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Abstract

Insect herbivory is pervasive in plant communities, but its impact on microbial plant colonizers is not
well-studied in natural systems. By calibrating sequencing-based bacterial detection to absolute bacterial
load, we find that the within-host abundance of most leaf microbiome (phyllosphere) taxa colonizing a
native forb is amplified within leaves impacted by insect herbivory. Herbivore-associated bacterial ampli-
fication reflects community-wide compositional shifts towards lower ecological diversity, but the extent
and direction of such compositional shifts can be interpreted only by quantifying absolute abundance.
Experimentally eliciting anti-herbivore defenses reshaped within-host fitness ranks among Pseudomonas

spp. field isolates and amplified a subset of putative P. syringae phytopathogens in a manner causally
consistent with observed field-scale patterns. Herbivore damage was inversely correlated with plant
reproductive success and was highly clustered across plants, which predicts tight co-clustering with pu-
tative phytopathogens across hosts. Insect herbivory may thus drive the epidemiology of plant-infecting
bacteria as well as the structure of a native plant microbiome by generating variation in within-host
bacterial fitness at multiple phylogenetic and spatial scales. This study emphasizes that “non-focal”
biotic interactions between hosts and other organisms in their ecological settings can be crucial drivers
of the population and community dynamics of host-associated microbiomes.
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Introduction1

For many organisms, attack by multiple enemies is inevitable and often occurs sequentially during the2

lifetime of individual hosts. Prior attack can alter host phenotypes and change how future attacks unfold,3

often generating cascading effects at larger spatial and temporal scales1–4. Given the large effects of4

co-infection on host health and the population dynamics of their parasites, explicitly studying co-infection5

is becoming increasingly common4–6. But rarely has this perspective been extended to studies of diverse6

host-associated microbial communities (‘microbiomes’). Instead, microbiome studies tend to focus on7

effects of host genotype or abiotic variation on microbiome diversity patterns7–11. This has left a major8

gap in our understanding of how host colonization from non-microbial enemies impacts the population9

biology of microbiome-associated taxa.10

For plants, there is tremendous interest in understanding the structure and function of the11

microbiome both for applied purposes, such as engineering growth promotion and disease resistance12,13,12

and as model systems for host–microbial symbioses more generally. Insect herbivory represents a pervasive13

threat to plants in both native and agricultural settings14. Herbivory alters plant phenotypes through14

tissue damage and induction of plant defenses, which can change susceptibility of plants to attack by15

insects15 as well as microbes16,17. Thus, factors that influence the impact of herbivores on hosts will likely16

affect the colonization and growth of plant-associated microbes. While insect herbivores14 and17

plant-associated microbes have clear effects on plant phenotypes and fitness18, they are generally18

considered independently. Our study addresses this gap by explicitly considering how patterns of19

abundance and diversity of leaf-colonizing (endophytic) bacterial taxa are altered in the presence of insect20

herbivory and by exploring the associations among herbivory, bacterial infection, and plant fitness in a21

native forb (Cardamine cordifolia, Brassicaceae; ‘bittercress’).22

We first used marker gene sequencing (16S rRNA) coupled with paired leaf culturing to establish and23

validate sequence-based estimates of absolute bacterial load in host tissue. By elucidating a relationship24

between bacterial load and the sequence counts of bacteria- versus host-derived 16S (Box 1), our approach25

enabled standard 16S marker gene sequencing to quantitatively reveal variation in abundance distributions26

of entire suites of bacterial taxa across hosts with and without prior insect herbivory. We then assessed the27

extent of co-clustering between microbial abundance and intensity of insect herbivory at the plant patch28

scale across our study populations, and we related microbe–herbivore co-aggregation to fruit set, a29

component of plant fitness. In parallel, we directly examined variation in sensitivity to inducible plant30

defenses among 12 genetically diverse, bittercress-derived isolates of Pseudomonas spp. bacteria. We did so31
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by experimentally infecting accessions of native bittercress in the laboratory in which prior herbivory was32

simulated by exogenously pre-treating plants with the plant defense hormone jasmonic acid (JA).33

Our experiments reveal that insect herbivory, via induction of plant defenses, can modify endophytic34

bacterial diversity patterns by amplifying naturally prevalent and potentially phytopathogenic bacterial35

taxa within a native plant host. This mechanism may be at least partly responsible for the strong positive36

association between herbivory and endophytic bacterial abundance within leaf microbiomes seen under field37

conditions. Crucially, the patterns and degree of bacterial abundance variation we found cannot be38

revealed by traditional compositional analysis of high-throughput marker gene sequencing, which masks39

the extent and direction of within-host variation in bacterial load. By linking marker gene counts to an40

absolute standard, our study reveals how insect herbivory associates with variation in bacterial loads at41

leaf and patch scales within a natural plant population. More generally, this work highlights the42

importance of (a) accounting for prevalent but ”non-focal” biotic interactions hosts have with other43

colonizers in their natural contexts, and (b) using detection and analytical approaches to quantify these44

effects on components of microbial fitness.45

Methods46

Field studies of herbivore–bacteria co-infection47

We surveyed herbivore damage arising from the specialist leaf-mining insect Scaptomyza nigrita48

(Drosophilidae; Fig. S1f–g) in replicate 0.5 m2 plots of native bittercress along transects in sub-alpine and49

alpine streams near the Rocky Mountain Biological Laboratory (RMBL) in each of two years (2012,50

Emerald Lake, EL, n = 24 plots; 2013, site North Pole Basin, NP, n = 60 plots; Fig. S1a–d). Although not51

our primary focus, these field studies were also designed to test how mid-season pre-treatment with the52

exogenous plant defense hormones JA or salicylic acid (SA) impacts plant attack rates by S. nigrita. JA53

induces canonical defenses against chewing herbivores in plants17, including bittercress, and JA-induced54

bittercress can locally deter adult S. nigrita and reduce larval feeding rates19. SA treatment canonically55

induces defenses against biotrophic microbial colonizers and often pleiotropically suppresses plant defenses56

against chewing herbivores17, including S. nigrita 20. Thus, treatment with either plant defense hormone57

has the potential to modify the foraging behavior of S. nigrita. Our analysis of the impact of hormone58

treatments on S. nigrita foraging patterns was previously published for site EL20, and we implemented a59

similar approach for site NP in this study. Full experimental design details are given in the Supplemental60
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Methods and are depicted in the schematic in Fig. S1e.61

By the end of the growing season, when herbivory and bacterial infection had run their course, we62

determined S. nigrita leaf-miner damage status of all leaves (both sites) as well as fruit set (site NP only)63

produced on each of the focal bittercress stems (stem-level sample size n = 768, site EL; n = 1920, site64

NP). At both sites, we collected leaf tissue in a randomized manner (see Supplemental Methods) to65

quantify the abundance and diversity of bacteria that had colonized the leaf interior.66

Amplicon sequencing of bacteria in leaf tissues67

We quantified bacterial abundance in leaf tissues using next-generation amplicon sequencing of the68

bacterial 16S rRNA locus using the Illumina MiSeq platform. In order to enrich our samples for endophytic69

bacteria, we surface-sterilized all samples prior to DNA extraction, which achieved a reliable reduction of70

bacterial abundance as detected by our 16S analysis approach (Fig. S2). Subsequently, we extracted DNA71

from the 192 leaf discs (∼ 0.8 cm2) from site EL and 192 tissue pools from site NP (4 four discs per pool)72

and amplified bacterial 16S following protocol established for the Earth Microbiome Project (see73

Supplemental Methods). We amended this protocol by including peptic nucleic acid (PNA) PCR clamps74

into reaction mixtures to reduce amplification of host chloroplast- and mitochondria-derived 16S, following75

Lundberg et al.21. This was highly effective at reducing the proportion of host-derived 16S reads per76

library in our sample sets (Fig. S3).77

We then used DADA2
22 to error-correct, trim, quality-filter, and merge the paired-end sequencing reads78

that passed error thresholds off the sequencer. Of the approximately 4 million raw reads, ∼ 90% were79

retained following quality control via DADA2 (Fig. S4), and these reads were then delineated into exact80

amplicon sequencing variants (ASVs). 16S reads from bittercress chloroplast or mitochondria were81

manually curated and summed into ‘host-derived’ for comparison with bacteria-derived 16S (see82

Supplemental Methods).83

Quantifying and modeling bacterial abundance patterns84

In order to quantitatively asses how herbivore damage relates to abundance and diversity of microbial85

plant colonizers, we required a link between 16S counts and bacterial load. We therefore devised and86

validated an estimator (γ) of the abundance of bacterial ASVs within host tissues (Box 1). Using γ as an87

empirically validated estimator of absolute bacterial load in leaf tissues, we then constructed a two-stage88

modeling approach to estimate bacterial load across our complete sample set.89
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We first fit and compared a series of increasingly flexible Bayesian regression models to estimate how90

γ varies as a function of herbivore damage in leaves (see Supplemental Methods). When calculating γ, we91

took rB at the bASV-level for all bASVs within each of the 14 most abundant bacterial families, together92

comprising > 95% of total bASV counts in the datasets. We then took the candidate best stage-1 model,93

heuristically defined as the model with the lowest leave-one-out Bayesian information criterion94

(LOO-IC)23, and used it to generate n = 200 replicate sets of simulated response values (γ̃) predicted by95

the model parameters fit to the original data.96

In the next stage, we used this distribution of γ̃ as an input predictor variable to the model we fit97

between our observed γ and observed log CFU (Box 1). This allowed us to report bacterial abundance98

estimates, based initially on 16S count data, on the scale of predicted log CFU per unit leaf mass—a more99

directly interpretable measure of within-host fitness. Rather than point estimates, we sampled intercept,100

slope, and residual error parameters from their joint posterior distribution of the calibration CFU model101

for each data point independently. Specifically, this has the effect of incorporating noise in the fit between102

observed log CFU and γ such that downstream predictions are not overly biased by the precise value of any103

regression slope estimate, which may itself arise from peculiarities in the action of PNA during104

amplification of 16S. Overall, this two-stage modeling approach was designed to incorporate uncertainty in105

the model fit for γ as well as in the relationship between observed γ and observed log CFU. The endpoint106

of this approach is 200 sets of posterior predicted log CFU values for each sample in the dataset, which107

formed the basis of downstream calculations of bacterial abundance variation, as well as ecological diversity108

(Shanon evenness J ′) and similarity (Shannon–Jensen divergence SJ) in and between damaged and109

undamaged leaf sets, respectively (see Supplemental Methods).110

Population-level analysis of herbivore–bacteria co-aggregation111

We assessed how patch-level variation in herbivory correlated with bacterial infection intensity at the112

field-scale by focusing on the most highly abundant bASV at both field sites (‘Pseudomonas3’). Leaf-level113

abundance of this individual bASV was predicted using the approach described above. We then summed114

the predicted abundance (on the linear scale) of bacteria across leaves within each plant patch and used115

these predicted bacterial sums to calculate the cumulative proportion of the total Pseudomonas3116

population harbored by plant patches with differing levels of herbivory, which portrays the extent of117

co-aggregation of herbivores and bacteria across the host population.118
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Experimental infections in planta119

We directly examined how inducible plant defenses against chewing herbivores impacted within-host120

bacterial performance using field-derived accessions of bittercress plants and their bacterial colonizers. We121

randomized the selection of six focal strains from within each of the two dominant Pseudomonas clades (P.122

syringae, and P. fluorescens) represented in our endophytic strain collection from bittercress20. We123

infected each strain into a single leaf on each of n = 32 distinct bittercress clones that had been124

randomized to receive pre-treated 3 days prior with JA (1 mM; Sigma) or a mock solution. Bittercress125

clones were originally isolated as rhizomes from various sites within 2 km of the RMBL in 2012 and were126

re-grown in the greenhouse at University of Arizona for up to 12 months prior to use24. Two days post127

infection, we sampled, sterilized, homogenized, and dilution-plated leaf discs onto non-selective rich King’s128

B media, following Humphrey et al. 20 . We compared bacterial abundance (log2) between treated and129

untreated samples using Gaussian Bayesian regression models. We subsequently used posterior predicted130

abundances as the basis for considering how herbivore-inducible defenses impact the composition and131

diversity of this Pseudomonas community at different taxonomic levels (see Supplemental Methods).132

Results133

Bacterial loads are amplified in insect-damaged leaf tissues134

By linking information from 16S counts to absolute bacterial abundance (Box 1), we found that bacteria135

detected within herbivore-damaged leaves exhibit local population sizes several doublings greater compared136

to the bacteria found in undamaged leaves (Fig. 1a,b; median ± 95% credible interval of posterior137

predicted additional doublings: 2.5 [2.1; 3.9] site EL; 4.5 [3.6; 5.3] site NP). This result, rooted in sequence138

data, is further validated by the parallel observation that damaged leaves showed higher bacterial loads139

than undamaged leaves via culturing of the n = 101 calibration set (Fig. S5; mean difference of 3.7140

bacterial doublings [1.8–5.6, 95% c.i. on mean difference]; Welch’s unequal variance two-sample t-test,141

t = 3.86, p < 0.001), which is quantitatively consistent with a prior result from a parallel and independent142

culture-based study in this system20.143
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Herbivore-associated bacterial amplification is both community-wide and144

taxon-specific145

We then capitalized on the high taxonomic resolution and sampling depth afforded by amplicon sequencing146

to examine shifts in abundance and distribution of diverse bacteria within the bittercress leaf microbiome.147

Within-host density of bacterial bASVs from several bacterial families was elevated in herbivore-damaged148

leaves compared to undamaged leaves (Fig. 1). For most families, the relative increase in within-host149

density with herbivory was greater at site NP than at site EL (Fig. 1b), but this was largely because150

several taxa showed lower baseline loads in undamaged leaves at site NP compared to site EL (Fig. S6a).151

In contrast, bacterial loads for all families were similar for damaged leaves at both site (Fig. S6a,b).152

Pseudomonadaceae was the most abundant taxon across all leaves and also showed the greatest fold153

increase under herbivory (Fig. 1).154

Several family-level γ models showed support for bASV-level differences in intercept and slope values155

(Table S2), including Pseudomonadaceae and Sphingomonadaceae. Two individual bASVs in particular156

drove family-level patterns in these clades (Fig. S7), which together comprised ∼ 20% of all sequencing157

reads across the two sample sets. Within the Pseudomonadaceae, Pseudomonas3 was the most abundant158

bASV, which falls within the putatively phytopathogenic P. syringae clade (Fig. S8). We previously159

showed that P. syringae strains can be pathogenic, induce chlorosis, and reduce leaf photosynthetic160

function in bittercress20. Thus, a major component of the signal of elevated bacterial load in the presence161

of insect herbivory comes from putatively phyopathogenic genotypes within the group P. syringae.162

Compositional shifts in leaf bacterial communities under herbivory163

When the absolute bacterial abundance patterns described above were analyzed in a compositional164

framework, we detected differences in overall community structure and ecological diversity between165

damaged and undamaged leaves. Specifically, we found lower evenness (J ′; Fig. 2b) in damaged leaves,166

indicating a stronger skew towards a smaller number of bacterial taxa: Pseudomonadaceae comprise an167

even greater proportion of the population in damaged leaves owing to their already-high average abundance168

in undamaged leaves and large fold-increase under herbivory. Family-level relative abundances differed in169

terms of Shannon–Jensen divergence (i.e., β-diversity) between damaged versus un-damaged leaves (Fig.170

2c), indicating that amplification of bacteria in herbivore-damaged leaves can produce community-wide171

signatures of reduced within-host diversity and elevated between-host diversity at broad taxonomic scales.172
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Plant defenses against chewing herbivores enhance growth of putative173

phytopathogens in planta174

Plant pre-treatment with the plant defense hormone JA caused statistically clear alterations in within-host175

growth of five of the twelve Pseuomonas spp. strains tested (Fig. 3a), with the most pronounced changes176

resulting in 2.5–5 additional doublings of two phylogenetically distinct P. syringae isolates (20A and 02A;177

Table S3). Increased within-host density of these two strains can account for differences in total178

Pseudomonas abundance, as well as differences in abundance patterns summed at the level of bacterial179

clade (P. syringae versus P. fluorescens; Fig. 3b). By recapitulating the elevated P. syringae and180

family-wide increased abundance under herbivory seen in our field studies, this greenhouse result highlights181

that induction of plant defenses against chewing herbivores is one potential mechanism whereby insect182

herbivory could lead to amplification of bacterial taxa within the bittercress leaf microbiome.183

Notably, two strains (22B and 20B) exhibited markedly decreased within-host fitness in JA-treated184

compared to mock-treated leaves (Fig. 3a–b). Such herbivore-driven fitness variation among P. syringae is185

undetectable when only considering larger taxonomic scales of genus or family (Fig. 3), where genotypes186

which increase in local abundance contribute to an overall signature of elevated taxon-wide abundance as187

measured by lower resolution tools (e.g., 16S sequencing). Thus, induction of plant defenses against188

chewing herbivores leads to the amplification and numerical dominance of a narrow subset of the P.189

syringae community within this host population (Fig. 3c). Such changes result in compositional shifts190

towards decreased Shannon evenness in JA-treated leaves (Fig. 3d) and an overall community-wide191

divergence with mock-treated leaves (Fig. 3e).192

Putative phytopathogens are aggregated in highly herbivore-damaged plant193

patches194

We then analyzed how Pseudomonas3, a highly abundant individual bASV within the P. syringae group,195

varied across bittercress plant patches in relation to the level of herbivory on those plant patches. At site196

NP, we found a highly aggregated (i.e., right-skewed) distribution of herbivore loads across plant patches197

(Fig. 4a, top marginal density plot). This aggregated herbivore distribution across plant patches results in198

a predicted 50-fold enrichment of local density of Pseudomonas3 in the most-damaged compared to the199

least-damaged plant patch (Fig. 4). Analyzed in a more general framework, over half the predicted200

Pseudomonas3 population is harbored in just one fifth of the plant patches in the bittercress population at201
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our study site NP (Fig. S9).202

Herbivore–bacteria co-aggregation is associated with lower plant fitness203

At site NP, bittercress patches with higher herbivore intensity showed lower reproductive success, with the204

most damaged patches estimated to produce half as many fruits as patches with no herbivore damage (Fig.205

4b, Table S4). Plants with more insect damage tend to have higher levels of bacterial infection. Thus,206

standing variation in fruit set is closely associated with levels of co-aggregation of these plant natural207

enemies across our sample within this native bittercress population.208

Causes of herbivore aggregation in natural plant populations209

The degree of herbivore aggregation among host plants at site NP varied extensively across plant patches210

at site NP (Fig. S10a–b); the marginal effects on herbivore damage arising from early-season treatments211

with plant defense hormones SA or JA were small (Fig. S10c). Estimates for both SA and JA treatment212

coefficients were elevated above the mock/control condition, but the posterior distribution for both213

hormone effects overlapped zero (lower 4th %-ile < 0 for JA; lower 15th %-ile < 0 for SA; Table S5). Thus,214

while prior plant exposure to JA, and possible also SA, may cause elevated S. nigrita herbivory at the215

patch scale, standing variation in S. nigrita herbivory arising stochastically or from unmeasured factors at216

site NP dominates over any causal effects of our population-level defense hormone manipulation.217

Additionally, these plant-level defense hormone treatments (five weeks prior to leaf sampling) showed no218

discernible effect on distributions of γ for overall or family-wise bacterial abundance (Fig. S11).219

Discussion220

Overview221

Here we show that insect herbivory is strongly associated with bacterial abundance and diversity within a222

native plant microbiome using field and greenhouse experiments. We provide evidence that activation of223

plant defenses against chewing herbivores is at least one causal mechanism whereby such within-host224

amplification of leaf-colonizing bacteria can occur. Specifically, the growth of a majority of bacterial taxa225

found in the leaf microbiome of native bittercress was amplified in plant tissues damaged by the specialist226

herbivore S. nigrita (Fig. 1) at two separate sub-alpine field sites. These ecological effects were only227
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detectable by linking sequence-based bacterial quantification to an external standard of absolute228

abundance (Box 1), rather than relying on compositional analysis as is commonly done with studies of229

both plant and animal microbiomes (but see Vandeputte et al. 25).230

The bacterial clades most altered under herbivory include strains from groups well-known for causing231

plant disease (P. syringae), and our follow-up experimental work in the greenhouse showed that inducing232

plant defenses against chewing herbivores in bittercress was sufficient to cause similar degrees of233

amplification of putatively phytopathogenic P. syringae genotypes in leaf tissues. Amplification of specific234

P. syringae genotypes can largely account for species- and family-level patterns seen in our field studies,235

which has coarser taxonomic resolution. Overall, these experiments suggest that S. nigrita herbivores may236

play a larger role than previously appreciated in promoting the within-host growth of particular bacterial237

genotypes or pathovars in bittercress, although the causal nature of the role of herbivores was not gleaned238

from the field portion of this study. Given that the majority of plants face herbivore attack to some239

degree14,26, it is possible that our results generalize across plant–microbe systems.240

Herbivore-inducible plant defenses can amplify putative phytopathogens241

The mechanisms governing growth-promoting effects of insect herbivory on leaf-colonizing bacteria are242

potentially numerous. Leaf damage itself can release nutrients, alleviating resource constraints for bacteria243

while also creating routes for colonization of the leaf interior from the leaf surface27,28. Plant defenses244

induced by chewing herbivores could directly or indirectly alter interactions with bacteria independent of245

the physical effects of plant tissue damage. It is known that JA-dependent anti-herbivore defenses can246

suppress the subsequent activity of signaling pathways responsive to bacterial infection17, allowing bacteria247

(including strains of P. syringae) to reach higher densities within JA-affected leaf tissues29. Insects such as248

S. nigrita trigger such JA-dependent host defenses in bittercress19, and this form of defense signaling is249

widely conserved among diverse plant groups17. Released from top-down control, a diversity of resident250

microbes can then proliferate as defenses are more strongly directed against herbivory, which may manifest251

in community-wide patterns of abundance changes as noted in our study (Fig. 1).252

The hypothesis that anti-herbivore defenses pleiotropically increase bacterial growth is consistent with253

results from our greenhouse experiment. We found that the within-host fitness of several strains of254

putatively phytopathogenic P. syringae increased within bittercress leaves pre-treated with JA compared255

to mock-treated leaves (Fig. 2). Although our experiment is consistent with this plausible mechanism by256

which herbivores can facilitate bacterial growth within plants, it does not identify the proximal257
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mechanism(s) responsible for these effects. JA-induced defenses may have instead stressed the plants,258

decreasing basal tolerance to infection, or shunted resources towards investments which reduce the ability259

of plants to resist or tolerate bacterial infection30. Such net effects of JA induction on bacterial abundance260

are likely contingent on underlying constitutive levels of genetic resistance and/or tolerance to herbivory,261

traits which often exhibit quantitative variation within and among plant populations31. The role of host262

genetic variation in defense responsiveness phenotypes in mediating the impacts of herbivore attack on263

microbial plant colonization is an open avenue of future research.264

Finally, several other abundant bacterial groups (e.g., Sphingomonadaceae, Flavobacteriaceae)265

exhibited amplified abundance under insect herbivory in our field studies (Fig. 1). Functional studies266

examining finer-scale variation among genotypes of these relatively less well-studied bacterial groups would267

be highly fruitful for establishing a more general understanding of the mechanistic basis of plant–microbe268

interactions in the context of inducible defenses against chewing herbivores.269

Herbivore distributions can alter the spatial patterning of plant disease270

The impact of insect herbivory on phyllosphere bacteria can be observed at several spatial scales.271

Herbivore damage was highly clustered on a subset of hosts (Fig. 4), which is a pattern consistent with272

other plant–herbivore systems32 as well as many host–macroparasite systems more generally33. A potential273

accompanying effect of aggregated herbivore damage is to enrich bacterial infection on a subset of the host274

population (Fig. 4, Fig. S8), altering the spatial structure of growth and, potentially, transmission of275

plant-colonizing microbes. Uncovering the temporal dynamics of how herbivore aggregation precedes or276

follows microbial attack—or whether the two colonizers cyclically amplify one another—will require more277

controlled studies that manipulate the timing and density of herbivory itself.278

Regardless of the precise mechanisms resulting in such herbivore–microbe co-aggregation, plant279

patches with the highest levels of co-aggregation had substantially (∼ 50%) lower reproductive success280

compared to minimally-damaged plant patches (Fig. 4b). Although we cannot identify the cause of lower281

plant fitness from our study, the co-aggregation of these distinct plant colonizers may at least partly282

explain it. Whether these plants were more stressed to begin with or achieved lower fruiting success283

because of their infestation with herbivores and phytopathogens cannot be resolved without future studies284

which isolate the causal effects of single and multiple infection on plant fitness.285

What drives the highly skewed pattern of herbivory among host plants? Plant populations often286

display a patchwork of defensive phenotypes, influenced by plant abiotic stress, variation in the underlying287
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defensive alleles, or by defense induction from prior herbivore or microbial attack. While plant defenses can288

shape herbivore attack rates in the laboratory and over wide spatial extents31, less is known about how289

patterns of defense induction impact the population dynamics of insect herbivores32,34. Many insects are290

deterred by anti-herbivore defenses, but some specialist herbivores use these same cues as attractants owing291

to detoxification mechanisms which confer resistance to such defenses35. S. nigrita uses anti-herbivore292

plant defenses to locate host but also avoids high concentrations of defensive compounds when given the293

option19. Thus, the joint expression of positive chemo-taxis towards JA-inducible compounds, coupled to294

aversion of high levels of JA responsive defensive chemistry, may influence where herbivory becomes295

concentrated among plants in native bittercress populations.296

Results from our field hormone treatments using JA and SA both showed elevated patch-level S.297

nigrita leaf miner damage compared to mock-treated patches (Fig. S10). However, the statistical signature298

of these treatment effects was not clear enough to confidently conclude that our field trials substantially299

altered natural patterns of herbivory by this specialist, given the high degree of stochastic or unexplained300

variation in herbivore damage we observed across plant patches (Fig. S10, Table S5). Discovering the301

biotic and abiotic factors structuring herbivory patterns in natural host populations thus remains a302

challenge in this system36 as well as many others34, and we have not attempted to solve this problem in303

the present study. Nonetheless, our study suggests that predicting herbivore distributions may be key for304

understanding population-level distributions of plant-associated bacteria. Regardless of its causes, insect305

herbivore damage can be readily measured and incorporated into plant microbiome studies in order to help306

reveal the drivers of variation in microbiome abundance and diversity within plant communities.307

Quantifying bacterial loads is crucial for understanding the ecology of the308

microbiome309

The patterns of abundance variation among bacterial taxa across leaf types, when distilled into a310

community-level compositional metric, showed decreased ecological diversity (i.e., evenness) in damaged311

versus un-damaged leaves, resulting in overall compositional divergence between sample sets (Fig. 2–3).312

This results from particular taxa undergoing larger absolute changes in abundance than other taxa, which313

leads to stronger skews in the composition of the community calculated on the relative scale.314

Compositional analysis on its own would preclude inference of the direction or magnitude of changes in315

bacterial abundance37, even though this is of primary interest to researchers exploring the microbiome and316

its impact on host fitness25,38,39. Compositional methods are thus poorly suited to studies of the317
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population biology of microbiome-dwelling bacterial taxa when bacterial load varies or when microbial318

fitness is a desired response variable.319

Direct bacterial quantification25, as well as controlled DNA spike-ins40, can correct for biases and320

ambiguities inherent to compositional analyses. Our study provides an additional and novel framework for321

enabling standard high-throughput 16S sequencing approaches to provide quantitative measures of322

bacterial abundance when canonical approaches (e.g., qPCR) are infeasible due to host organelle323

contamination. Rather than being discarded, 16S read counts derived from host organelles—once324

curated—can provide an internal reference population against which the proportionality of other taxa can325

be measured41. While we have established the usefulness of our estimator of bacterial load (γ) using a326

paired culture-based experiment, this need not be the only way. Bacterial culturing is an intrinsically noisy327

means of enumerating bacteria, due to dilution and/or counting noise. In addition, chemically-mediated328

antagonism or facilitation among bacterial species can cause over- or under-detection of particular329

combinations of taxa on agar plates42. These limitations will no doubt set a lower limit to the resolution of330

biological effects one is capable of detecting with culture-dependent methods. Testing the generality of our331

approach across other plant–microbe systems, and with other means of enumerating bacteria in samples, is332

therefore a priority.333

Conclusions334

Our study emphasizes that large effects on the population biology of P. syringae, and many other lineages335

of leaf-colonizing bacteria, may stem from the action of insect herbivores. Biotic interactions such as336

herbivory are absent from the classic ‘disease triangle’ of plant pathology. The role of insect herbivores in337

P. syringae epidemiology—and plant–microbiome relations in general—has been under-appreciated.338

Variation in bacterial abundance across samples, and the implications of relative abundance changes for339

bacterial fitness, are not easily detectable via compositional analyses applied to 16S data, which typically340

do not utilize external or internal standards. Thus, studies aiming to decipher why plant microbiomes341

differ in structure or function should endeavor to quantify bacterial loads in order to retain this important342

axis of variation as a focal response variable, while also considering additional biotic interactions commonly343

encountered by the hosts under study.344
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Box 1: Devising an estimator of bacterial load from 16S data.466

Defining the estimator467

To establish an estimator of bacterial load using 16S sequence data, we hypothesized that the composition of the468

sequencing data, in terms of host- versus bacteria-derived 16S reads, may provide information about the underlying469

density of bacteria. This occurs, we reasoned, because DNA templates of the two sources compete as targets during470

the amplification reaction, and biases towards one or the other will accrue exponentially. By this logic, the471

logarithm of the relative abundance of bacteria–to–host 16S counts captures information about the density of472

bacterial cells in the starting material. Accordingly, for each sample, we calculated the following estimator473

γ = ln(rB/rH)

where rB and rH are the read counts of bacteria- and curated host-derived 16S counts for a given sample,474

respectively. rB can be calculated at any taxonomic level, ranging from the single bASV to all of the bacteria475

present in the sample, by summing the sequence counts at the desired taxonomic scale.476

Validating and deploying the estimator477
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from site ELWe validated this estimator empirically by examining the relationship between γ  and an indepen-

dent measure of bacterial abundance in leaf tissues derived from bacterial culturing of a subset of 

the samples from the EL study. These samples were surface-sterilized, homogenized, and plated 

on non-selective King's B media to enumerate bacterial colony forming units (CFU) per g starting 

leaf material, following Humphrey et al. [2014]. This approach is appropriate because a majority 

of bacterial taxa typically found to colonize leaf tissues can be cultivated in the laboratory on rich 

media [Lebeis et al., 2015; Humphrey et al., 2014].

We then estimated the slope and intercept of the relationship between observed log
10

 CFU g–1 leaf 

tissue (hereafter log CFU) and the predictor variable γ for this sample set using a Bayesian linear 

regression, which allowed us to directly incorporate uncertainty in model fit into downstream anal-

yses. We found a clear positive association between γ and log CFU, validating our usage of γ as 

an estimator of absolute bacterial abundance in leaf tissues.

We then deployed the validated estimator to test whether bacterial abundance as measured by γ 

was elevated in insect-damaged plant tissues. To begin, we modeled how γ varied across herbi-

vore-damaged and undamaged leaves for various bacterial taxa. The illustrating example on the 

right shows that the distributions of γ calculated for all bacteria are elevated in herbivore-damaged 

bittercress tissues sampled from both sites EL and NP.

Finally, we used posterior draws of parameters from the Step 2 model to predict how variation in 

γ translates into predicted bacterial load as expressed in log CFU. To the right, we can see that 

elevated γ in herbivore-damaged tissues translates into higher bacterial loads when predicted 

based on the relationship between γ and log CFU. Further details on how we specified and 

estimated models, as well as how we incorporated parameter uncertainty throughout this 

approach, can be found in Methods: Quantifying & modeling bacterial abundance patterns.

site:

herbivore damage

Step 2: Quantify relationship between 16S data and bacterial load.

Step 1: Collect paired tissue samples and count bacteria independently.

Step 3: Model relationship between γ and herbivore damage.

Step 4: Transform results for γ into predicted bacterial load.

intercept: 

slope: 

4.92 [4.74; 5.11]
0.29 [0.23; 0.35]

[95% credible interval]
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Figure 1: Pervasive increases in endophytic bacterial load in herbivore-damaged leaves. a–b.

Posterior predicted (‘pp.’) infection intensity of bacterial amplicon sequence variants (bASV) from the 14
most prevalence bacterial families show variation in the extent of elevated growth in herbivore-damaged leaf
tissue. a. Heatmap shows median predicted log10 bacterial abundance (colony-forming units, CFU) per
g starting leaf material) from 200 posterior simulations of the best-fitting model of each bacterial family
separately (see Methods). b. Median (white), 95%, and 50% quantiles of the median difference in the
number of predicted bacterial cell divisions (i.e., doublings) achieved in herbivore-damaged leaves compared
to undamaged leaves, for sites EL and NP separately.
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Figure 2: Herbivore-damaged leaves harbor compositionally diverged microbiomes with reduced

ecological diversity shifted heavily towards Pseudomonadaceae. a. log10 relative abundance of each
family in undamaged (x-axis) versus damaged (y-axis) samples shows skew towards Pseudomonadaceae (Ps)
and relative reductions of abundance among most other taxa at both study sites, including Sphingomonas

(Sph) which shows a ∼ 2-fold increase in number of doublings in herbivore damaged leaves. b. Composi-
tional changes from the amplification of already abundant taxa (e.g., Pseudomonadaceae) produces reduced
community-level evenness (J ′) and leads to compositional divergence (i.e., β-diversity) between damaged
and undamaged leaves at both study sites (c).
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Figure 3: Eliciting plant defenses against chewing herbivores alters within-host performance of

putative phytopathogens. a. Experimental infections with 12 Pseudomonas spp. strains, concurrently
isolated from EL study site20, show strain-to-strain variation in growth under mock-treated (M) and jasmonic
acid (JA) induced plants. Heatmap shows median log10CFU g−1 surface sterilized plant tissue 2 d post
inoculation. Maximum likelihood phylogeny of strains estimated with four housekeeping loci (2951 bp)
from20. b. Median, 95%, and 50% quantiles of the posterior difference between the number of bacterial
doublings attained by bacteria growing in JA- versus mock-treated leaves (see Supplemental Methods). c.

Compositional analysis of relative abundances calculated from (a) reflect decreased evenness (J ′; d) in JA-
treated plant tissues, leading to overall community-level divergence (e). Median, 95%, and 50% quantiles
from 200 posterior simulations of abundance (c–e) from the best-fitting model fit to data in (b).
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Figure 4: Co-infection by herbivores and phytopathogenic bacteria is aggregated across plant

populations and is associated with lower plant reproduction. a. Median, 95%, and 50% quantiles of
200 posterior simulations of predicted (‘pp.’) bacterial load across plant patches (n = 110 at site NP; n = 16
stems sampled per patch). Density plot above x-axes exhibits right-skewed (i.e., aggregated) distribution
of herbivore damage at the plant patch level. b. Patch-level herbivory (and thus co-infection intensity) is
associated with decreased fruit-set in this native plant population. Plotted are raw fruit-set data summed at
the patch level (n = 16 stems per patch), with marginal effects slope (and its 95% credible interval) plotted
after accounting for average plant height (see Table S4).
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