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Abstract. A regular n-gon inscribing a knot is a sequence of n points on a knot,

such that the distances between adjacent points are all the same. It is shown that

any smooth knot is inscribed by a regular n-gon for any n.

A knot K : S1 → R3 is said to be inscribed by a regular n-gon if there is a set of
points x0, ..., xn−1 lying on K in a cyclic order, such that the distances ‖xi−1−xi‖
between xi−1 and xi are the same for i = 1, ..., n, where xn = x0. Jon Simon asked
the question of whether every smooth knot K is inscribed by a regular n-gon for all
n. There has been quite some research activities on this and related problems. See
[2, §11] and the references there. In particular, it was shown by Meyerson [4] and E.
Kronheimer and P. Kronheimer [3] that given any triangle there is one similar to it
which inscribes a given planar curve. It is a very interesting open question whether
any closed planar curve is inscribed by a square [2], although this has been proved
for a very large class of curves, including all smooth or piecewise linear curves [6].
See also [5].

Up to rescaling we may assume that the length of K is 1. It has been observed
by Eric Rawdon and Jonathan Simon (unpublished) that given any smooth knot
K, there is a number N such that the statement is true for all n > N . Define an
ε-chain of length n to be a sequence of points (x0, ..., xn−1) on K, lying successively
along the positive orientation of K, such that ‖xi − xi−1‖ = ε for i = 1, ..., n − 1.
Choose N large enough so that for any ε < 2/N and any point x on K there are
exactly two points on K with distance ε from x. Then starting from any x0 ∈ K
one may construct an ε-chain of length n + 1 for small ε. The sum of lengths of
the short arcs on K between adjacent points in the chain is small when ε is small,
and exceeds 1 when ε > 1/N . Hence by continuity there must be some ε such that
xn = x0, and the result follows. The proof fails when n is small.

The question of whether every smooth knot admits an inscribed n-gon for all n
has remained open for some time and no answer is known. It seems worth while to
record a positive solution. Actually, a little more is true. One can find a regular
polygon with one vertex at any prescribed point. The proof is very elementary,
although it does use the concept of degree of maps between spheres in an essential
way. See [1] for some background. Note that the theorem as stated is not true if
the smoothness assumption is dropped; however, it is not known whether it is true
if one is also allowed to move the base point. See Remark 6 and Conjecture 7 below
for more details.
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Theorem 1. Let K : S1 → R3 be a smooth knot, and let x0 ∈ K be a fixed base
point. Then for any n there is a regular polygon of n edges inscribing K, containing
x0 as a vertex.

Proof. We may assume that n ≥ 3; the result is trivial otherwise. We use the same
notation K to denote the image of the map K. Composing with q : R1 → S1,
q(t) = e2πti, we have a universal covering map k : R1 → K ⊂ R3. Without loss of
generality we may assume that x0 is the origin of R3, and k(0) = x0. Let D(r) be a
ball of radius r centered at x0, chosen so that D(r)∩K = γ is a single arc on K. Let
J be the interval containing 0 such that k(J) = γ. Denote by d(t′, t) the distance
between two points on K with parameters t′ and t, i.e., d(t′, t) = ‖k(t′)− k(t)‖.

Lemma 2. There is a D(r) and a positive number ε, such that

(a)
∂d(t′, t)
∂t

> 0 for t > t′ in J ;

(b) there exist 0 = a0 < a1 < · · · < an−1 in J , such that d(ai−1, ai) = ε for
i = 1, ..., n− 1; and

(c) if d(ai, t) = ε for some i = 1, ..., n− 2 and t ∈ [0, 1), then t = ai±1.

Proof. (a) Since K is smooth, k′(0) ·k′(0) > 0, so one can choose r small enough so
that k′(s) · k′(t) > 0 for all s, t ∈ J . Up to changing of coordinate we may assume
that t′ = 0. Put h(t) = d(t′, t)2 = d(0, t)2 = k(t) · k(t). If the result were not true
then h′(t) = 2k(t) · k′(t) = 0. Now k(t) =

∫ t

0
k′(s) ds, hence

k(t) · k′(t) =
∫ t

0

k′(s) · k′(t) ds = 0,

which is impossible because k′(s) · k′(t) > 0 for all s, t in J .
(b) Choose ε < r/n. Assume ai has been found for some i < n − 1. Let b be

the right endpoint of J . Then d(ai, b) > r − d(ai, 0) > r − iε > ε. By (a) d(ai, t)
is increasing for t > ai, and we have d(ai, ai) = 0. Hence the continuity of d(ai, t)
implies that there is a unique ai+1 in (ai, b) satisfying d(ai, ai+1) = ε.

(c) If k(t) ∈ D(r) the proof follows from that of (b). If k(t) /∈ D(r) one can show
that d(ai, t) > ε. �

We shall assume below that ε and ai have been chosen as in the lemma. Let a
denote the vector (a1, ..., an−1). Note that a0 = 0 is not a component of this vector.

Let p be a number between an−1 and 1 such that d(p, 0) < ε. This is possible
because limp→1 d(p, 0) = 0. Note that d(0, t) > d(0, p) if t ∈ (a1, p). Consider the
set

B = {(t1, ..., tn−1) ∈ Rn−1 | a1 ≤ t1 ≤ ... ≤ tn−1 ≤ p}.

For notational convenience, we shall always write t0 = 0 and tn = 1. Notice that
B is an (n− 1)-dimensional simplex.

Denote by ∂B the boundary of B. It consists of n faces given by E = E1 = {t ∈
B | t1 = a1}, Ei = {t ∈ B | ti−1 = ti} for 2 ≤ i ≤ n− 1, and En = {t ∈ B | tn−1 =
p}. Note that a = (a1, ..., an−1) is an interior point of E.

Consider the line
∆ = {y ∈ Rn | y1 = · · · = yn},

called the diagonal of Rn. Denote by P the plane

P = {y ∈ Rn |
∑

yi = 0}.
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Note that P is the orthogonal complement of ∆ when ∆ and P are considered as
linear subspaces of Rn. Define maps

ϕ : B → Rn, ϕ(t) = y, yi = d(ti−1, ti)

ψ1 : Rn → P, ψ1(y) = z, zi = yi − c, c =
∑

yi/n

ψ2 : P − {0} → Sn−2, ψ2(z) = z/‖z‖

Note that ψ1 is the orthogonal projection of Rn to P , and ψ2 is the standard radial
projection.

Now suppose the theorem were not true. Then ϕ(B) is disjoint from ∆, hence
the map f = ψ2 ◦ ψ1 ◦ ϕ is a continuous map from B to Sn−2, so its restriction
to ∂B, denoted by g : ∂B → Sn−2, has degree 0. In the following we will show
that g actually has degree ±1. This contradiction will then complete the proof of
Theorem 1.

Lemma 3. Suppose g(t) = g(a) for some t ∈ ∂B. Then t = a.

Proof. Put y = ϕ(a), and z = ψ1(y). By the choice of a, we have y = (y1, ..., yn) =
(ε, ε, ..., ε, δ), where δ = d(0, an−1) > d(0, a1) = ε because d(0, t) is increasing on
[0, an−1]. Let c = ((n − 1)ε + δ)/n be the average of the coordinates of y. Then
z = (ε− c, ..., ε− c, δ− c). Thus w = g(a), the unit vector in the direction of z, also
has the property that w1 = ... = wn−1, and w1 < wn.

Put y′ = ϕ(t), and w′ = g(t). Since w′ = g(t) = g(a) = w, we have w′1 = w′i for
i < n, and w′1 < w′n. This implies that y′1 = y′i for i < n and y′1 < y′n. On the other
hand, if t ∈ Ei ⊂ ∂B for 1 < i < n then ti = ti−1, so y′i = d(ti−1, ti) = 0, which is
a contradiction because t1 is always positive and hence y′1 = d(t1, 0) > 0. Also, if
i = n, then tn = p, so y′n = d(0, p) ≤ d(0, t1) = y′1 because t1 ∈ [a1, p], which again
contradicts the fact that y′1 < y′n.

Therefore we must have t ∈ E. By definition we have t1 = a1, so y′1 = d(t0, t1) =
ε = y1. The equalities w′1 = ... = w′n−1 now imply that y′i = d(ti−1, ti) = y′1 = ε for
i ≤ n− 1. By Lemma 2(c), this implies that ti = ai, and the result follows. �

Lemma 4. The point a ∈ ∂B is a regular point of g.

Proof. As usual, denote by g∗ : Ta(E) → Tg(a)(Sn−2) the map induced by g on
the tangent space of E at a. We need to show that the kernel of g∗ is trivial. Put
ψ = ψ2 ◦ ψ1. Then g−1

∗ (0) = ϕ−1
∗ ◦ ψ−1

∗ (0). Since ψ is a linear map, ψ∗ = ψ.
One can verify that ψ−1

∗ (0) = ψ−1(0) is the linear space L spanned by ϕ(a) and
e = (1, ..., 1). To prove the lemma, we need only show that Rn is spanned by L and
Im(ϕ∗), the image of ϕ∗.

From the definition of ϕ, one can see that ϕ∗ is defined by the following matrix,
which has n rows and n− 1 columns.

c11 0 0 · · · 0
c21 c22 0 · · · 0
0 c32 c33 · · · 0
...

...
... · · ·

...
0 0 0 · · · cn−1,n−1

0 0 0 · · · cn,n−1
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The coefficient cij is the partial derivative of ϕi with respect to tj at a. The
calculation follows from the fact that ϕi(t) = d(ti−1, ti) is independent of tj with
j 6= i, i− 1. Recall from the definition of a that cii is positive for all i.

Since the boundary face E of B is on the plane t1 = a in Rn−1, the tangent space
Ta(E) is spanned by the last n − 2 vectors of the standard basis of Rn−1. Hence
Im(ϕ∗) is generated by the last n− 2 columns of the above matrix. It follows that
L+ Im(ϕ∗) is spanned by the columns of the matrix

M =



ε 1 0 0 · · · 0
ε 1 c22 0 · · · 0
ε 1 c32 c33 · · · 0
...

...
...

...
...

...
ε 1 0 0 · · · cn−1,n−1

δ 1 0 0 · · · cn,n−1


where δ = d(0, tn−1) > ε by Lemma 2(a). Subtracting ε times of the second
column from the first column and then expanding along the first column, we have
detM = (−1)n+1(δ − ε)c22 · · · cn−1,n−1 6= 0. Hence ϕ is transverse to P , and the
result follows. �

Suppose h : M → N is a smooth map between closed oriented smooth manifolds
of the same dimension. If y ∈ N is a regular value of h, then the degree of h equals
the number of points in h−1(y) at which h is orientation preserving, subtracted by
the number of points in h−1(y) at which h is orientation reversing. See [1]. Using
smooth approximation, we see that the above is true even if h is only smooth in a
neighborhood of h−1(y).

The sphere ∂B is only piecewise smooth as a submanifold of Rn−1, but we can
compose with a piecewise smooth map ρ : Sn−2 → ∂B to obtain a map h = g ◦ ρ :
Sn−2 → Sn−2 which is smooth in a neighborhood of h−1(g(a)). Lemmas 3 and
4 show that g(a) is a regular value of h, and h−1(g(a)) has only a single point.
Therefore we have deg(g) = deg(h) = ±1. As shown in the paragraph before
Lemma 3, this contradicts the facts that g is the restriction of f : B → Sn−2 to
∂B, completing the proof of Theorem 1. �

The assumptions in Theorem 1 can be weakened. We have the following gener-
alization.

Theorem 5. Suppose K : S1 → Rm is a continuous map. Let x0 ∈ S1 be a point
such that (i) K has nonzero continuous derivative in a neighborhood of x0, and (ii)
K(x) 6= K(x0) for all x 6= x0. Then for any n there is a regular polygon of n edges
inscribing K, containing x0 as a vertex.

Proof. Note that (i) and (ii) imply that m ≥ 2. By the compactness of S1 one
can show that there is a neighborhood V of x0 such that (ii) holds when x0 is
replaced by any y ∈ V . Thus using (i) and (ii) we can still find a ball D(r) of
radius r centered at x0 such that D(r)∩K is a single arc. In the proof of Theorem
1 we used smoothness of K in the proofs of Lemmas 2 and 4; however, in either
case we only used the fact that K has continuous nonzero derivative in a small
neighborhood of x0. The rest of the proof of Theorem 1 applies verbatim. �
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Remark 6. Condition (i) in Theorem 5 cannot be removed. An easy example
is given by a triangle K with two equilateral edges joined at x0 at an angle less
than π/3, in which case there is no regular 3-gon inscribing K with x0 as a vertex.
However, it is not known if the result would still be true for non smooth knot if it
is not required that x0 be a vertex of the polygon.

Condition (ii) in Theorem 5 cannot be removed either. The projection p : R2 →
R1 induces a smooth map K : S1 → R1 ⊂ R3, which does not have a regular 3-gon.
One can also find a figure 8 curve on the plane with a single double point at x0,
which is not inscribed by a regular 3-gon with x0 as one of its vertex.

Conjecture 7. Any (non smooth) knot K : S1 ↪→ R3 is inscribed by a regular
n-gon for any n.

One might attempt to approach the knot K with a sequence of smooth maps Ki.
Let Gi be a regular n-gon inscribing Ki. The limit of a convergent subsequence of
Gi is then an n-gon G of equal edge length inscribing K. The only problem here
is that G might be degenerate in the sense that all of its vertices are at the same
point of K.

References

[1] V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, 1974.

[2] V. Klee and S. Wagon, Old and new unsolved problems in plane geometry and number
theory, The Dolciani Mathematical Expositions, vol. 11, Mathematical Association of

America, Washington, DC, 1991.

[3] E. Kronheimer and P. Kronheimer, The tripos problem, J. London Math. Soc 24 (1981),
182–192.

[4] Mark Meyerson, Equilateral triangles and continuous curves, Fund. Math. 110 (1980),

1–9.
[5] M. Nielsen and S. Wright, Rectangles inscribed in symmetric continua, Geom. Dedicata

56 (1995), 285–297.

[6] Walter Stromquist, Inscribed squares and square-like quadrilaterals in closed curves,
Mathematika 36 (1989), 187–197.

Department of Mathematics, University of Iowa, Iowa City, IA 52242

E-mail address: wu@math.uiowa.edu


