

Let Q be a regular n-gon (n ≥ 5) in the complex plane with edges of unit
length. We assume that Q is positioned in the upper half-plane so that z = 0
is a vertex and the y-axis is the axis of symmetry of Q through that vertex. We
use arc length s measured counterclockwise from z = 0 to identify the perim-
eter of Q with the real interval [0, n). Under this identification 0, 1, . . . , n− 1
are the vertices of Q and [r, r + 1] (r = 0, . . . , n − 1) are the closed edges of
Q. We say that a point s on the perimeter of Q is of type a(0 ≤ a < 1) if
s− a ∈ N, i.e., if s and a are in the same relative positions on their respective
edges.

The proof of the theorem requires two elementary lemmas. The first is intui-
tively obvious, but for the sake of completeness we include a proof in the next
section. (Here φn := (n− 2)π/n is the internal angle of a regular n-gon.)

Lemma 2.1. Suppose that n ≥ 5 and 3π/5 ≤ φ < π. For each point A on the
perimeter of Q (unless A is a vertex of Q and φ ≥ φn) there exist unique points
B and C on the perimeter of Q such that |AB| = |AC| �= 0 and ĈAB = φ. (If
A is a vertex of Q and φ = φn then B and C are not unique, while if A is a
vertex of Q and φ > φn then such points B and C do not exist.)

Suppose that min{m,n} ≥ 5. For n > m, by Lemma 2.1 for each s ∈ [0, n) on
the perimeter of Q there exist unique points p(s) and q(s) on the perimeter of
Q such that the chords joining s to p(s) and s to q(s) have equal length and
subtend an angle φm. We label p(s) and q(s) so that the triple [s, p(s), q(s)] is
positively oriented. Let f(s) denote the length of the chord joining s to p(s).
Clearly, f(s) is a continuous function of s ∈ [0, n) and has period one. Note
that by symmetry f(s) = f(1 − s) for 0 ≤ s ≤ 1.

For m > n, using Lemma 2.1 again, we can define f(s) as above provided s is
not a vertex. Note that if s is a vertex then f(s) is undefined since Q clearly
does not admit chords of equal length subtending an angle φm at a vertex (as
φm > φn). However, setting f(s) := 0 when s is a vertex again defines a con-
tinuous periodic function on [0, n). Finally, if A is a vertex of Q and φm = φn

then m = n. We exclude this trivial case below.

The theorem follows easily from the next lemma and the Pigeon-hole Principle.
We postpone the slightly technical proof of the lemma until the next section.

Lemma 2.2. For min{m,n} ≥ 5 and m �= n the level sets L(y) := {s ∈
[0, 1) : f(s) = y} (y ≥ 0) have cardinality at most four.
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Proof of the theorem.

Case 1: m = 3 or m = 4. The case m = 3 is obvious. Indeed, for every point
s on the perimeter of Q there is a unique equilateral triangle inscribed in Q
which has a vertex at s. Figure 1a (m,n) = (3, 7) exhibits equilateral triangles,
with and without a common axis of symmetry, inscribed in a heptagon.

For m = 4 there is (by compactness) a largest square P contained in Q which
shares the y-axis with Q as an axis of symmetry. By symmetry, P must have

(a) (b)

(c) (d)

(e) (f )

Figure 1 Plots of illustrative examples: a (m,n) = (3, 7):
inscribed triangles with (dash) and without (dotdash) shared
axis of symmetry; b (4,7): inscribed square, shared symmetry
axis but not concentric; c (4,10): inscribed square, shared pair
of symmetry axes and concentric; d (5,15): inscribed penta-
gons maximal (dash), minimal (dotted) and generic (dotdash);
e (6,15): inscribed hexagon, three shared symmetry axes and
concentric; f (10,5): inscribed decagon, n = m/2 (‘snipped off
vertices’)
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an even number points of contact with the perimeter of Q that are symmetric
about the y-axis. If there were only two points of contact then P could be
translated parallel to the y-axis so that there were no points of contact, but
this would contradict the maximality of P . So P is inscribed in Q. Note that
in general P and Q are not concentric. Figure 1b (m,n) = (4, 7) illustrates the
non-concentric case and Fig. 1c (m,n) = (4, 10) the concentric case, where P
and Q actually share two symmetry axes.

Note: After submitting this paper, J. Cantarella from the University of
Georgia kindly brought to our attention additional results for equilateral trian-
gles and squares inscribed in planar closed curves. See in particular the papers
by Emch [1] and [2], where in the latter paper Emch proves that any closed
convex rectilinear polygon admits at least one inscribed square.

Case 2: 5 ≤ m < n. We continue to use the notation introduced above. Sup-
pose that P is a regular m-gon inscribed in Q. Note that if s is a vertex of P
then its adjacent vertices in P are p(s) and q(s), so f(s) is constant on the
vertices of P . Since m ≥ 5 and by Lemma 2.2 the level sets of f(s)|[0,1] have
cardinality at most four, it follows from the Pigeon-hole Principle that two
vertices of P have the same type.

Note that the type of s determines the types of p(s) and q(s). Thus, if two
adjacent vertices of P have the same type, then all the vertices of P have
the same type (and hence P and Q are concentric). But this implies that the
number of vertices of Q cut off by any edge of P is constant, and hence m
divides n. This yields condition (c). It is obvious that (c) is also a sufficient
condition. Figure 1d (m,n) = (5, 15) illustrates the smallest, the largest, and
an intermediate pentagon inscribed in a 15-gon.

Suppose that there are two vertices r and s of P that have type a, say, and
that no two adjacent vertices of P are of the same type. Then p(r) and p(s)
both have the same type b, say, where a �= b. Since r and s have the same type,
the centre of Q lies on the perpendicular bisector of the chord joining r to s.
Similarly, the centre of Q lies on the perpendicular bisector of the chord join-
ing p(r) to p(s). Hence P and Q are concentric with common centre located
at the point of intersection of these perpendicular bisectors. This implies that
b = 1 − a (since only points of type 1 − a are at the same distance as points of
type a from the centre of Q) and that the types of the vertices of P alternate
between type a and type 1 − a. But this implies that m is even, m = 2k, say.
Since the number of vertices of Q cut off by a chord joining any vertex of P
of type a to the next vertex of P of type a (these two vertices have a common
neighbouring vertex of type 1−a) is constant, it follows that k divides n. Hence
the number of vertices of Q cut off by edges of P alternates between t and t+r,
where t ≥ 0 and r ≥ 0 are fixed, so n = (2t + r)k. Only the case r = 1 (i.e.
n is an odd multiple of k) would give chords of Q of equal length (which is a
necessary and sufficient condition for P to be regular). To see that r = 1 gives
case (d), suppose that n = (2t + 1)k. Then the Intermediate Value Theorem
yields a choice of 0 < a < 1 corresponding to chords of Q of equal length such
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that the number of vertices of Q cut off by adjacent chords alternates between
t and t+1 (note that the case t = 0 corresponds to the case m = 2n discussed
below). Figure 1e illustrates the case (m,n) = (6, 15).

Case 3: 5 ≤ n < m. The argument is very similar to the case m < n, so we
can be brief. For m ≥ 6 Lemma 2.2 and the Pigeon-hole Principle again imply
that two vertices of P are of the same type. Since m > n it is clear that every
edge of Q contains at least one vertex of P and that some edge of Q contains
two vertices of P , so n + 1 ≤ m ≤ 2n. In particular, it is not possible for
all the vertices of P to be of the same type. Arguing as above, we must have
m = 2n with the types of the vertices of P alternating as a and 1− a for some
0 < a < 1/2. To see that m = 2n is also a sufficient condition, note that P
can be obtained from Q by ‘snipping off’ the vertices of Q. Figure 1f shows a
decagon inscribed in a pentagon. �
Remark 2.3. The proof of the theorem actually determines the configuration
of P and Q in cases (c) and (d). In case (c) the vertices of P are of the same
type (Fig. 1d). In case (d) the types of the vertices alternate, which implies
that the lines joining midpoints of pairs of opposite edges of P are common
axes of symmetry of P and Q (Fig. 1e, f).

3. Proofs of the lemmas

Proof of Lemma 2.1. We may assume that A lies on the edge [n−1, 0). First we
examine the case φ < φn. For θ ≥ −π/n consider a chord which subtends an
angle θ with the positive x-axis and joins A to a point Bθ on the edge [r, r+1).
It is easily verified that (r−1)π/n ≤ θ < (r+1)π/n and that the directed edge
[r, r+1] subtends an angle (2r+1)π/n with the positive x-axis. Hence the chord
length |ABθ| is a strictly increasing function of θ for −π/n ≤ θ ≤ (r + 1)π/n
provided (2r + 1)π/n ≤ (r − 1)π/n+ π/2, i.e., r + 1 ≤ [n/2] − 1.

Now suppose that ABθ is one of two chords which subtend an angle φ at
A. Then θ ≤ (n − 1)π/n − φ ≤ 2π/5 − π/n (since φ ≥ 3π/5). To ensure
that |ABθ| is increasing in the range −π/n ≤ θ ≤ 2π/5 − π/n we require
2π/5 − π/n ≤ ([n/2] − 1)π/n, which is valid for n ≥ 5. Let Cθ be the point
on the perimeter of Q such that ˆCθABθ = φ. We showed above that |ABθ|
increases (and consequently |ACθ| decreases) as θ increases. Hence by the
Intermediate Value Theorem there is a unique value θ0 ∈ [−π/n, 2π/5 − π/n]
such that |ABθ0 | = |ACθ0 |. Set B := Bθ0 and C := Cθ0 .

Some small modifications to the proof are required in the case φ ≥ φn. For the
existence of B and C (or uniqueness in the case φ = φn) we require A not to
be a vertex. Moreover, for φ > φn, when A is sufficiently close to the vertex
n− 1 then A and B both lie on the edge [n− 1, 0], i.e. θ0 = −π/n. Similarly,
when A is sufficiently close to the vertex 0 then A and C both lie on the edge
[n− 1, 0]. �



64 S. J. Dilworth and S. R. Mane J. Geom.

Finally, we prove Lemma 2.2. Two further lemmas are required, of which the
first is of independent interest.

Lemma 3.1. Let L1 := {t exp iψ1 : t ∈ R} and L2 := {t exp iψ2 : t ∈ R} be two
lines passing through the origin and let 0 < φ < π.

(a) Suppose that sin(φ + ψ1 − ψ2) �= 0. Then for each z ∈ C there exist
unique points u(z) ∈ L1 and v(z) ∈ L2 such that the directed line seg-
ments [z, u(z)] and [z, v(z)] have equal length and subtend an angle φ,
i.e.

v(z) − z = exp(iφ)(u(z) − z). (3.1)

Moreover, setting Fφ(z) := |z − u(z)|, then, for all z0, w0 ∈ C, F 2
φ(tz0 +

w0) is a non-negative quadratic function of t ∈ R.

(b) Suppose sin(φ+ψ1 −ψ2) = 0. Then, for each z ∈ C, either u(z) and v(z)
satisfying (3.1) do not exist or for every u(z) ∈ L1 there exists v(z) ∈ L2

satisfying (3.1).

Proof. Let u(z) = u exp iψ1 and v(z) = v exp iψ2. Then, setting z = x + iy
and taking real and imaginary parts, we obtain the following pair of linear
equations for u and v:

−u cos(φ+ ψ1) + v cosψ2 = x(1 − cosφ) + y sinφ ,
(3.2)

−u sin(φ+ ψ1) + v sinψ2 = −x sinφ+ y(1 − cosφ).

These equations have a unique solution for every choice of z if and only if
sin(φ+ ψ1 − ψ2) �= 0, and in that case there exist b, c ∈ C, depending only on
φ, ψ1, and ψ2, such that u(z) = bz + cz. Hence

F 2
φ(tz0 + w0) = |t(z0 − bz0 − cz0) + (w0 − bw0 − cw0)|2, (3.3)

which is a non-negative quadratic function of t. This proves (a). On the other
hand, if sin(φ + ψ1 − ψ2) = 0, then the linear equations are degenerate, and
(b) follows easily. �
Henceforth we shall refer to the function Fφ(z) as the φ-distance determined
by L1 and L2.

Lemma 3.2. Suppose that n > m ≥ 5 and that p(0) is not a vertex of Q. Then
f ′
+(0) ≥ 0, where f ′

+(0) := lims↓0(f(s) − f(0))/s is the right-hand derivative.

Proof. By symmetry neither q(0) nor p(0) is a vertex of Q. Let p(0) lie on
the open edge (r, r + 1). Then rπ/n < π/m < (r + 1)π/n and the directed
edge [r, r + 1] subtends an angle (2r + 1)π/n with the positive x-axis. Let us
show that this angle is not obtuse. If n ≤ 10 then it is easily checked that
(2r + 1)π/n ≤ π/2, with equality only if m = 5 and either n = 6 or n = 10. If
n ≥ 11, then

(2r + 1)π/n < 2π/m+ π/n ≤ 2π/5 + π/11 < π/2. (3.4)
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By symmetry q(s) lies on the edge (n − r − 1, n − r). Let L1 and L2 be the
extensions of the edges (r, r+ 1) and (n− r− 1, n− r), let Fφm

(z) be the φm-
distance determined by L1 and L2, and let u(z) be defined as in Lemma 3.1.
(Since p(0) and q(0) are uniquely defined, it follows from Lemma 3.1 that

Fφm
(z) is well-defined.) By symmetry,

∂Fφm

∂x
(0) = 0. Since the directed edges

[r, r + 1] and [n − r − 1, n − r] subtend a non-obtuse angle with the positive
x-axis, it follows that |u(iy) − iy| is an increasing function of y, and hence
∂Fφm

∂y
(0) ≥ 0. Since p(0) and q(0) are interior points of their respective edges,

it follows that f(s) = Fφm
(s cosπ/n, s sinπ/n) for all sufficiently small s > 0.

Hence f ′
+(0) = sin(π/n)

∂Fφm

∂y
(0) ≥ 0. �

Proof of Lemma 2.2. First we examine the case n > m ≥ 5. If p(0) is not a
vertex of Q, then as s increases from 0 to 1, p(s) (resp., q(s)) moves coun-
terclockwise from p(0) (resp., q(0)) to the point p(1) (resp., q(1)) of the same
type on an adjacent edge, passing through a vertex of Q in transit. Hence
there exist 0 < s0 ≤ s1 < 1, where s1 = 1 − s0, such that the restrictions
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Figure 2 Graphs of f(s) for 0 ≤ s ≤ 1 for three represen-
tative cases: (a) (m,n) = (5, 6), i.e. n > m ≥ 5 and p(0) not
a vertex of Q, (b) (m,n) = (5, 10), i.e. n > m ≥ 5 and p(0)
a vertex of Q, and (c) (m,n) = (6, 5), i.e. m > n ≥ 5. The
definitions of f(s) and p(0), etc., are given in the text
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of f(s) to each of the intervals [0, s0], [s0, s1], and [s1, 1] are the φm-distances
determined by corresponding pairs of edges (extended to be pairs of lines);
e.g., f |[s0,s1] is the φm-distance determined by the edges containing p(1/2)
and q(1/2). By Lemma 3.1 the restriction of f2(s) to each of these subinter-
vals is a non-negative quadratic function of s. By Lemma 3.2, f ′

+(0) ≥ 0, and
hence the graph of f2(s)|[0,s0] is a strictly increasing segment of a parabola. By
symmetry, f2(s)|[s1,1] is strictly decreasing. Lastly, the graph of f2(s)|[s0,s1] is
a segment of a parabola with a local minimum at s = 1/2. It follows that each
level set L(y) has cardinality at most four. An example of a graph of f(s) for
0 ≤ s ≤ 1 is shown as the solid curve in Fig. 2, for m = 5 and n = 6. On the
other hand, if p(0) is a vertex of Q, then f2(s)|[0,1] is a non-negative quadratic
function, and hence the level sets have cardinality at most two. Note that in
this case m must divide n. An example of a graph of f(s), where p(0) is a
vertex of Q, is shown as the dashed curve in Fig. 2, for m = 5 and n = 10.

Finally, we consider the case m > n ≥ 5. Recall that in this case f(0) is
undefined since Q does not admit chords of equal length subtending an angle
φm at a vertex (as φm > φn). However, setting f(0) := 0, then arguing as
above we see that the restrictions of f(s) to intervals [0, s0], [s0, s1], and [s1, 1]
(where s0 and s1 are as defined above) are linear, hyperbola (square root of a
quadratic), and linear, respectively. Hence the level sets L(y) again have car-
dinality at most four. An example of a graph of f(s) is shown as the dotdash
curve in Fig. 2, for m = 6 and n = 5. �
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