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Abstract

Integrated pest management relies on insect pest monitoring to support the decision of counteracting a given level of infes-
tation and to select the adequate control method. The classic monitoring approach of insect pests is based on placing in 
single infested areas a series of traps that are checked by human operators on a temporal basis. This strategy requires high 
labor cost and provides poor spatial and temporal resolution achievable by single operators. The adoption of image sensors 
to monitor insect pests can result in several practical advantages. The purpose of this review is to summarize the progress 
made on automatic traps with a particular focus on camera-equipped traps. The use of software and image recognition algo-
rithms can support automatic trap usage to identify and/or count insect species from pictures. Considering the high image 
resolution achievable and the opportunity to exploit data transfer systems through wireless technology, it is possible to have 
remote control of insect captures, limiting field visits. The availability of real-time and on-line pest monitoring systems from 
a distant location opens the opportunity for measuring insect population dynamics constantly and simultaneously in a large 
number of traps with a limited human labor requirement. The actual limitations are the high cost, the low power autonomy 
and the low picture quality of some prototypes together with the need for further improvements in fully automated pest 
detection. Limits and benefits resulting from several case studies are examined with a perspective for the future development 
of technology-driven insect pest monitoring and management.

Keywords Remote control trap · Long distance monitoring · Camera-based trap · Automatic trap · Electronic trap · e-trap · 
Smart trap · Image sensor

Key Message

• Insect pest monitoring is typically performed by human 
operators through costly and time-consuming on-site vis-
its, resulting in limited spatial and temporal resolution;

• The advent of new technology in remote sensing, elec-
tronics and informatics opens the opportunity for moni-
toring at a distant location;

• The use of camera-equipped traps allows optimization of 
monitoring costs and effectiveness;

• Image analysis algorithms can provide automatic detec-
tion and counting of insect pests captured in traps with 
limited human support.

Monitoring insect pests with new 
technologies

Insect pest monitoring is typically performed in agricul-
ture and forestry to assess the pest status in given loca-
tions (i.e., greenhouse, field, orchard/vineyard, forest) 
by collecting information about the target pest presence, 
abundance, and distribution. Within the integrated pest 
management programs in agriculture, the final goal of 
insect pest monitoring is to provide growers with a practi-
cal decision-making tool. For instance, the intervention 
thresholds are essential to counteract a given insect pest 
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infestation in a specific field in the best moment, optimiz-
ing the control strategy and the grower inputs on that crop. 
Monitoring data can also be used to implement predic-
tion phenological models to forecast an insect population 
outbreak, providing additional information to improve the 
control techniques and optimize insecticide usage (Dent 
2000). Similarly, in forestry the detection and monitoring 
of both native insect pests and invasive species is a crucial 
issue to set up suitable managements programs, consider-
ing the severe impact that a forest insect species can have 
on the biodiversity, ecology, and economy of the infested 
area (Brockerhoff et al. 2006).

Insect pests and beneficials may be monitored using a 
wide range of techniques, including visual inspection, suc-
tion traps and passive methods (McCravy 2018). The latter 
are among the most widely used and typically consist of 
pitfall and sticky traps for agricultural pests and multifun-
nel or panel traps for forest pests. Monitoring traps may be 
colored (chromotropic traps) or baited with attractants, such 
as pheromones or food baits. Practically, the monitoring 
and management of a wide range of insect pests is based on 
trap captures to estimate pest population density and pre-
dict damage (Suckling 2016). Traps are then observed by 
skilled operators, which need to enter every single location 
on a regular basis to assess the number and determine the 
species of the trapped insects in every single trap (South-
wood and Henderson 2000). Another possibility for insect 
pest monitoring relies on active sampling by assessing the 
signs of damages or through canopy beating (i.e., frappage) 
for particular species, such as for psyllids in apple orchards 
(Fischnaller et al. 2017). In both cases, the operator has to 
directly visit the points of observation. These manpowered-
assisted monitoring systems are consistently associated with 
high labor costs and, in some cases, may result in low effi-
ciency, limited promptness of reaction and an inadequate 
sample size according to the needs. When a monitoring 
visit in an agricultural or forest parcel concludes negligible 
infestation levels, the field visit could have been avoided or 
postponed; however, with traditional approaches, the direct 
human presence in situ is strictly required to confirm the 
actual infestation status. When performed manually after a 
field visit, data acquisition and data analysis typically result 
in a delay in the awareness of the updated pest pressure sta-
tus, cannot be synchronized in multiple locations and may be 
affected by biases due to subjective evaluations. In addition, 
human-driven insect pest monitoring is often performed in 
easily accessible locations, in a limited number of points 
and at best on a weekly basis interval for practicality and 
cost reasons. These aspects lead to a major limitation of the 
classic monitoring approach, yielding poor spatial and tem-
poral resolution of insect pest monitoring programs, which 
occasionally fail to make timely decisions about insect pest 
control techniques.

In the era of globalization, ‘transdisciplinary’ is also a 
keyword used in agriculture and forestry, considering the 
economic, environmental, and social sustainability of the 
agricultural and forest systems. Expert systems [such as the 
decision support systems (DSSs)] are a clear exemplifica-
tion of this transdisciplinarity (Yelapure and Kulkarni 2012; 
Deepthi and Sreekantha 2017). DSSs, which are coined in 
numerous ways for many insect pests, diseases and weeds 
(Damos 2015), can be practically applied with a concrete 
benefit for the growers on a given productive area, overlay-
ing several topics and simultaneously addressing numerous 
issues, including trap-based monitoring information (Jones 
et al. 2010). In this context, the advent of high technology 
has widened the possibilities for insect pest monitoring. The 
turning point has likely been the availability of real-time 
monitoring opportunities through remote sensing (Ennouri 
et al. 2020). Given that insect trapping with different trap 
designs and baits according to the target species is the most 
widespread approach in insect pest monitoring, the oppor-
tunity to know what happens inside an insect trap from a 
distant location opens a significant opportunity to conceive 
differently the monitoring of an insect population.

Several research articles aimed to improve insect pest 
monitoring by adding electronic devices to the monitoring 
traps. The first examples date back to the 1980s with optical 
sensors integrated into sex-pheromone baited traps to auto-
matically count captures of the tobacco budworm Heliothis 

virescens Fabricius and the cabbage looper Trichoplusia ni 
Hübner (both Lepidoptera: Noctuidae) (Hendricks 1985). 
A significant advance was made with the remote transmis-
sion of the recorded data to a computer, as in the case of 
the automatic detection of the boll weevil Anthonomus 

grandis Boheman (Coleoptera: Curculionidae) (Hendricks 
1990). One of the first applications of cameras for insect pest 
monitoring was reported by Kondo et al. (1994) to moni-
tor the Asiatic rice borer Chilo suppressalis Walker (Lepi-
doptera: Crambidae) and the tobacco cutworm Spodoptera 

litura Fabricius (Lepidoptera: Noctuidae). During the last 
25 years, thanks to the significant technological progress and 
in parallel to the development of camera traps for wildlife 
monitoring (Rovero et al. 2013), camera devices have been 
increasingly exploited for insect pest monitoring. Perform-
ing a basic literature search in a scientific database (Web 
of Science 2020) with the keywords ‘camera* OR video* 
OR smart OR automatic OR automated OR electronic OR 
long distance OR remote’ AND ‘monitoring OR detection’ 
AND ‘insect OR pest’ in the TITLE publication for the last 
century, more than 90% of the papers found (out of less 
than one hundred published papers) have been published in 
the last 25 years (Fig. 1), demonstrating that this is a quite 
recent discipline. The present review focuses on insect pest 
monitoring with camera-equipped traps with the purpose of 
presenting the advantages and limits of using a camera and 
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therefore exploiting insect capture pictures to replace the 
classic manpowered on-site trap check in both agricultural 
and forestry frameworks.

Camera-equipped traps: design based 
on species

Typically, an automatic trap equipped with a camera involves 
two modules: the hardware and the software. The hardware 
is typically composed of the trap structure containing the 
bait and retaining the trapped insects, an electronic box 
including the camera, a data transmission modem, a bat-
tery, and eventually an external power supply, such as a solar 
panel. The software is composed of the online repository in 
which the capture data pictures are stored and accessed plus 
optional image analysis algorithms to automatically identify 
and count the captures. Trap design may vary according to 
the target pest to be monitored, as detailed in this section.

Various papers describe prototypes of camera devices 
coupled with a sticky trap (sticky liners, where the insect is 
immobilized in the glue and dies), primarily for the moni-
toring of adult moths given that many Lepidopteran species 
have a known long-range sex pheromone (Suckling 2016). 
For instance, Guarnieri et al. (2011) realized an automatic 
trap prototype modifying a commercial trap (Pomotrap®, 
currently Carpo® by Isagro S.p.A., Milan, Italy) with data 
acquisition and data transfer systems to monitor the cod-
ling moth Cydia pomonella L. (Lepidoptera: Tortricidae) in 
apple orchards (Fig. 2a). A similar prototype was proposed 
by Ünlü et al. (2019) to monitor the European grapevine 
moth Lobesia botrana Denis & Schiffermüller (Lepidop-
tera: Tortricidae) in vineyards. This later study proposed 
a delta-shaped trap (Fig. 2b) with a high-definition (HD) 

digital camera, a solar panel, a charging unit and a battery, 
and a general packet radio service (GPRS) modem incorpo-
rated into the structure. Another example using sticky delta 
traps is reported by Shaked et al. (2018), where the so-called 
‘Jackson trap’ was equipped with a camera device for the 
automatic monitoring of the Mediterranean fruit fly Cerati-

tis capitata Wiedemann (Diptera: Tephritidae) (Fig. 2c, d). 
Bucket traps are typically adopted to monitor fruit flies as 
described by Doitsidis et al. (2017), where a camera-based 
electronic McPhail trap was used to monitor by remote the 
olive fruit fly Bactrocera oleae Gmelin (Diptera: Tephriti-
dae) (Fig. 2e). Remote monitoring using capture images has 
been exploited not only for Lepidopteran or Dipteran spe-
cies; several papers reported the use of different trap designs 
supplied with camera devices for other insect pests, such as 
some Coleopteran. In particular, López et al. (2012) modi-
fied a common bucket trap for the red palm weevil Rhyncho-

phorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) 
to host image sensors, while Selby et al. (2014) equipped the 
conventional pyramidal trap used to monitor the plum curcu-
lio Conotrachelus nenuphar Herbst (Coleoptera: Curculio-
nidae) with a camera. In the same way, Rassati et al. (2016) 
coupled camera devices with a multifunnel trap to establish 
remote monitoring of forest longhorn beetles (Coleoptera: 
Cerambycidae) and bark beetles (Coleoptera: Scolytinae) 
(Fig. 2f, g and h).

In all these cases, the key aspect regarding the trap design 
is to provide a similar trap size and shape to what is usually 
assumed to work effectively for that given target pest, minimiz-
ing the electronic package dimension and avoiding changing 
the trap entrance features. In fact, the efficacy of a new pro-
totype needs to be validated in comparison to commercially 
available traps as clearly reported by Guarnieri et al. (2011). In 
that study, for instance, the prototype trap opening width was 

Fig. 1  Literature published on 
the topic of remote insect pest 
monitoring with new tech-
nologies (searched in Web of 
Science 2020, using keywords 
‘camera* OR video* OR smart 
OR automatic OR automated 
OR electronic OR long distance 
OR remote’ AND ‘monitoring 
OR detection’ AND ‘insect OR 
pest’ in the TITLE publication 
for the last century)
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not modified, and despite the new trap design (that included 
an upper box containing the electronic components compared 
to the commercial Pomotrap®), no difference in the trap effi-
ciency (i.e., number of captures) was reported between the 
automatic prototype and the unmodified commercial trap.

Types of digital camera

Using capture pictures to assess insect occurrence and 
identification in traps by remote location implies both 

Fig. 2  Experimental prototypes of automatic traps integrated with 
electronics. Camera-based sticky traps reported by Guarnieri et  al. 
2011 (a); Ünlü et  al. 2019 (b); Shaked et  al. 2018 (c and d). Cam-

era-based bucket traps reported by Doitsidis et  al. 2017 (e); Rassati 
et al. 2016 (f, g and h). Infrared sensor-based bucket traps reported by 
Jiang et al. 2008 (i and j); Holguin et al. 2010 (k and l)
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sufficiently high image resolution and picture sharpening, 
particularly according to insect size and morphometric 
characteristics. Therefore, concerning camera types, it is 
necessary to guarantee adequate picture quality together 
with limited cost and power consumption. As an example, 
López et al. (2012) selected a limited resolution camera 
(C328-7640 color camera from Comedia that produces 
JPEG-compressed images at a maximum resolution of 
640 × 480 pixels provided by the OmniVision OV7640 
image sensor) for R. ferrugineus given that it is a large-
size weevil. For smaller insects, such as fruit flies, a higher 
resolution camera is required. For instance, Doitsidis 
et al. (2017) selected a 2-Mpixel camera and Shaked et al. 
(2018) selected a 5-Mpixel camera (Omni Vision OV5647 
NOIR Rasp Pi) to monitor B. oleae and C. capitata, 
respectively. For C. pomonella, which is approximately 
15–20 mm long, Guarnieri et al. (2011) used a program-
mable smartphone (S60  3rd edition devices, with Symbian 
ver.9.0 operating system) with a 3-Mpixel incorporated 
camera, providing sufficient image quality to remotely 
recognize the captures. Instead, Selby el al. (2014) modi-
fied an automatic camera trap equipped with a pyroelectric 
sensor that was originally applied to monitor mammals 
to detect the entrance of the plum curculio C. nenuphar 
(5 mm long) into the collecting container. These types of 
cameras (Extreme 2 model, GSM Outdoors, Grand Prai-
rie, TX; and, L-20 model, Moultrie Feeders, Alabaster, 
AL), which are triggered by an infrared motion sensor, 
are activated any time an organism enters the photo space. 
Thus, multiple shots are taken in quick succession, and all 
the photos are stored in a memory card with a time and 
date stamp. Finally, Rassati et al. (2016) evaluated the per-
formance of two cameras resulting in the modification of 
home security cameras equipped with a wide-angle lens. 
These cameras were internally equipped with a recharge-
able battery pack, a subscript identity module (SIM) card, 
a general packet radio service (GPRS) modem for connec-
tion, and a secure digital (SD) memory card. The two cam-
eras, RedEye® and BioCam® (both iDefigo/Mi5 Security, 
Auckland, New Zealand), differed in image resolution (1 
Mpixel and 3 Mpixel, respectively), the presence of an 
additional external rechargeable battery pack, a solar panel 
and a built-in flash (present only in the BioCam). These 
authors took pictures of wood-boring insects (Coleoptera: 
Cerambycidae and Scolytinae), and only the largest spe-
cies, such as longhorn beetles (> 8 mm of length) and Ips 
spp. (4–5 mm of length) among scolytines, were identified 
at the genus level by image analysis.

In all these papers, very few studies provided minimal 
information about optical issues (e.g., cone of vision, focal 
length, depth of field), which are all key aspects to produce 
a focused and sharp image of the target insect. For instance, 
Guarnieri et al. (2011) reported that the cone of vision 

was less than 210 mm in height. In contrast, in Selby el al. 
(2014), the camera focal length was reduced from several 
meters to 9 cm, but the overall optical description is often 
poor and incomplete. Finally, it must be considered that 
the higher the optical quality of the camera, the higher the 
cost of the device, which may represent a limiting factor for 
extensive usage in pest monitoring. For example, Rassati 
et al. (2016) reported that the security cameras RedEye® 
and BioCam® used in their study had a similar cost to that of 
a medium–high range smartphone, likely limiting the poten-
tial massive adoption of these devices.

Picture acquisition

To optimize the energy consumption and guarantee sufficient 
operation longevity, the photo collection time is typically 
programmed at defined time intervals, resulting in a limited 
number of records per day. In fact, the major limitation of 
taking repeated shots is power consumption, which is mainly 
related to data transmission. Therefore, the automatic traps 
developed to date are typically set to take a daily picture 
(Guarnieri et al. 2011; Ünlü et al. 2019). However, multi-
ple shots, including up to three photos per day, have been 
reported for experimental prototypes (Rassati et al. 2016), 
such as those recently available for Trapview® (EFOS d.o.o, 
Hruševje, Slovenia) commercial automatic traps (Trapview 
2020). These latter camera-based monitoring traps were 
adapted in Lucchi et al. (2018) to monitor the daily activ-
ity of L. botrana males to identify the best time intervals 
in which synthetic sex pheromone releases are temporized, 
optimizing the mating disruption technique using puffer 
dispensers. In that study, the camera-equipped traps were 
customized with increased battery capacity and larger solar 
panels (compared to the standard cameras supplied by the 
company) to provide a sufficient power supply to take one 
picture every 30 min (therefore up to 48 pictures per day 
for the whole study duration of 130–140 days). With such a 
power improvement, Lucchi et al. (2018) enabled the device 
to deliver a very frequent capture record. In contrast, effec-
tive real-time and continuous monitoring (i.e., 24 h per day 
with no interruption) is typically characteristic of other 
detecting sensors different from cameras. For instance, infra-
red sensors exploit an electric signal generated every time an 
insect passes through a detection space, generating a count. 
These sensors make it possible to properly investigate insect 
activity and behavior. For instance, Kim et al. (2011) dem-
onstrated that the diel attraction rhythm of the male oriental 
fruit moth Grapholita molesta Busck (Lepidoptera: Tortri-
cidae) to the female sex pheromone ranged from 4:00 pm to 
midnight based on uninterrupted infrared-based monitor-
ing (which was operative for more than 6 months, covering 
the whole pest flight seasonal period). This motion sensor 
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circuit based on the infrared beam has also been exploited 
by Selby et al. (2014) to activate the camera, as described in 
the previous paragraph regarding camera types. In that study, 
the presence of arthropods in the photo space was always 
recorded by the camera, but the occurrence of generalist 
predators, such as jumping spiders (Araneae: Salticidae) 
and earwigs (Dermaptera: Forficulidae), lingering in the 
trap entrance generated multiple photo events and, in some 
cases, blocked the sensor.

Picture acquisition can therefore be set at defined and 
limited timings or can be taken every time an insect enters 
a gate and activates a movement sensor. In the first case, 
which is the most commonly adopted, the temporal reso-
lution achievable is greater than that achievable with clas-
sic manpower-assisted monitoring, typically passing from 
weekly to daily records. It is important to define the most 
appropriate moment to take the daily picture, taking into 
account the external light and weather conditions (e.g., 
brightness, shadows caused by the sun position, dew and 
water condensation on the camera lens in the early morn-
ing), which could impact the image quality. With the sec-
ond option, the frequency of consecutive capture records is 
largely improved by having a picture at every event of trap 
entrance (continuous monitoring) and better fits the research 
purposes. However, since the sensors used to trigger the pic-
ture are not able to identify the insect species, lure and trap 
selectivity and trap design need to be carefully considered 
because they can negatively impact proper picture acquisi-
tion and data collection as reported by Selby et al. (2014).

Data transmission systems

Among the case studies cited in this review, only one proto-
type (Selby et al. 2014) reported the lack of a data transfer 
system. The necessity of remote communication between 
the trap and a remote control station provides the advantage 
of avoiding, limiting or postponing field visits. In the study 
of Selby et al. (2014), the need to wait for a field visit or 
the end of the monitoring period not only to check the trap 
captures but also to discover and fix any operating problem 
and component failure was a limitation. For instance, photo 
omissions due to sensor wire failure (imputable to weak, 
broken or wet circuit connection discovered when physically 
checking the traps) and water leakage (which compromised 
the camera reliability in the first year of study and caused 
sensor short circuit due to moisture during the second year) 
were recorded in situ by a human operator since there was 
no communication between the automatic trap and a remote 
control station. A part from this example, the adoption of a 
camera device is usually coupled with a data transmission 
system. In Guarnieri et al. (2011), a programmable smart-
phone was used to take and send capture pictures throughout 

an Enhanced Data rates for GSM Evolution/general packet 
radio service (EDGE/GPRS) network; similarly, in Ünlü 
et al. (2019), the screenshots of the camera captures were 
accessed daily via the Internet due to the presence of a 
GPRS modem that allowed remote data transmission. In 
Doitsidis et al. (2017), once the captured picture was taken 
and stored locally on the SD memory card, wireless trans-
mission was initiated using the global system for mobile 
communications (GSM) module. Additionally, in the case of 
commercial automatic traps (Lucchi et al. 2018), a cellular 
network was used to send the data captures to an accessible 
web application where the pictures were stored.

The prototypes of automatic traps reported so far were 
realized to work independently from other devices, each 
with an autonomous data transmission system. A different 
approach consists of many camera-equipped traps intercon-
nected among them and therefore facilitating communica-
tion between one with the other with a single gateway for 
data transfer. López et al. (2012) evaluated a prototype of an 
autonomous wireless image sensor network for R. ferrug-

ineus monitoring, working in an unattended mode (with no 
need of maintenance during the operational life of the trap), 
reducing the costs and increasing the temporal resolution 
of the monitoring with capture data available in real-time 
through an Internet connection. They deployed their image 
sensor-equipped traps uniformly within the monitoring area 
(i.e., following a mesh pattern) to create a trap network, in 
which each trap (forming a node) was in contact with at least 
another trap (therefore another node) in a connected wireless 
sensor network that communicated with a control station 
(i.e., a PC). Each sensor node was composed of a camera, 
a radio transceiver, and a microcontroller able to manage 
and transfer images. According to the radio transceiver (and 
its transmission power), the radio coverage (and the envi-
ronmental noise), and the data transmission rate (function 
also of the image quality), the point-to-point communication 
distance can vary. In their study, the authors operated in 
conditions of very limited area coverage with a maximum 
140 m between each node and the control station (assuming 
a single-hop scenario, where each node directly communi-
cated with the control station). The same approach exploit-
ing interconnected nodes was also adopted by Tirelli et al. 
(2011) in a greenhouse, by Priya et al. (2013) and by Shaked 
et al. (2018) in the field. In these cases, one central control 
station had the task of collecting all the pictures from the 
surrounding nodes and communicating with the exterior of 
the field all the data provided by the nodes network. Adopt-
ing this approach, there is the opportunity to create a high-
resolution monitoring grid within each location.

Traps can be remotely monitored via the Internet using 
wireless communication technology. In some cases, each 
trap is individually operative (singe-trap monitoring 
unit). However, in other case studies, a network of traps is 
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interconnected and operates as a complex of devices where 
the data transfer system relies on a single shared gateway 
(multiple nodes with a central control station). While the 
advantage of having an independent trap is clear (i.e., it 
can be placed anywhere there is a connection regardless of 
the location of other traps), the use of trap networks with 
interconnected nodes can allow a considerable increase in 
the monitoring resolution in a given location (according to 
the number of nodes and the feasible trap distance between 
them).

Insect pest identi�cation and count

Capture identification and counting can be performed manu-
ally or by exploiting image processing software. According 
to Sciarretta and Calabrese (2019), the monitoring systems 
can be classified as (i) fully automated, when the system is 
equipped with software for image interpretation and species 
identification of the captured insects; (ii) semiautomated, 
when a remote human operator has to identify and count 
the captured insects by watching the images taken by the 
camera-equipped trap.

In some of the case studies reported here (Guarnieri 
et al. 2011; Rassati et al. 2016; Shaked et al. 2018; Ünlü 
et al. 2019), the captured insects were checked manually by 

remote, and the images were observed by the human eye via 
computer or smartphone. This approach requires a trained 
observer in the control station to properly identify the insect 
species, and despite actually avoiding the field visit, the pro-
cess is time-consuming. As reported by Ünlü et al. (2019), 
the manual count and identification can provide very high 
accuracy on the number of target moths captured. However, 
these semiautomated systems require a certain number of 
man-hours; therefore, a part of the labor cost in the trap 
check is not avoidable. In addition, insect size can be an 
issue. In Rassati et al. (2016), all the trapped wood-boring 
insects were identified at the family level from the pictures. 
For longhorn beetles, it was always possible to reach the 
genus level. However, for bark beetles, only one genus was 
large enough (i.e., Ips) to be determined through manual 
picture analysis.

To facilitate the observer, image processing algorithms 
can be used to provide identification and automatic counts 
of the insects (Silveira and Monteiro 2009; Priya et  al. 
2013; Kang et al. 2014; Upadhyay and Ingole 2014; Wen 
et al. 2015; Ding and Taylor 2016; Bjerge et al. 2020). In 
some cases, the accuracy of the automatic count needs to 
be verified and validated by a human expert. For instance, 
Trapview® commercial camera-based automatic traps auto-
matically process high-resolution pictures, providing a very 
precise basic count of the captures for different insect pest 

Fig. 3  Automatic traps 
equipped with high-resolution 
cameras, solar panels, tempera-
ture and humidity sensors and 
an electronic system for data 
acquisition and transfer control-
lable from distant locations: 
self-cleaning funnel type trap 
(a) and capture picture of Heli-

coverpa armigera Hübner auto-
matically marked and counted 
(b); Trapview standard trap 
installed in an apple orchard 
(c) and capture picture of 
Cydia pomonella L. automati-
cally marked and counted (d) 
(TrapView, Hruševje, Slovenia)
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species and having a manual confirmation included as part 
of its customer service (Trapview 2020) (Fig. 3). Similar 
commercial services with automatic insect counts are cur-
rently provided by different companies and available for 
several insect pests, such as iSCOUT® (Pessl Instruments 
2020) and SightTrap® (Insect Limited 2020).

The development of fully automated insect counts was 
originally based on motion sensors (Hendricks 1985, 1990; 
Kliewe 1998; Tabuchi et al. 2006) and has been exploited 
for several insect pests in recent decades. In fact, the exploi-
tation of photointerruption sensors (e.g., infrared sensors 
generating an electric signal) is a quick approach to count 
hundreds of individuals automatically, such as in the case of 
fruit flies, as reported, for instance, with a double-counting 
method for the oriental fruit fly Bactrocera dorsalis Hendel 
(Diptera: Tephritidae) (Jiang et al. 2008, 2013; Okuyama 
et al. 2011) (Fig. 2i, j) or for C. capitata (Goldshtein et al. 
2017). However, this electric signal-based approach in some 
cases could result in a very poor accuracy of the monitoring 
system, as shown by Holguin et al. (2010) for the automated 
counting of C. pomonella and G. molesta by using electronic 
bucket traps (Fig. 2k, l). These authors developed a sys-
tem in which when the moths entered the trap, they became 
intoxicated by an insecticide-impregnated strip before fall-
ing down through the funnel inside the trap and passing by 
the optical sensor. However, these tortricid moths were not 
killed immediately and were still active inside the trap, fly-
ing up and down through the sensor several times and there-
fore causing an overestimation of the counts.

Image processing techniques and computer vision have 
been applied for the automatic identification of several 
insect pests, such as the diamondback moth Plutella xylos-

tella L. (Lepidoptera: Plutellidae) (Shimoda et al. 2006), 
the Queensland fruit fly Bactrocera tryoni Froggatt (Dip-
tera: Tephritidae) (Liu et al. 2009), and the rice bug Lep-

tocorisa chinensis Dallas (Hemiptera: Alydidae) (Fukatsu 
et al. 2012). Doitsidis et al. (2017) developed a detection 
and recognition algorithm using machine vision techniques 
to allow the automatic insect count of B. oleae. However, 
when similar species are attracted towards the same trap a 
trained operator is needed to identify the target species. For 
instance, the McPhail ‘e-trap’ developed for B. oleae (Doit-
sidis et al. 2017) also attracted other Tephritid species, such 
as C. capitata, which were easily distinguished by the human 
operator but not by the computer algorithm.

Miscount and interpretation errors can also occur with the 
distant readings of capture pictures performed by the human 
eye since the lure selectivity and the synchronous occurrence 
of more species with similar morphological characteristics 
can play an important role in the accuracy of insect cap-
ture identification. In her Ph.D. thesis, Hári (2014) noted 
the remote identification issue related to the simultaneous 
capture of G. molesta and the plum fruit moth Grapholita 

funebrana Treitschke (Lepidoptera: Tortricidae), which 
have a similar aspect and size. However, in general, the high 
specificity of the trap and bait together with high-quality 
pictures provide good accuracy for insect pest identification 
and count (both manually and automatically).

Power supply for the electronic devices

López et al. (2012) demonstrated that within remote moni-
toring, image wireless transmission is the most demand-
ing energy operation, which can be optimized to improve 
the image compression system. In their work, the authors 
selected a lithium thionyl chloride battery given its high-
performance characteristics and longevity (over 10 years). 
To minimize the power consumption, the operating software 
was set in standby mode when not in running mode with the 
possibility to define the image capture period with capture 
cycles that ranged from 30 min to one day. The power con-
sumption during running mode was a function of the image 
size and image capture period and increased in the case of 
packet error delivery (due to interferences in the data trans-
mission). In Guarnieri et al. (2011), an external power unit 
alimented with batteries was added to allow an operating life 
of the electronic devices of approximately two months. A 
similar life span was observed by Rassati et al. (2016) using 
an external rechargeable battery pack.. Doitsidis et al. (2017) 
reported the use of a 12-V (7 Ah−1) battery as sufficient 
for continuous operation throughout the summer period of 
monitoring. In Ünlü et al. (2019), a 12-V (7 Ah−1) battery 
plus a solar panel and a charging unit allowed monitoring of 
L. botrana flights throughout the entire season (from April 
to September). Similarly, in Shaked et al. (2018), a 12-V 
(24 Ah−1) battery together with a battery charge controller, 
a step-down converter (from 12 to 5 V) and a solar panel (5, 
15 or 50 W, according to the experiment) allowed the field 
trials to be conducted uninterruptedly for up to three months 
(according to the pest occurrence and crop phenological 
stage). Finally, in Selby et al. (2014), the batteries of some 
electronic components had to be changed every 2–4 days for 
proper operation due to the energy requirements and battery 
author choice for each electronic device present in their pro-
totype. In that study, the camera unit required 4 C batteries, 
the white LEDs and the infrared emitter required 2 AA bat-
teries each, and the infrared detector required a 9 V battery 
(all conventional and disposable alkaline batteries for cost 
reasons). However, in the discussion of their work, Selby 
et al. (2014) showed the perspective for a practical improve-
ment of their system to face this power supply limit using, 
for instance, different rechargeable batteries eventually in 
combination with a solar panel.

The power supply for independent trap units installed 
in the field with no direct power access is bonded to a 
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sufficiently durable battery and/or to the opportunity of 
combining a rechargeable battery with a solar panel. In the 
various automatic trap prototypes examined in this review, 
when using external additional batteries or solar panels, the 
power supply was never an issue.

Requirements for developing an e�cient 
camera-equipped trap prototype

Camera-equipped traps can be relatively easily tailored 
given the necessary electronic and informatics expertise. 
As reported in Table 1, some basic requirements need to be 
taken into account during prototype development to guar-
antee optimal system functionality. Selby et al. (2014) fixed 
six criteria for the evaluation of their automatic prototypes, 
including the transferability of the prototype design devel-
oped into mass-produced units. This aspect should always 
be considered from the beginning of prototype development. 
In particular, the selection of electronic components should 
be focused on high quality, low cost, easily accessible, and 
largely available items to potentially allow the large-scale 
exploitation of a worthy prototype.

To achieve the transferability of a trap prototype to the 
final users, among the numerous aspects listed in Table 1 
there are few crucial factors particularly relevant: (i) a proper 
trap design and trapping mechanism according to the spe-
cies to be monitored (Muirhead-Thompson 2012); (ii) a suf-
ficient image quality provided by high-resolution cameras; 
(iii) a suitable power supply to cover an adequate life span 
of the electronic part; (iv) an affordable cost that can allow 
an extensive adoption of such tool.

Trap devices and monitoring costs are essential to adopt 
new technologies, including automatic traps. A recurrent 
aspect in the various publications examined in this review 
is the lack of economic evaluation, in which the analysis 
of costs and benefits has been done in terms of the effec-
tive value of an automated monitoring system, including the 
costs of the materials (camera device and other related elec-
tronic parts, software and algorithm). One of the few exam-
ples that mentioned an economic evaluation was provided by 
Ünlü et al. (2019). These authors stated that the main advan-
tage of their camera-equipped trap was the opportunity to 
perform accurate monitoring in a remote location, therefore 
solving the logistic issue and saving time, labor and money. 
According to the authors’ calculation, the value of a camera-
equipped trap was ca. 250 $, while the cost of a weekly field 
visit in their remote location was 125 $. Thus, six months of 
in situ monitoring resulted in twelve times the actual value 
of the automatic trap. The economic aspect is determinant 
in the decision of adopting an automatic pest monitoring 
system on a large scale and should be better addressed in 

future publications to provide more monetary data useful 
for prototype comparisons.

Reasons to adopt an automatic trap 
and possible limits in their use

There are several advantages in the adoption of automatic 
traps equipped with a camera device for insect pest moni-
toring as listed in Table 2. Due to the constant and continu-
ative signs of progress in the new technologies, when the 
cost of these advancements will be practically reachable by 
growers and forest managers, automated monitoring could 
be largely exploited worldwide in numerous agricultural, 
horticultural and forest systems for several insect pest spe-
cies. The opportunity to detect an insect pest occurrence by 
remote and create digital records of its population dynamic 
from both a spatial and temporal point of view will provide 
the users with a very powerful tool to face the actual and 
future challenges in insect pest monitoring and manage-
ment. For instance, automatic trap-based area-wide monitor-
ing can be performed with a higher number of observation 
points located according to a less aggregated distribution in 
comparison to what is currently feasible with human-based 
monitoring (which is usually concentrated in a limited num-
ber of points easy to reach). This approach can create the 
conditions to better understand the large-scale dynamics of 
the insect distribution and to benefit from its knowledge, 
as reported by Jiang et al. (2008 and 2013) and Potamitis 
et al. (2017).

Camera-equipped traps can directly benefit growers by 
allowing the management of new invasive agricultural pests 
already present in a given area, adapting either prototypes 
or commercial trap designs to the species of interest. For 
instance, the monitoring of the brown marmorated stink 
bug Halyomorpha halys Stål (Hemiptera: Pentatomidae) 
is effectively realized using aggregation pheromone-baited 
pyramid traps (Acebes-Doria et al. 2020) but could benefit 
by trap automatization for survey, early detection, and area-
wide monitoring programs. Camera-equipped pyramidal trap 
prototypes, such as the one described by Selby et al. (2014), 
could be adapted to optimize and implement the monitoring 
and management of this harmful pest in agriculture. The ver-
satility of these camera-based prototypes, which are flexible 
and adaptable to different pests (Selby et al. 2014), relies on 
the opportunity to monitor different species with a similar 
behavior by simply changing the attractant. For example, 
with sufficient power autonomy, the Selby et al. (2014) pro-
totypes could be adopted for the continuous monitoring of 
invasive species, such as H. halys. Similarly, market solu-
tions specifically designed for H. halys already exist, such 
as the iSCOUT® Bug (Pessl Instruments 2020).
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Table 1  List of requirements that need to be considered when developing a camera-equipped automatic trap prototype

Aspect to be considered Motivation

Trap design The trap shape and the trap opening size and width can impact the captures efficiency; therefore, a design 
similar to what is known to be effective should be preserved (Guarnieri et al. 2011). New and different 
designs need to be validated to ensure a satisfactory trapping efficacy

Trap structure The trap structure enclosing all the electronic components should be waterproof and robust (i.e., material 
resistant to the external atmospheric agents) as well as compact (to limit the final trap size in comparison 
to a standard trap). Considering the need to provide an adequate focus of the camera and according to the 
selected device, a certain distance between the camera lens and the insect level should be always taken 
into account

Trap color The color of the external trap structure can impact not only the chromotropic attractiveness of several 
insect species but also the heating of the electronic components supplied in the automatic trap. The pro-
tective structure should be operative in a wide temperature range (selecting materials and colors that do 
not overheat when exposed to the sun light) and should not affect the insect captures

Bait type and killing mechanism for 
the trapped insects

Species-specific lures should be preferred to minimize the capture of non-target insects, which can affect 
the automatic counts or can be misidentified with the target species when morphologically similar. Dry 
traps (e.g., sticky liners or dry collector with insecticide strips) should be preferred for a high accuracy in 
the insect recognition (see the collector adaptation in Rassati et al. 2016 or the sticky traps for fruit flies 
in Shaked et al. 2018) but also liquid traps can be used when the liquid is clear. The captures should be 
visible, and the morphological features of the species should be distinguishable (Doitsidis et al. 2017)

Electronic components The electronic components should be miniaturized to reduce the final size of the trap and should not 
require maintenance during the field operativity. In addition, high quality, cheap and widely available 
products should be preferred to allow the transferability to a large-scale production

Image sensor/ camera device The camera unit should have a low purchase cost and a low power consumption, providing high resolution 
and sharp pictures (minimum 3–5 Mpixel, according to Guarnieri et al. 2011). Since different lighting 
and weather conditions may affect the quality and the brightness of the images, it is important to provide 
sufficient illumination inside the traps. López et al. (2012) recommended translucent plastic material with 
some holes on the top of the traps, while other authors considered a built-in flash (Rassati et al. 2016) or 
a superbright white LEDs oriented to the photo space to provide a constant light (Selby el al. 2014) with 
consequent high-quality pictures taken during both day and night

Other sensors Weather data can also be collected (e.g., installing temperature and moisture sensors) to greatly improve 
the reliability of insect phenological models and better exploit the information collected on the insect 
population dynamics (the very frequent monitoring achievable with automatic traps can be matched with 
a continuous collection of environmental parameters within the same location). The use of mapping 
(through the geographic information systems, GIS) to keep track of each trap coordinates (thanks to the 
global positioning systems, GPS) can facilitate the creation of a monitoring network in a given produc-
tive area

Data acquisition and storage system The capture pictures are taken at defined time intervals and have a time stamp (day, hour). These images 
should be saved in a SD memory card and sent to a remote server accessible through the Internet

Data transmission system The wireless data transfer can be achieved via cellular networks, such as GPRS and WiFi. It is important to 
equip the trap with a modem and an antenna to guarantee proper operativity. Large area coverage should 
be considered to allow monitoring in isolated locations

Power supply The power unit (i.e., battery alone or supported by a solar panel) should secure a long operative life with a 
high performance when exposed to the external conditions. No maintenance of the system (i.e., no bat-
tery replacement) should be performed during the monitoring period to minimize the field visits, and the 
electronic system should be optimized to have a low energy consumption

Data access and pictures display Final users should be able to access the capture pictures stored throughout the whole monitoring period, 
in any time, in a safe, shared, quick and simultaneous mode. Each picture, properly labelled, should be 
accessible and visible by computer, smartphone and/or tablet via Internet to allow remote checks from 
any location and at any moment

Image recognition algorithms Image recognition algorithms able to count the number of items or attempt an identification of the captures 
based on differences between the insects and the background and on morphometric parameters, such as 
the species size, shape and color, can be used to implement the data analysis and support the final user 
(Ding and Taylor 2016). Automatic insect count/identification can be always subject to false positive and 
false negative determinations (similarly to type I and II statistic errors, respectively) based on the accu-
racy of the system developed. The human eye can easily confirm the data generated automatically in case 
of manual picture analysis, and an expert entomologist should always be involved in case of doubts

Cost The material purchase, assembly and maintenance cost of an automatic trap prototype should be consid-
ered to compete with the traditional man-powered on-site trap check and guarantee economical sustain-
ability
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Insect pest camera-based monitoring can be practically 
adopted also in forestry as complementary tool to aerial 
and field surveys for forest pests. To date remote sens-
ing (exploiting images from satellites or unmanned aerial 
vehicles, i.e., drones) can facilitate the creation of infesta-
tion maps together with the classical aerial and direct field 
scouting (Hall et al. 2016; Torresan et al. 2017; Zhang et al. 
2019). The inclusion of camera traps for insect pests, paired 
with remote sensing, can further enhance the monitoring 
programs in forests to permit early detection of harmful 
species and to allow predictions of outbreaks risk exploit-
ing the monitoring data (Ayres and Lombardero 2018; Choi 
and Park 2019). The potential monitoring improvements can 
also be exploited in the case of quarantine pests, for exam-
ple, to detect B. tryoni in fruit and vegetable shipments in 
Australian exports (Liu et al. 2009) or forest longhorn and 
bark beetles not yet present in the European Union (Rassati 
et al. 2016). In fact, web-based automatic monitoring can be 

effectively adopted for the early detection of invasive alien 
species at high-risk sites, such as the country point of entry 
(i.e., internationals ports and airports) (Poland and Rassati 
2019). A monitoring program of quarantine species based on 
traps requires frequent inspections of the captures to state the 
real absence of the target insect pest or to guarantee quick 
promptness of reaction in case of detection. The trap check, 
which is typically performed manually by a human operator 
in situ, can be replaced with automatic remote trap capture 
observations, justifying the direct human intervention only 
in case of a real need as described by Rassati et al. (2016) 
for wood-boring beetles. Finally, camera-based monitoring 
could be applied also within eradication programs of inva-
sive species (Martinez et al. 2020).

In addition to image-based classification, other systems 
are available to automatically detect and monitor insect 
pests, such as infrared sensors and acoustic sensors, which 
have been exploited for several insect species (Cardim 

Table 1  (continued)

Aspect to be considered Motivation

Other features The environmental footprint of the materials selected should also be considered to guarantee an ecological 
sustainability, in particular considering the power supply and trap structure. The automatic trap needs to 
be user-friendly with minimal skill requirements for deployment, maintenance and usage. Adaptability 
to different insect pest species is another key parameter to produce a flexible prototype with several pur-
poses (e.g., multiple use for different pest-crop combinations, research studies focused on insect activity 
and behavior)

Table 2  Benefits of automatic trap usage to monitor an insect pest from a distant location exploiting the camera devices

Classic on-site manpowered trap check Remote control of a camera-equipped trap

Based on frequent field visits, involving a logistic issue, time con-
sumption and related costs

Field visits required only to empty the traps and/or replace the lure

Need to directly assess and empty traps No need to check empty traps on-site, saving time and money

One operator is required per trap to be checked in a given moment, 
therefore a single person can check a limited number of traps weekly 
according to their deployment in a given area

Low need of personnel: one operator can daily check a very high num-
ber of traps that are also deployed far from each other

Low sampling frequency (usually the same trap is weekly visited), 
resulting in a poor temporal resolution

High sampling frequency (also more than one picture per day), resulting 
in a very high temporal resolution

Traps deployed in limited number and accessible locations to facilitate 
the operator, resulting in a poor spatial resolution

Traps can be easily deployed in a wide territory to provide an high 
spatial resolution

Accurate and reliable records only in presence of a trained and expert 
operator

Accurate and reliable records possible also with a nonexpert operator 
when combined with trustworthy automatic identification and count

Delays in data flow (trap check, data entry into the system to exploit 
the information and give an alert) and possibility of human-biased 
information

Data flow is increased (with also possibility to exploit automatic count/
identification) to provide real-time alerts and lower chances of human-
biased information

Expensive due to the high labor cost required per trap over the season Cheaper in the long term (the higher trap cost is compensated by the 
very limited man-hour requirement per trap)

Limited opportunities for improvements of the monitoring efficacy 
and efficiency

Opportunity to realize a real-time (or at least very updated), on-line 
(accessible by several users through the Internet), area-wide (spread-
ing the monitoring traps in a large territory) monitoring for a given 
insect pest species, connecting the data captures with other envi-
ronmental, biological and human variables (e.g., weather data, crop 
phenological data, grower interventions) to implement the DSSs
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Ferreira Lima et al. 2020). The main advantage of using a 
trap equipped with an image sensor (i.e., a camera taking 
pictures) in comparison with automatic traps operating, for 
instance, light-dependent resistor or infrared sensors (e.g., 
those adopted in Holguin et al. 2010; Kim et al. 2011 and 
Potamitis et al. 2017), is the availability of a picture of the 
captured insects that a human operator can directly check 
and verify by remote at any time. In fact, in Potamitis et al. 
(2017), photointerruption optoelectronic sensors (based, for 
instance, on LED emitters and photodiode receivers) allow 
a very precise count (i.e., high accuracy) of the red palm 
weevil or of grain beetles captured in funnel, pyramid or 
pitfall traps. Nevertheless, since this sensor only recognizes 
arthropod presence when entering the trap, any insect spe-
cies is counted regardless of its identity. Similarly, Kim 
et al. (2011) demonstrated a very high correlation between 
the electric signal generated by an infrared sensor and the 
actual captures of G. molesta present inside the automatic 
cone type traps installed in apple orchards. However, the 
high accuracy of the insect counts was substantially pro-
vided by the high specificity of the sex pheromone lure, and 
some overestimations occurred due to captures of non-target 
arthropods or to G. molesta males that triggered the sensor 
but escaped the trap. The presence of stored high-quality 
images can unequivocally clarify the real situation inside 
the traps, avoiding these misidentification issues. Consid-
ering examples of automatic counts with infrared sensors, 
Kim et al. (2011) reported a low trapping efficiency of the 
automatic cone type trap compared to the wing type stand-
ard sticky trap, suggesting an implementation of their struc-
ture to force the insects to pass through the sensing area 
and therefore get counted. Using the same trap type (e.g., 
bucket trap), Holguin et al. (2010) showed that the total 
moth captures in the automatic traps were approximately 
half of the captures recorded within similar standard traps 
without the electronic circuit, which likely caused the low 
capture rate (probably due to the ultrasonic vibrations of the 
clock circuits and the electromagnetic fields generated by the 
detection circuits). These issues are absent in the case of a 
camera-equipped trap, where the identification and count are 
based on image analysis and not on in-site electric sensors.

Nevertheless, to date there are some elements that restrain 
a massive adoption of automated devices for insect pest 
monitoring in both agriculture and forestry. First, the cost 
of such technology is usually not affordable for individual 
growers or forest managers, although in the last few years 
the costs of electronic components and batteries have been 
largely decreased. Nowadays, the camera-equipped auto-
matic traps use in the private sector is mainly restricted to 
cooperatives of producers, in which the costs such as the 
added value derived by automatic traps are divided among 
several growers of a common crop and gaining a shared 
information. Another example is given by large companies 

that wish to implement technical aspects in their pest man-
agement and simultaneously take advantage of this invest-
ment with marketing actions that valorize their brand (for 
instance in the case of important wineries producing expen-
sive wines). In the public sector, such monitoring tools can 
be likely more suitable at regional or national level for plant 
protection services in both agriculture and forestry. In fact, 
the power of camera-equipped automatic traps is in the crea-
tion of trap networks suitable to cover large areas, obtain-
ing real-time area-wide information on specific insect pest 
infestations. A second limit encountered in reviewing vari-
ous research papers on camera-equipped trap prototypes is 
the low power autonomy of some of these systems. Another 
limit can be the low resolution of the capture pictures. How-
ever, both issues have been largely solved in commercial 
automatic traps and to date they cannot be considered as 
limits for the practical adoption of camera-based monitoring. 
Finally, a fundamental limitation of these tools is the avail-
ability and level of automatic pest identification and count. 
Several marketable options require a manual identification 
of the species or at least a manual validation, showing space 
for further improvements in fully automated pest detection 
systems.

Challenges for further developments

Agriculture is in the middle of the digital revolution. Spe-
cifically, the huge amount of data available and their rela-
tively low cost of collection and transmission (e.g., digital 
weather stations, in situ sensors for several soil–plant-
environmental parameters, drones, and satellites) are an 
incredible opportunity to exploit. Agriculture operators 
are now facing the ‘Big Data Analysis’ prospect: organize, 
aggregate and interpret the massive sample size of avail-
able digital data with sophisticated algorithms to drive 
decisions based on data interpretation, prediction, and 
inference potentially on a global scale (Fan et al. 2014; 
Weersink et al. 2018). In addition, the implementation 
of computer vision science (Paul et al. 2020), machine 
learning (Liakos et al. 2018), deep learning (Kamilaris 
and Prenafeta-Boldú 2018), neural networks (Patil and 
Vohra 2020), fuzzy logic (Kale and Patil 2019) and arti-
ficial intelligence (Jha et  al. 2019) can reduce human 
interventions and efforts, optimize inputs and maximize 
outputs. Moreover, all this information is deeply inserted 
in the highest level of connectivity that humankind has 
ever witnessed. The concept of the ‘internet of things’ 
(IoT), which was defined by Granell et al. (2020) as the 
‘holistic proposal to enable an ecosystem of varied, het-
erogeneous networked objects and devices to speak to and 
interact with each other’, is leading our ability to provide 
uncountable perspectives for the near future (Lakhwani 
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et al. 2019). information and communications technology 
(ICT) has reached a new frontier with the IoT with a sig-
nificant impact on precision agriculture and other fields 
of agriculture (Sreekantha and Kavya 2017; Khanna and 
Kaur 2019). This advancement is also due to achievements 
in wireless communication technology (Rehman et al. 
2014) and in the global system of mobile communication 
(GSM) (Sudarshan et al. 2019) applied in agricultural 
systems. Examples of practical implications of the IoT in 
insect monitoring and management with camera-equipped 
traps have been recently published to monitor, for instance, 
crawling insects, such as cockroaches (Blattodea), beetle 
pests of stored food (Coleoptera) and ants (Hymenoptera: 
Formicidae), in urban environments (Eliopoulos et  al. 
2018) and to control the coffee berry borer Hypothenemus 

hampei Ferrari (Coleoptera: Curculionidae) in coffee crops 
(Figueiredo et al. 2020).

Given this unique opportunity to apply high technology, 
electronic and informatics knowledge, and data analysis to 
monitor insect pests, the use of automatic traps equipped 
with camera devices will allow the implementation of 
management programs, providing precise insect identi-
fication and updated counts by remote location in both 
agriculture and forestry. Compared to other automated 
systems for insect detection, such as infrared sensors, the 
opportunity to have a high-quality image of the captures 
allows us to check the trap directly from the office with 
the same accuracy. Camera-based insect monitoring can 
be exploited not only for pest monitoring but also for early 
detection and survey, allowing a prompt reaction espe-
cially for invasive species. There is a potential perspective 
to interconnect traps among sites and create a network at 
local, regional, country, continental, and global scales, as 
reported by Potamitis et al. (2017). In these networks, digi-
tal automatic trap information could be integrated inside a 
‘Big Data’ system together with several other environmen-
tal and geographical parameters, such as geocoordinates, 
weather trends, forecasting models for pest species, and 
control techniques (e.g., grower interventions in case of 
agricultural and horticultural crops, or forest pest manage-
ment programs in forestry). Such integrated systems will 
enable the exploitation of temporal and spatial distribu-
tions of the pests captured by the traps to enhance and 
optimize their control with a technology-driven approach 
in conventional and organic management programs.
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