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Abstract Insects are able to see ultraviolet (UV) radia-

tion. Nocturnal insects are often attracted to light sources

that emit large amounts of UV radiation, and devices that

exploit this behavior, such as light traps for forecasting pest

outbreaks, and electric insect killers, have been developed.

Some diurnal species are attracted to yellow; yellow pan

traps are used for conducting surveys for pest outbreaks

and yellow sticky plates are used for pest control. Lamps

that give off yellow illumination have been used effectively

to control the activity of nocturnal moths and thus reduce

damage to fruit, vegetables, and flowers. Covering culti-

vation facilities with film that filters out near-UV radiation

reduces the invasion of pests such as whiteflies and thrips

into the facilities, thus reducing damage. Reflective mate-

rial placed on cultivated land can control the approach of

flying insects such as aphids. Future development and use

of new light sources such as light-emitting diodes is

anticipated for promoting integrated pest management.

Keywords Integrated pest management � Artificial

lighting � Photoreception � Phototaxis � Light-emitting

diode

Introduction

Most insects have two types of photoreceptive organs,

compound eyes and ocelli. Compound eyes are made up of

a large number of light-sensitive units termed ommatidia.

An ommatidium contains an elongated bundle of photore-

ceptor cells, each having specific spectral sensitivities. The

ommatidia are packed in a hexagonal array so as to cover a

large visual field with certain spatial resolution and to

perceive the motion of objects (Land and Nilsson 2002).

The spectral sensitivities of photoreceptors determine the

visible light wavelength for insects, which often expands

into the ultraviolet (UV) region, which is invisible to

humans. A compound eye typically contains three types of

photoreceptor cells with spectral sensitivity peaking in the

UV, blue, and green wavelength regions, respectively, as

exemplified in honeybees (Fig. 1) (Menzel and Blakers

1976). But even in the order hymenoptera, some sawflies

have been shown to have red receptors as well (Peitsch

et al. 1992). At any rate, it is likely that many insects can

perceive UV light as a unique color (Koshitaka et al. 2008;

von Helversen 1972).

It is well known that insects fly toward streetlamps or

other outdoor illumination at night. This innate photo-

tactic behavior has provided the basis of the design of

electric insect killers. Equipped with UV-emitting fluo-

rescent tubes, the insect killers effectively attract insects

such as moths and beetles and prevent these insects from

entering into greenhouses and stores that are open at

night. In recent years, considerable interest has been

generated in pest control technology that utilizes the

responses of insects to light as a ‘‘clean’’ form of pest

control that does not use synthetic pesticides (Antignus

2000; Ben-Yakir 2013; Emura and Tazawa 2004; Honda

2011; Johansen et al. 2011; Tazawa 2009). Here, we

M. Shimoda (&)

National Institute of Agrobiological Sciences, 1-2 Ohwashi,

Tsukuba, Ibaraki 305-8634, Japan

e-mail: shimoda1@affrc.go.jp

K. Honda (&)

Agricultural Research Center, National Agriculture and Food

Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-

8666, Japan

e-mail: khonda@affrc.go.jp

123

Appl Entomol Zool (2013) 48:413–421

DOI 10.1007/s13355-013-0219-x



review recent advances of pest control technologies that

employ this method.

Influences of light on insect behavior and development

Light affects insect behavior and development in a variety

of ways that can be divided into several categories (Fig. 2).

One of the most typical responses to light is phototaxis

(Jander 1963). Insects exhibit the following phototactic

behaviors: (A) attraction (i.e., positive phototaxis, moving

toward a light source) (Fig. 2a); this response can be used

to trap pests, but the effective wavelengths and intensities

vary among species (Coombe 1981; Hardie 1989; Ki-

noshita and Arikawa 2000; Menzel and Greggers 1985;

Yang et al. 2003) and (B) repulsion (i.e., negative photo-

taxis, moving away from light) (Fig. 2b); this can be used

to prevent pests from entering a cultivation area by pre-

senting light at wavelengths and intensities that repel them

(Jander 1963; Kim et al. 2013; Reisenman et al. 1998).

There are a wide range of responses to light beyond

phototaxis. (C) Light adaptation is when nocturnal insect

species become light-adapted within several minutes of

exposure to light (Day 1941; Post and Goldsmith 1965;

Walcott 1969) and exhibit typical daytime behaviors such

as cessation of movement and settling down (Fig. 2c).

Behaviors such as flight and mating are inhibited in noc-

turnal insects that are exposed to bright light at night.

(D) Circadian rhythms are daily behavioral rhythms

including flight, locomotion, feeding, courtship, mating,

etc. (Fig. 2d) (Bateman 1972; Shimoda and Kiguchi 1995).

Artificial lighting for a certain duration during the night can

shift the timing of the diurnal/nocturnal behaviors of

insects (Okada et al. 1991). This response is called a

‘‘phase shift’’ in chronobiology (Pittendrigh 1993; Truman

1976). (E) Photoperiodicity is the physiological response

of insects to the light schedule (i.e., day length). The onset

of diapause can be prevented by exposing insects to light

repeatedly for several days (Masaki 1984; Saunders 2012).

Insects that do not enter dormancy are unable to overwinter

(Fig. 2e). (F) Light toxicity occurs when the retinas of

compound eyes of an insect exposed to UV and blue light

radiation are damaged and structurally degenerated

(Meyer-Rochow et al. 2002; Stark et al. 1985). Further-

more, some insects are unable to undergo normal devel-

opment or survival (Fig. 2f) (Ghanem and Shamma 2007;

Siderhurst et al. 2006; Zhang et al. 2011). Such photo-

irradiation can also be used for post-harvest treatment of

crops. (G) Insects will not actively fly toward something

they cannot see (i.e., invisible). That is, by covering a

greenhouse with UV-blocking film, plants inside can be

made invisible to insects. As a result, pests will not enter

the greenhouse (Fig. 2g) (Antignus et al. 1998; Legarrea

et al. 2010). (H) Finally, some free-flying insects show a

dorsal light reaction, where they stabilize their horizontal

orientation (attitude) by perceiving light that shines on their

dorsal side as sunlight does during flight (Jander 1963).

The ability to control roll by means of the dorsal light

reaction is known for many flying insects such as drag-

onflies and desert locusts (Goodman 1965; Neville 1960).

By covering the ground with a highly reflective mulching

sheet, the normal orientation of flight is disturbed by light

reflected from below (Fig. 2h). These last two effects of

light are useful to prevent insects from entering a cultiva-

tion area.

These responses to light are substantially influenced by a

variety of factors, including light intensity and wavelength,

combinations of wavelengths, time of exposure, direction

of light source, and the contrast of light source intensity

and color to that of ambient light. In addition, the impact of

light on insect behavior varies both qualitatively and

quantitatively depending on the light source (light bulb or

light-emitting diode [LED]) and material (light-reflecting

plate) (Antignus 2000; Coombe 1981, 1982; Honda 2011;

Johansen et al. 2011; Matteson et al. 1992; Nissinen et al.

2008; Prokopy and Owens 1983; Smith 1976). In the

remainder of this review, we discuss examples of tech-

nologies that are currently being used to control a variety of

pests.

Attraction of insects to light sources at night

The Japanese saying, ‘‘flying like an insect in summer into

the fire,’’ speaks of unwittingly rushing to one’s doom by

being drawn into a deadly situation. Many nocturnal insect

Fig. 1 Spectral sensitivity curves of three types of photoreceptor

cells (UV, blue, green) of the honeybee Apis mellifera (modified from

Peitsch et al. 1992). The UV-, blue-, and green-sensitive photorecep-

tors of the genus Apis are typical for many insects. A spectrum shown

above is a human visible light region
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species such as moths, beetles and stinkbugs are attracted

to artificial light sources. Of the light sources that attract

nocturnal insects, those that emit relatively large amounts

of UV radiation (blue fluorescent lights, black lights, and

mercury lamps) exert the strongest attraction (Aoki and

Kuramitsu 2007; Cowan and Gries 2009; Matsumoto

1998). Insect light traps using blue fluorescent light were

used widely to control rice stem borer, Chilo suppressalis

Walker, and Tryporyza incertulas Walker moths in paddy

fields across Japan during World War II and the postwar

period (Ishikura 1950). The Ministry of Agriculture, For-

estry, and Fisheries (MAFF) of Japan has established

survey methods for forecasting pest outbreaks employing

incandescent lights, mercury lamps, and black lights at pest

control stations around the country (a light trap with an

incandescent light is shown in Fig. 3). Identity and number

data for each insect species are used to forecast pest out-

breaks (Katayama et al. 1993; Matsumura 2001). Further-

more, various electric insect killers that use light sources

exerting a strong attraction on insects have been developed.

These devices are put to practical use for pest control at

greenhouses and at stores that are open at night (a large

electric insect killer used in a hotel garden in China is

shown in Fig. 4).

Fig. 2 Typical responses of

insects to light. a Positive

phototaxis, b negative

phototaxis, c light adaptation,

d disturbance of circadian

rhythm and e photoperiodicity.

f Toxicity of UV on growth and

development. g Visibility

control with UV-blocking film.

h Dorsal light reaction
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Attraction of insects to color plates

Some diurnal insects can be attracted to light sources at

night. However, due to the intensity of sunlight, artificial

light sources are less effective (or not effective at all) for

pest control during the day. To capture diurnal pests, the

use of colored devices, such as yellow pan traps or yellow

sticky traps, is well known: a yellow pan trap for fore-

casting aphid outbreaks is shown in Fig. 5. Insects that

are attracted to these yellowish devices include important

crop pests such as planthoppers, leafhoppers, aphids,

whiteflies, thrips, and leafminer flies (Esker et al. 2004;

Mainali and Lim 2010; Vaishampayan et al. 1975). Yel-

low sticky plates or rolls have become important tools for

the physical control of these pests (Tokumaru et al. 2009):

those in use at a tomato cultivation facility are shown in

Fig. 6.

Suppression of nocturnal insect activities by yellow light

Fruit-piercing moths such as Eudocima tyrannus Guenée

and Oraesia emarginata Fabricius damage fruit in orch-

ards. Damage can be prevented by running yellow

Fig. 3 A light trap that uses an incandescent light. Data on numbers

of single insect species are used to forecast pest outbreaks

Fig. 4 A large electric insect killer used in a hotel garden in China

Fig. 5 A yellow pan trap for forecasting aphid outbreaks

Fig. 6 Yellow sticky plates (a) and rolls (b) in use at a tomato

cultivation facility for the physical control of pests, mainly whiteflies

and thrips
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fluorescent lamps in the orchard at night (Nomura 1967;

Nomura et al. 1965). This strategy makes use of the fact

that when moths encounter light above a certain brightness

at night, under which their compound eyes are light-

adapted as in the daytime (Meyer-Rochow 1974; Walcott

1969), the light adaptation suppresses nocturnal behaviors

such as flying, sucking the juice of fruit, and mating. This

technique of suppressing behavior using yellow fluorescent

light is also used to prevent damage to chrysanthemums

and carnations by the cotton bollworm Helicoverpa armi-

gera Hübner (Yase et al. 1997), damage to green perilla by

the common cutworm Spodoptera litura (Fabricius), and

damage to cabbage by the webworm, Hellula undalis

Fabricius (Yase et al. 2004). The light-adapted and dark-

adapted states of the compound eye of adult Helicoverpa

armigera are shown in Fig. 7. Recently, green fluorescent

lamps have also been developed for the control of noc-

turnal moths. These lamps suppress the behavioral activity

of a number of moth species in the same way as yellow

fluorescent lamps but have little effect on the growth of

plants compared to the yellow lamps (Yamada et al. 2006;

Kono and Yase 1996; Yase et al. 1997) (Fig. 8). Further-

more, because LED lighting is becoming considerably

cheaper, yellow-emitting LEDs have been recently applied

to control the behaviors of nocturnal moths (Hirama et al.

2007; Yabu 1999; Yoon et al. 2012). LEDs can produce

highly monochromatic lights (i.e., with a narrow range of

wavelength) across the spectrum from UV to red. This

optical characteristic of LEDs is an advantage for con-

trolling pest behavior and their practical application is

expected in the near future.

Control of pest infestation using UV-absorbing films

The use of UV-absorbing plastic films that block near-UV

light radiation (300–400 nm) in greenhouse cultivation has

been shown to be effective for preventing different types of

pests from entering greenhouses (Nakagaki et al. 1982,

1984; Raviv and Antignus 2004). Insect eyes are highly

sensitive to near-UV light radiation and vision in the UV

Fig. 7 The compound eye of

the nocturnal moth, Helicoverpa

armigera, in the light-adapted

(left) and dark-adapted (right)

states (photo courtesy of Junya

Yase)

Fig. 8 Flower cultivation facilities with yellow fluorescent lamps (a:

carnation facilities, photo courtesy of Junya Yase; b: chrysanthemum

facilities, photo courtesy of Manabu Shibao)

Appl Entomol Zool (2013) 48:413–421 417

123



range is important for orientation in many species (Prokopy

and Owens 1983). A greenhouse covered with UV-

absorbing film is hypothesized to appear dark for these

insects. For insects given access to a space with UV radi-

ation and a space from which near-UV radiation was

eliminated, many species avoid the latter. Studies have

shown reduced incidence of insects such as aphids,

whiteflies, and thrips in facilities covered with UV-

absorbing film (Costa et al. 2002; Nguyen et al. 2009;

Nonaka and Nagai 1985; Ohta and Kitamura 2006). In

addition to vinyl chloride films, products made of highly

durable polyolefin films have recently been developed to

block near-UV radiation, to prevent infestation inside

greenhouses. Honeybees, which play an important role in

pollination, also become inactive in facilities covered with

near-UV ray absorbing film, so caution is needed when

pollinating insects are used in greenhouses: a plastic

greenhouse covered with UV-absorbing film is shown in

Fig. 9.

Inhibition of flight by reflective mulching films

The use of mulching films that reflect light in open crop

fields is known to suppress the arrival of alate aphids (e.g.,

Fig. 10 shows a soybean field covered with a silver mulch

sheet; Kimura 1982). Spreading reflective sheets over the

ground surface has also been reported to control the inva-

sion or outbreak of thrips and whiteflies (Nagatuka 2000;

Simmons et al. 2010; Tsuchiya et al. 1995). The mecha-

nism by which reflecting light controls the invasion of

these pests is not yet fully understood. Some free-flying

insects exhibit the dorsal light reaction, as described above

(Goodman 1965; Jander 1963; Neville 1960). They stabi-

lize their horizontal orientation by the light shining on their

dorsal side, as happens with light from the sun when flying,

but they become unable to continue normal flight when the

light comes from the ground. By covering the ground with

highly reflective mulching sheet, the light reflection from

below disturbs the normal orientation of flight.

Current research on physical pest control using light

The Ministry of Agriculture, Forestry and Fisheries of

Japan has been implementing a research project called

‘‘Elucidation of biological mechanisms of photoresponse

and development of advanced technologies utilizing light’’

since 2009 (Honda 2011). Understanding the light-response

mechanisms of insects and developing advanced applied

technologies are the main objectives of this project and

research is underway toward the development of pest

control technology using new light sources such as LEDs.

The National Agriculture and Food Research Organization

(NARO) of Japan is the core research institution for this

project and more than 20 research groups including uni-

versities, independent administrative institutions, public

research institutes, and companies participate. The main

areas of research include basic research on reaction

behavior, color perception, and polarized light perception

with light of different wavelengths; the development of

outbreak forecast technology using new light sources; and

the development of pest control technology using new light

sources. In the project, we have set three research areas.

For the first research area, electrophysiological tech-

niques are being used to comprehensively measure the

sensitivity of different pests over a wide range of light

wavelengths. In addition, the responses of stinkbugs, thrips,

whiteflies, planthoppers, leafhoppers, and other species to

LEDs and other light sources are being studied to clarify

the relationship between light wavelength and the behav-

ioral ecology of pests. This area of research is aimed at

determining the wavelengths that are effective for attract-

ing or repelling pests as well as those that affect behavioral

Fig. 9 A greenhouse covered with UV-absorbing plastic film

Fig. 10 A soybean field covered with silver mulching sheets
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activity and orientation to the light (Hironaka and Hariy-

ama 2009).

The second research area includes the development of

LED light sources that can be used in place of incandescent

lights to forecast agricultural pest outbreaks as well as the

investigation of outdoor devices (light sources and traps)

that can be used in places with no electricity. Beneficial

insects such as parasitoid wasps that are natural enemies of

pests will also be studied to determine the light wave-

lengths that attract them effectively. Studies are also

investigating the development of fundamental technologies

for devices to survey and collect natural enemies. More-

over, devices that effectively attract biting midges, which

play an important role as vectors for viral diseases in

livestock, will be developed to survey outbreaks.

For the third research area, behavioral effects such as

attraction or repulsion associated with different wave-

lengths of light are being analyzed for whiteflies, thrips,

and leafminer flies, which damage vegetables grown in

greenhouses; lepidopteran pests of bare-earth vegetables

and tea; Asian citrus psyllids for citrus fruit; fungus gnats

for cultivated mushrooms; and green chafers for sugar-

cane. New pest control technologies for these pests

include the use of LEDs. LED lighting devices that take

up little space and have low energy consumption are

likely to enable pest control in places where conventional

light sources are impractical. At the same time, studies are

being carried out to investigate the wavelengths that are

effective against pests but have little effect on the culti-

vation of crops. This research area aims to develop a new

pest control technology that is fully compatible with cul-

tivation technology.

Conclusion

LED devices with various wavelengths can now be man-

ufactured due to recent technological advances, and new

agricultural technology using light is starting to attract

attention. Advances are also expected in the use of light for

pest control as a result of these technological developments

in lighting. Based on the new research being conducted by

NARO, we hope to ensure the further development of

applied technology founded on a good balance of input

from basic research in universities and independent

administrative institutions and applied technology from

public research institutes and private companies to estab-

lish the next generation of pest control technology.
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