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Abstract The visual homing abilities of insects can be ex-

plained by the snapshot hypothesis. It asserts that an animal is

guided to a previously visited location by comparing the cur-

rent view with a snapshot taken at that location. The average

landmark vector (ALV) model is a parsimonious navigation

model based on the snapshot hypothesis. According to this

model, the target location is unambiguously characterized by

a signature vector extracted from the snapshot image. This

paper provides threefold support for the ALV model by syn-

thetic modeling. First, it was shown that a mobile robot using

the ALV model returns to the target location with only small

position errors. Second, the behavior of the robot resembled

the behavior of bees in some experiments. And third, the ALV

model was implemented on the robot in analog hardware.

This adds validity to the ALV model, since analog electronic

circuits share a number of information processing principles

with biological nervous systems; the analog implementation

therefore provides suggestions how visual homing abilities

might be implemented in the insect’s brain.

1 Introduction

1.1 Models of insect navigation

Being able to return to a shelter or a food source is a vital abil-

ity for many animal species. Social insects are particularly

impressive examples, since they accomplish this task with

tiny nervous systems that are confined to less than mm size

and less than a million neurons. One of the homing strate-

gies employed for instance by bees and ants is visual land-

mark navigation. The behavior exhibited by these animals in

experiments with different landmark setups can be explained

by the “snapshot hypothesis” (Wehner and Räber, 1979; Cart-

wright and Collett, 1983; Wehner et al., 1996). It claims that

the animal memorizes the landmark panorama surrounding

the target location. This “snapshot” guides the return journey

of the animal in the vicinity of the target location. The animal

continuously compares the landmark panorama visible from

its current location with the snapshot. From the discrepancies

between the two images it derives a home direction; a move-

ment in this direction will reduce the image discrepancy and

therefore bring the animal closer to the target location.

An algorithmic model based on the snapshot hypothesis

was first presented by Cartwright and Collett (1983), in the

following referred to as “snapshot model”. It assumes that

the horizonal portion of the landmark panorama is segmented

into dark and bright sectors and stored as “snapshot image” in

the insect’s brain. On the journey home, a matching process

establishes correspondences between neighboring sectors of

the same type in snapshot and current view. The home direc-

tion is determined as the average of the movement directions

that would reduce the differences in bearing and size of each

pair of sectors. Such an image matching procedure between

an image stored in some representation and the current view

is characteristic for the snapshot model and other models of

the same class (for a survey see Franz et al., 1998).

The image matching assumption is abandoned in the “av-

erage landmark vectormodel” (ALVmodel) (Lambrinos et al.,

1998, 1999; Lambrinos, 1999). From the horizonal panorama

visible at the snapshot location, a two-component vector, the

“average landmark (AL) vector”, is extracted and stored. As

proved mathematically in this paper, this vector unambigu-

ously characterizes the target location. In the same way, an

AL vector is determined in the current location. The differ-

ence between the twoAL vectors gives the home vector. Com-

pared to the snapshot model, the ALV model is significantly

simpler: the snapshot image is replaced by a vector, and the

matching process is reduced to a vector subtraction. Never-

theless, the ALV model is closely related to the snapshot mo-

del, and in the vicinity of the target location even produces

home vectors identical to those obtained from a version of

the snapshot model (Lambrinos et al., 1999).

1.2 Synthetic modeling

“Synthetic modeling” is a novel biological methodology to

gain insights in the mechanisms underlying some behavior
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of a biological agent. Models developed to explain the ani-

mal’s abilities are implemented on an artifical agent. The ro-

bot is exposed to an environment similar or even identical to

the environment experienced by the animal. By observing the

behavior and the internal states of the robot, the implemented

models can be validated. The robot implementation of a mo-

del can include technical sensors mimicking the design of

their biological counterparts, specialized electronic circuits

or computer algorithms reproducing the information process-

ing at different levels of modeling, as well as replicas of the

body morphology and the actuators of the animal.

Synthetic modeling with artificial agents is an indispens-

able complement to computer simulations and in some cases

even the only way to verify a biological model, especially

when the agent-environment interaction is too complex to

be simulated with sufficient accuracy. Simplifications of the

complexity of the real world in computer simulations could

severely misguide the development of models. In the past,

syntheticmodeling has therefore been used in cases with com-

plex sensory input (visual, auditory), complex properties of

the world (turbulences in water), and complex mechanical in-

teraction between the agent and the world (legged locomo-

tion), e.g. to investigate the visuomotor system of the house-

fly (Franceschini et al., 1992), cricket phonotaxis (Webb, 1995),

visual odometry in bees (Srinivasan et al., 1997), lobster chemo-

taxis (Grasso et al., 1996), legged locomotion of insects (Cruse

et al., 1995), and skylight and visual landmark navigation of

desert ants (Lambrinos et al., 1997, 1999).

1.3 Synthetic modeling using analog hardware

The signal processing in biological nervous systems is ana-

log, asynchronous, and parallel, and differs widely from the

digital, synchronous, and sequential processing in traditional

digital computers. In some cases, software implementations

of models lack biological plausibility, since no statements can

be derived if and how the mechanism could actually be im-

plemented in a biological nervous system. Some operations

which can be realized with minimal effort on a digital com-

puter (like shifting an array of data by manipulating a single

pointer variable) may require considerable effort in a neu-

ral system. It is possible that the complexity of an equivalent

neural model exceeds the limits set by the brain size of the

animal. Moreover, models which rely on the high precision

achieved in a digital, noise-free computationmaymiss the bi-

ological reality with its noisy, unreliable processing elements

by far.

In a number of synthetic modeling projects, digital com-

puters have been replaced by analog electronic hardware; one

of the first projects was an analog implementation of elemen-

tary motion-detectors of the housefly by Franceschini et al.

(1992).Many projects using analog hardware to emulate neu-

ral systems have their roots in the field called “neuromorphic

engineering” (Mead, 1989; Douglas et al., 1995), where ana-

log subthreshold VLSI is the preferred technology. Analog

electronic circuits share a number of information process-

ing principles with nervous systems: signals are encoded in

analog values, there is no global clock, and the processing

is inherently parallel. Typical operations of biological neu-

rons like weighted addition of signals are easy to implement

in analog hardware. Both analog electronics and biological

neurons are affected by noise and parameter changes through

external influences. The implementation in analog hardware

forces the designer to take these issues into account and will

therefore lead to biologically plausible models.

1.4 Contributions of this paper

In this paper, the synthetic modeling approach is used to gain

insights in the visual navigation abilities of insects. First, it

is shown that the ALV model, which so far has only been

tested in computer simulations, works on a mobile robot and

produces only small position errors in homing experiments.

Second, some results obtained in experiments with bees could

be reproducedwith the robot. Third, the robot is controlled by

a completely analog circuit implementing the ALV model.

This kind of implementation leads naturally to suggestions

about the neural circuits that might mediate homing in insect

brains.

The ALVmodel and its relations to other models of insect

and rodent navigation is presented in Section 2. Section 3 de-

scribes the robot and the analog implementation of the ALV

model. The results of homing experiments with the robot are

reported in Section 4 and discussed in Section 5.

2 Navigation model

2.1 Average landmark vector model

Fig. 1 visualizes the homing mechanism of the ALV model

in its simplest version. A unit vector points from the position

of the agent towards each detected landmark feature, in this

case the center of black sectors in the horizonal view; these

vectors are called “landmark vectors”. Their average — the

average landmark (AL) vector — is an unambiguous signa-

ture for each location; see Section 2.5.3. The AL vector of the

target location is stored. On the return journey, the AL vector

of the current location is determined; the difference between

this vector and the stored AL vector is the home vector which

points approximately to the target location. By following the

continuously updated home vector, the agent will return to

that location. Note that the ALV model, as well as all other

models presented here, requires some kind of external refer-

ence to align the views or vectors to the same compass direc-

tion.

The formal description of the ALV model presumes that

the axes of the agent’s coordinate systems are alignedwith the

corresponding axes of the world coordinate system. The po-

sitions of landmark points in the plane are given by

. From each agent position in the plane, a landmark

vector with unit length points towards landmark :

(1)
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A

B

Fig. 1 Homing mechanism of the ALV model. Landmarks are

shown as black circles. The target position is marked with a cross

(A). Each grey ring visualizes the horizonal portion of the landmark

panorama as perceived from the position in the center of the ring.

Vectors attached to the outer ring depict landmark vectors. A: The

AL vector of the target location is computed from the average of

the landmark vectors and stored in memory (vector in the center).

B: The difference of the AL vectors of current location (thin vector,

small head) and target location (thin vector, wide head) gives the

home vector (thick vector).

Visibility of all landmarks from all points is presumed in this

description. For simplicity, the AL vector of position

is expressed as the sum (not the average) of the landmark

vectors (see Section 2.5.1):

(2)

Given a target position , a home vector field can be

computed by subtracting the AL vector of the target location

from the AL vector field :

(3)

In the homing process, the agent follows in order to

return to the target location ( is a constant that determines

the speed):

(4)

Despite its parsimony, the ALVmodel successfully copes with

complex environmentswith a high number of landmarkswhich

are partly covering each other, as shown in the computer sim-

ulation in Fig. 2. Except for a few collisions with landmarks,

all trajectories end in the target location.

2.2 Relation between ALV and snapshot model

The specific algorithm of the snapshot model (Cartwright and

Collett, 1983) was determined in a series of computer simu-

lations in a way that it reproduces behavioral data from bees.

Fig. 3 (A) describes the matching process. Dark and bright

sectors are extracted from the horizonal portion of the images

at target and current location. Each sector in the snapshot is

paired with the closest sector of the same type in the current

view. From each pair of sectors, two contribution vectors are

determined: a vector radial to the snapshot sector, pointing in

a direction of movement that would reduce the difference in

Fig. 2 Performance of the ALV model in a situation with 11 land-

marks which are partly covering each other. Landmarks and target

position are depicted as in Fig. 1. All trajectories start at the margin

of the diagram.

A B

Fig. 3 Homing mechanism of the snapshot model (A) and the dif-

ference vector model (B). The inner grey ring shows the snapshot

taken at the target location marked with a cross. The outer grey ring

depicts the current view as visible from the center of the rings. Vec-

tors attached to the outer circle are contribution vectors, the vector

originating in the center is the home vector.

apparent size of the paired sectors, and a vector attached tan-

gentially to the snapshot sector that would reduce the differ-

ence in bearing. The contribution vectors of both types have a

constant length with a ratio of 1:3 between tangential and ra-

dial contributions, which was chosen in the original paper to

fit the behavioral data. The average or sum of all contribution

vectors gives the home vector.

The link between snapshot model and ALV model can be

established by the “difference vector model” (DV model), a

version of the snapshot model (Lambrinos et al., 1999). In

the DV model, contributions from size differences are disre-

garded, only one type of sectors is considered in the matching

process, and the tangential vectors — which are just one out

of many possible choices — are replaced by secant vectors;

see Fig. 3 (B). The matching process itself remains the same:

the secant vectors are determined from a pair of neighboring

sectors in snapshot and current view. Each secant vector is

the difference between a unit vector pointing to the current

view sector and a unit vector pointing to the corresponding

snapshot sector. If the snapshot image is described by the



4 Ralf Möller

set of sector centers

(5)

and the current image by

(6)

the secant contribution vector is obtained from

(7)

where is the index of the landmark visible in the cur-

rent view that is paired with the image of landmark in the

snapshot. The home vector of the DV model is the sum of all

contribution vectors:

(8)

A comparison between this home vector and the home vector

of the ALV model obtained from equation (2) and (3)

(9)

reveals that the ALV model is identical to the DV model if

, i.e. if the DVmodel establishes a perfect match be-

tween the landmark sectors in snapshot and current view. In

a perfect match, the image of each landmark in the snapshot

is paired with the image of the same landmark in the current

view. On the one hand, this implies that the DV model and

the ALV model yield identical home vectors in the vicinity of

the target location where the matching procedure of the DV

model leads to a correct pairing. On the other hand, this un-

covers an interesting property of the ALV model: it implicitly

results in a perfect match between the two views. Note that

none of the models requires an identification of the landmark

from its image.

The striking parsimony of the ALV model — only one

vector has to be stored instead of a set of landmark vectors,

and the matching procedure is replaced by a vector subtrac-

tion — results from a mathematical shortcut that is possible

under the perfect-match condition : the ALV model

simultaneously computes and sums all contribution vectors

when it subtracts the sum of all landmark vectors in

the snapshot image from the sum of all landmark vectors in

the current view. This corresponds to a splitting of the sum in

equation (9) into the two sums of equation (3) and (2).

2.3 Relation between ALV and surroundedness model

Anderson (1977) criticized the “retinal matching” assump-

tion underlying the snapshot model which was put forward in

an earlier paper by Collett and Land (1975). From his land-

mark navigation experiments he concluded that “the bee is

not measuring the position of individual landmarks but the

overall landmark configuration”. As a measure for the over-

all configuration, Anderson defined the “surroundedness” by

landmarks. The AL vectormay be an alternativeway of math-

ematically expressing “surroundedness”. Actually, as will be

demonstratedwith a robot experiment in Section 4.3, the ALV

model reproduces the results of Anderson’s main experiment,

where the search position of bees was shifted when a part

of a circular array of landmarks had been removed between

training and test. Being closely related to the snapshot model

(Section 2.2) on the one hand and providing an overall mea-

sure of the landmark configuration with the AL vector on the

other, the ALV model may bridge the gap between the retinal

matching assumption and the surroundedness hypothesis. On

the one hand, the snapshot model (in the DV version) and the

ALV model return identical home vectors in the vicinity of

the target location. On the other hand, in the ALV model the

image information is reduced to a simple measure describing

the overall arrangement of landmarks as the “center of grav-

ity” of the visual cues in the image.

2.4 Relation between ALV and centroid model

The neurocomputational model of rat navigation suggested

by O’Keefe (1991) is based on the computation of the “cen-

troid”, the geometric center of landmark cues in the environ-

ment. Some kind of compass system presumed, the agent can

compute a vector pointing to the centroid location of the en-

vironment by adding the vectors that point from the current

position to each landmark and that have a length equal to the

distance from the landmark. By computing the difference be-

tween the centroid vector at the current location and the cen-

troid vector at the target location, the agent can determine

direction and distance to the target location.

The ALV model can be understood as an approximation

of the centroid model under an “equal-distance assumption”

(Franz et al., 1998). The landmark vectors of

the centroid model are replaced by vectors with the same di-

rection but constant length in the ALV model; compare equa-

tion (1). Instead of using unit vectors, the length of the vectors

could also be set to an estimate of the mean distance from all

landmarks, which reveals the core of the approximation. Not

having to estimate the distance to each landmark is an advan-

tage of the ALVmodel. The trade-off is that homing becomes

an iterative process: the home location can not be determined

in one step as in the centroid model, but has to be continu-

ously recomputed during the approach.

2.5 Properties of the ALV model

2.5.1 Average vs. sum of landmark vectors The sum in equa-

tion (2) has to be divided by the number of landmarks to ex-

press the average of landmark vectors. In order to reduce the

hardware effort, this normalization was left out in the ana-

log circuit of the robot. As long as the number of visible

landmarks is constant, division by only results in a differ-

ent scaling of the vectors. The scaling is arbitrary, since the

length of the landmark vectors was also arbitrarily chosen as
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A B C

Fig. 4 Average of landmark vectors vs. sum of landmark vectors. A: Trajectories in the training situation (almost identical for both versions

of the model). B: Model with averaging: removal of one landmark between training and test results in a small shift of the expected target

position to the right. C: Model with summation: trajectories run to infinity. All trajectories start at points on a grid. The target position is

marked with a cross.

. Therefore, the resulting trajectories will be identical. A dif-

ference between the sum and the average of landmark vectors

only becomes apparent in two cases: if landmarks are cover-

ing each other, or if the number of landmarks is changed be-

tween training and test. Fig. 4 visualizes the effect: for both

versions of the ALV model, the average or sum of landmark

vectors was computed in the target point of situation (A) and

stored. Both models show approximately the same behavior

in the training situation, except in regions where landmarks

are covering each other. If one of the landmarks is removed in

the test, but the stored vector remains unaffected, the behavior

of the two versions differs considerably: while in the case of

averaging the convergence point is only slightly shifted (B),

trajectories run to infinity in the case of summation (C).

2.5.2 Suitable landmark features A prerequisite for the ALV

model is that the same landmarks as in the target location will

be detected when the robot is moved away from that loca-

tion. The number of features in the image which are selected

as landmark cues and therefore assigned a landmark vector

should not change. This condition excludes mechanisms like

the one shown in Fig. 5 (B), where a landmark vector points

towards each dark pixel in the view. Trajectories starting at

points close to the target position resemble those obtained

by following the gradient on a potential function with a sad-

dle point in the target location: independent of the time di-

rection, trajectories approaching the target bend away before

they reach this location. For comparison, Fig. 5 (A) shows

the trajectories of the ALV model, if sector centers are used

as landmark cues. In this case, all trajectories end in the target

point (except for those running into landmarks). In the analog

implementation, edges are used as landmark cues equivalent

to sector centers, since the hardware effort for the detection

of edges is smaller.

2.5.3 Convergence The parsimony of the ALV model is not

only attractive from the modeling perspective, but also facili-

tates a mathematical analysis of its properties; this in turn can

shed some light on the related snapshot model, where a math-

ematical treatment is complicated as a result of the use of unit

vectors and the abrupt changes in the pairing of landmark fea-

A B

Fig. 5 Suitable landmark features for the ALV model. A: Trajecto-

ries of a model where sector centers are used as landmark cues. Tra-

jectories start at points on a grid. B: Trajectories of a model where

landmark vectors (outer ring) point towards each dark pixel in the

image. The starting points of the trajectories are positioned on lines

at the upper left and top left margin of the diagram. See Fig. 1 for an

explanation of the contribution diagram.

tures. Appendix A presents a proof of the global convergence

of the ALV model: it is shown that all trajectories converge

to the target location , except for those running into one

of the landmarks (see the example in Fig. 5, A). This prop-

erty is guaranteed, as long as not all landmarks are located on

the same line through ; this directly leads to the condition

. The analysis also reveals that each AL vector unam-

biguously characterizes one location in the plane; there are

no two positions in the plane that have identical AL vectors.

The AL vector can therefore be interpreted as a transforma-

tion from Cartesian to curvi-linear coordinates.

2.5.4 Other properties DV model and ALV model share an

advantage over the snapshot model: the length of the home

vector relates to the distance from the goal (Lambrinos et al.,

1999). This is not the case for the snapshot model, since there

the contribution vectors have the same length independent of

the difference in bearing or apparent size. The robot imple-

mentation benefits from this advantage: the speed of the ro-

bot depends on the length of the home vector and is therefore

automatically reduced to zero when the goal is approached.
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Fig. 6 Overview of the analog implementation of the ALV model.

This avoids overshooting and oscillations around the target

position.

Another advantage of the ALV model concerns the align-

ment to an external compass reference. While in the models

of the snapshot class either the robot or one of the images has

to be rotated, only one of the AL vectors has to be rotated

in the ALV model; in an analog implementation, this can be

accomplished with a simple multiplier circuit (Section 3.5).

It is the basic version of the ALV model which is pre-

sented here and implemented on the robot. Several other vari-

ants have been tested in computer simulations. An extended

version of the ALV model which regards the size of the land-

marks was suggested by Lambrinos et al. (1999).

3 Robot hardware

3.1 Overview

The implementation of the ALV model is based entirely on

discrete analog components; most of the active components

are operational amplifiers (op-amps). An overview of the cir-

cuit is given in Fig. 6. Visual input comes from a ring of

photo diodes (Fig. 7, A) mimicking the portion of ommatidia

of both insect eyes that is facing the horizon. The signals of

the photo diodes are amplified. Edges of one polarity are used

as landmark cues; they are detected by combining the signals

of two neighboring sensors. Unidirectional lateral inhibition

between neighboring edge filters ensures that only one pixel

per edge becomes active. The AL vector is determined from

the binary representation of the edges. Using an electronic

compass, the AL vector is rotated to world coordinates and

stored, when a switch is pressed. In the homing process, the

stored AL vector is transformed back to robot coordinates

and subtracted from the AL vector of the current location.

The components of the resulting home vector directly affect

the speed of the two motors.

3.2 Sensors

The Si photo diodes are horizontally arranged in a circu-

lar aluminum ring (Fig. 7, A). The angle between two neigh-

boring sensors is . Each diode faces an aperture

with a diameter of in a distance of from the

photo-sensitive surface. Care was taken to reduce the influ-

ence of light from outside the intended opening angle which

A B

Fig. 7 A: Robot (height , diameter , weight ).

The black ring contains the photo diodes, the boards above the

ring implement the ALV model, the boards below belong to the mo-

tor control. B: Arena for robot experiments ( ).

is reflected at the walls of the opening: a thread was cut in

the front part of the hole, the aluminum was anodized with

black color, and the thickness of the aperture ring was re-

duced. The effective opening angle (half-width of a Gaussian

sensitivity function) was determined experimentally for dif-

ferent aperture diameters. For aperture diameter, an

opening angle of is obtained; see Section 3.3.

The signals of the photo diodes are amplified using a stan-

dard op-amp circuit. Amplification and offset of each ampli-

fier were calibrated in a way that the amplified signals of all

diodes were roughly identical when facing a white ( ) or

a black surface ( ) under constant light conditions.

3.3 Edge filters

The outputs of two neighboring sensor amplifiers are com-

pared in order to the extract edges that serve as landmark

cues. Only edges of one polarity — clockwise black to white

— are detected; the detection of edges of both polarities would

have required additional hardware effort. For the flat land-

marks used in the experiments (see Section 4) there is no dif-

ference between using the sector center (as in the simulations

in Section 2.1) or one of the sector edges as landmark cue.

For landmarks with complex shapes, the behavior of the mo-

del with different cues still has to be investigated; note that the

proof in Appendix A is based on the assumption of landmark

points. Fig. 8 (A) shows the schematics of the edge-filter cir-

cuit. One of the amplified photo signals is directly fed to the

comparator, the other signal is slightly attenuated in a voltage

divider and shifted with the threshold voltage .

Each active edge pixel influences the AL vector. There-

fore the number of active pixels has to be kept constant in all

positions and orientations of the robot; see also Section 2.5.2.

This requires an additional mechanism, as will be explained
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A B C D

Fig. 9 Relation between opening angle, inter-sensor angle, and range of lateral inhibition. The black bar depicts a landmark with a detectable

edge at the right side. The amount of light received by each of the sensors (in this simulation scaled to ) is depicted by bars in the outer

ring; the inter-sensor angle is . Black fields in the grey ring visualize active edge pixels. A: Opening angle , edge

detection threshold , no lateral inhibition. Two neighboring pixels are active. B: , , no lateral inhibition. No edge

pixel is active. C: , , unidirectional lateral inhibition between immediate neighbors. One pixel is active. D: ,

, unidirectional lateral inhibition between immediate neighbors. Two non-neighboring pixels detect edges. In the analog circuit,

relates to .
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Fig. 8 A: Edge-filter circuit.B: Circuit for the computation of the x-

component of the AL vector in robot coordinates. Dashed resistors

encode the x-component for each landmark vector. The circuit for

the y-component is identical except for the values of the resistor

array.

in the following. In a real sensor, the opening angle can not be

zero, i.e., the sensor will integrate over a certain visual field.

In some cases, the visual field will include an edge. The sen-

sor will then produce an intermediate signal as shown in Fig.

9. If the edge detection threshold is too small, two neighbor-

ing edge detectors will become active (A). On the other hand,

if the threshold is increased, there will be cases when no edge

is detected (B). With real visual signals, there is no way to

adjust the threshold so that exactly one pixel is activated for

each edge in the visual input.

This problem can be solved by introducing lateral inhi-

bition, a fundamental mechanism in visual brains for which

there is also evidence in the visual system of insects (Straus-

feld and Nässel, 1981; Laughlin, 1981). With lateral inhibi-

tion, the threshold can be lowered to guarantee the safe de-

tection of an edge: of the multiple candidates for edges, only

one pixel will finally be activated. The range of lateral inhi-

bition, i.e. the number of elements in the neighborhood that

are affected by one pixel, depends on the relation between the

opening angle of the sensors and the inter-sensor angle. For

an environment with sharp visual edges like the experimental

setup used in the robot experiments (Fig. 7, B), lateral inhibi-

tion can be restricted to immediate neighbors, if the opening

angle is smaller or equal to the inter-sensor angle ; see Fig.

9 (C). This is the case for the robot ( , ). If

the opening angle is larger (D), the range of lateral inhibition

has to be increased: otherwise, the smooth transition of sig-

nals from maximal to minimal activation will cause multiple

non-neighboring edge pixels to be activated.

In the edge-filter circuit (Fig. 8, A), lateral inhibition is

realized by a diode connecting the output of an edge-filter

with the negative input of one of the neighboring edge filters.

A positive output voltage of the neighboring edge filter will

set the negative input to a higher voltage than the positive,

thereby switching off the comparator.

3.4 AL vector computation

Each active edge pixel contributes a radial landmark vector

to the robot-centered AL vector. In the analog hardware, this

is accomplished by connecting two resistors to the output

of each edge filter that encode the two vector components.

The resistors are part of a circuit implementing a weighted

summation of the edge filter signals; Fig. 8 (B) shows the

schematics for one vector component. Inactive edge elements

have an output voltage of and are therefore ignored in the

summation; all active edge elements provide a constant posi-

tive output voltage and influence the AL vector according to

the values of their two resistors. Since the landmark vectors

can have positive and negative components, the resistors are

either connected to the positive ( ) or negative ( ) in-

put line of the adder circuit ( ).

3.5 AL vector rotation and storage, home vector

computation

The home vector is the difference between the AL vector of

the current location and the AL vector of the target location,

with both AL vectors relating to the same coordinate system.

To compute a home vector in robot coordinates, the current

AL vector provided by the circuit in Fig. 8 (B) can directly
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Fig. 10 Circuit for rotation and storage of AL vectors, and home vector computation. The 4 switches are shown in the “off” position used for

homing; in the “on” position, the AL vector is rotated to world coordinates and stored. The blocks marked “difference” compute the difference

; the time switch at sets the home vector to zero, thereby stopping the movement.

be used in the difference computation, while the AL vector

of the target location has to be rotated to the same coordi-

nate system beforehand, since this vector was registered in a

different orientation of the robot.

The circuit implementing rotation and storage of the AL

vector as well as the computation of the home vector is pre-

sented in Fig. 10. Depending on the position of the switch

block, the circuit accomplishes two transformations. In the

target location, the switches are in position “on”, whereby

the robot-centered AL vector is rotated to world coordinates

and stored. During homing, when the switches are “off”, the

stored vector is rotated back to robot coordinates according

to the current orientation of the robot.

The transformation to world coordinates and back to ro-

bot coordinates can be accomplished with the same rotation

circuit. The rotation angle depends on the signals of an elec-

tronic compass that measures the current orientation of the

robot in world coordinates. The compass comprises two flux-

gate magnetic field sensors arranged orthogonally to each

other. Since the strength of the magnetic field is not constant

in buildings, the signals obtained from the two sensors were

normalized to constant length, thus providing two voltages

proportional to the compass vector . The “rota-

tion” block in Fig. 10 is a straightforward implementation of

the coordinate transformation

(10)

based on four precision multipliers and two adders. In the tar-

get location, where the robot is in orientation , the robot-

centered AL vector is transformed to world coordinates

and stored. In the current location, with a robot

orientation , the inverse transformation has

to be applied to rotate the vector back to robot coordinates.

Since is orthogonal and therefore , the trans-

posed matrix can be used in the inverse transformation. Mul-

tiplication by the transposed matrix was implemented with

the same circuit by exchanging the components in the input

and in the output vector; see the double x-shaped crossover

in Fig. 10.

The components of are stored in two capacitors that are

connected to switches and amplifiers with low leakage cur-

rents to achieve long storage times. Finally, the robot-centered

L R
45°

front

L R

R L
45°

front

rearrear

RL

A B

VhxVhyVhy Vhx

Fig. 11 Alignment of the robot coordinate system on the robot base.

The boxes marked L and R depict the wheels. The home vector is

shown as thin vector, its projection on the axes of the coordinate

system with thick arrows. The arrows next to the wheels

represent speed and direction of wheel rotation. A: A home vector

pointing towards the front of the robot will be stabilized in the front.

B: A home vector pointing towards the rear of the robot will cause

a movement of the robot that rotates the home vector towards the

front.

AL vector of the target location is subtracted from the cur-

rent AL vector in the two blocks marked “difference” in Fig.

10, which gives the home vector in robot coordinates.

3.6 Motor control

The robot uses differential steering, i.e., each wheel is inde-

pendently driven by one motor; ball bearings support front

and rear. The two components of the home vector can di-

rectly control the speed of the motors, if the robot coordi-

nate system is aligned on the robot as shown in Fig. 11. The

coordinate system is rotated by so that the vector

points towards the front of the robot. The component corre-

sponding to the axis pointing towards the left side of the robot

determines the speed of the right wheel and vice versa. This

arrangement will stabilize a home vector in the frontal direc-

tion (A); if the home vector is pointing to the rear, the robot

will automatically turn around which rotates the home vector

towards the front of the robot and thus changes the direction

of movement (B).
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Fig. 12 AL vector voltages measured at the output of the circuit in Fig. 8 (B) for robot positions with one landmark (A), two

landmarks (B), and three landmarks (C). Landmarks are depicted by bars; the detectable edges are marked with arrows. The vector scaling

( ) is shown in the upper right corner.

4 Robot experiments

4.1 AL vector computation

The following experiments were done in an arena

with white walls ( high) and floor; see Fig. 7 (B). Black

pieces of paper ( ) attached upright to the walls

served as landmarks. Light came from the ceiling lamps of

the room. Fig. 12 shows the AL vector voltages measured

(using multimeters with computer interface) while the robot

was placed at locations on a grid and aligned with the

world coordinate system. For one landmark (A), all AL vec-

tors have constant length and point to the detectable edge of

the landmark. For two and more landmarks (B, C), the AL

vectors also vary in length. Note that on a line connecting the

two landmark cues in (B) the AL vectors are approximately

zero. Target locations on this line can not be unambiguously

identified, but with three or more landmarks which are not

located on a line (C), the AL vector assigned to each location

is unique (see Section 2.5.3 and Appendix A).

4.2 AL vector rotation and storage, home vector

computation

Rotation and storage of the AL vector introduce errors, which

will result in a shift of the approach point to the location that

corresponds to the modified AL vector. The effect of errors

in the AL vectors on the change of the approach point de-

pends on the landmark configuration and on the position of

the target point. Fig. 13 allows a graphical assessment for the

setups used in the robot homing experiments. The diagrams

were obtained by iteratively determining for a given ;

the effects of limited visual resolution were not considered.

On each curve, either the angle or the length of the home

vector is constant. The denser the resulting grid, the smaller

is the shift of the approach point caused by a certain absolute

error in angle or length of the AL vector. In general, position

errors increase with increasing distance from the point where

the AL vector is zero, and decrease with increasing number

of landmarks.

A B

Fig. 13 Iso-length and iso-angle curves of the AL vector for three

(A) and four landmarks (B). The angular distance between iso-angle

curves is ; iso-length curves differ by . Landmark positions

(dots on the frame) and target positions (crosses) correspond to the

setups used in the robot experiments. Compare (A) with Fig. 12 (C).

Disruptions of the grid occur where the numerical procedure was

not converging.

That the precision of the compass system is critical has

been revealed in a first series of experiments, where the ob-

served homing precision was insufficient. The original semi-

mechanical compass had to be replaced by a fluxgate com-

pass with higher precision. To assess the precision of the new

compass system, the compass vector was measured while the

robot was manually rotated on the spot by in steps of

. The standard deviation of the measured angle from the

actual orientation of the robot was , the standard devia-

tion of the length was . The angular deviation can partly

be caused by distortions of the earth magnetic field in the

building: since the compass coils are not mounted in the cen-

ter of the robot, they measure the field at slightly different

positions during the rotation.

Errors introduced by the rotation circuit were estimated

by rotating the robot on the spot (full turn, steps of ) in

a setup where two landmarks where visible under an angle

of . For each orientation, both the robot-centered and the

world-centered AL vector were measured (at in the

circuit in Fig. 8 (B), and at the outputs of the vector stores

in Fig. 10 in switch position “on”, respectively). Mean val-

ues and standard deviations were computed for the AL vec-



10 Ralf Möller
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Fig. 14 Home vector fields for two different target locations in the setup with three landmarks. Target locations are marked with

a cross-circle. Landmarks and vectors are depicted as in Fig. 12.

tor before and after rotation to world coordinates; the robot-

centered vector was aligned with the actual orientation of the

robot beforehand. In the untransformed AL vector, the angle

deviates by , the length by . These deviations mainly

result from the coarse image discretization, partly from errors

in the resistors encoding the landmark vector components

(Fig. 8, B). In the transformed AL vector, which should ide-

ally be constant, the standard deviation is and for

angle and length, respectively. A comparison demonstrates,

that the errors introduced by the rotation circuit are certainly

not larger and probably considerably smaller than the errors

caused by the discretization of the image.

Measurements have shown that the vector store can be

excluded as a major source of error: changes in the stored

voltages are only (vector components go up to

). This allows experiments with the same stored vector for

and more without noticeably affecting the stored vec-

tor.

Fig. 14 shows two home vector fields obtained for two

different target positions in a setup with three landmarks. Tar-

get and landmark positions were selected arbitrarily. The ro-

bot was first placed at the target location, and the AL vector

of that location was stored. Then the robot was moved to

positions on a grid in the arena, where the two voltages of

the home vector were measured at the output of

the circuit in Fig. 10. To test the rotation circuit, the orien-

tation of the robot was changed by between target point

and grid points. It is clear that all home vectors point approx-

imately to the target location; their length becomes shorter in

the vicinity of the target.

4.3 Homing experiments

For the homing experiments presented in Fig. 15 (A–C), the

robot was first placed at the target location, where the AL

vector was registered, and then moved to different starting

points, mostly close to the walls of the arena. A pen was

mounted in the center of the robot between the two wheels.

After some seconds, a time switch released the motors and the

robot started to move. The trajectory was drawn by the pen

on paper covering the floor of the arena; the trajectories were

afterwards digitized from a photo of the paper (this method

causes the small distortions of the diagrams). The V-shaped

parts in some of the trajectories result from changes in the

movement direction of the robot from backwards to forward

(see Section 3.6).

For the three experiments shown in Fig. 15, the mean de-

viation of the final points from the target point was

in (A), in (B),

and in (C), with denoting the num-

ber of return trips. The experiment was repeated for three and

four landmarks in four different target locations (Fig. 13). The

mean deviation was in the range from

to in the 9 experiments done in the

setup with three landmarks and from

to in the 4 experiments done in the

setup with four landmarks. Over all runs, the mean deviation

was for the setup with three land-

marks and for the setup with four

landmarks. The improved precision of homing with an addi-

tional landmark is significant (one-tailed Mann-Whitney U-

test, ). Three runs where the robot collided with

the walls of the arena and could not recover from this state

have been disregarded.

Fig. 16 shows the behavior of the robot in experimental

setups similar to those used in bee experiments by Cartwright

and Collett (1983) (there: Fig. 9a) and Anderson (1977) (there:

Fig. 1). Cartwright and Collett (1983) trained bees to an array

of three landmarks and tested them in another array where the

distances between the landmarks were halved. They observed

that “during the tests, the bees would search were the com-

pass bearings of the landmarks on its retina matched those

experienced at the food source during training”. The same be-

havior is shown by the robot: all final positions of the trajec-

tories in the test setup end in the location where also the bees

search preferably (Fig. 16, A, B). Anderson (1977) used a

circle of eight landmarks and removed three of the landmarks

between training and test. As a result, the search position of

the bees shifted inside the semi-circle. The final positions of
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Fig. 15 A–C: Robot trajectories for two target locations in the setup with three landmarks, and for one target location in the setup with four

landmarks. The cross-circle marks the target location where the AL vector was stored. Black bars depict the landmarks, small dots the final

positions of the robot. D–F: Geometrical reconstruction of regions where the perceived view does not change (hatched area) for each of the

three experiments. Dots on the margin depict landmarks, the cross marks the target position. is the inter-sensor angle.

the robot also lie inside the semi-circle, although the shift is

more pronounced in the robot experiments (Fig. 16, C, D) 1.

5 Discussion

5.1 Precision of homing

The mean deviations of the final points from the target point

can almost entirely be explained as an effect of the low vi-

sual resolution of the robot. In a relatively large area around

the target point, the robot perceives the same image. Conse-

quently, the target location can not be located with higher pre-

cision. These “iso-view” regions have been constructed geo-

metrically for the experiments in Fig. 15 (D–F). The view

sector of each active edge pixel — which has an angular size

equal to the inter-sensor angle — was attached

to the corresponding landmark; the cross section of all view

sectors gives the iso-view region (hatched area). Depending

on the orientation of the robot, different sensors are activated

which results in iso-view regions with similar size but differ-

ent shape; in the geometrical reconstruction, the orientation

1 The starting points in the experiment in Fig. 16 (B) had to be

moved closer to the landmarks, since the landmarks and the gaps

between them had to be reduced in size and the low visual resolu-

tion causes the edge detection to fail in larger distances from the

landmarks.

was chosen in a way that the shape of the iso-view region

was in accordance with the final points of the trajectories ob-

tained in the experiments. It is clear that iso-view regions can

be foundwhere the final points are located close to the margin

or inside the regions. Since the mean deviations in all exper-

iments are in the same range as the mean deviations in the

experiments in Fig. 15, it is likely that also for the other ex-

periments iso-view regions can be constructed which explain

the position errors.

The improved homing precision with increasing number

of landmarks ( mean deviation for three landmarks

compared to for four landmarks) could be the result

of two effects. First, the AL vector grid (formed by iso-angle

and iso-length curves) becomes more dense (compare Fig.

13 A and B), and, second, the iso-view region (Fig. 15, D–

F) becomes smaller (or remains unchanged) with an addi-

tional landmark. As stated above, the precision of homing

seems to be mainly determined by the given visual resolu-

tion. This may change with improved visual resolution: the

area of the iso-view regions will decrease, and the homing er-

ror will mostly be influenced by the precision of the compass

system, depending on the density of the AL vector grid in the

target location. For comparison: the inter-ommatidial angles

of desert ants Cataglyphis bicolor (Zollikofer et al., 1995) in

the horizontal direction are a factor of smaller than the

inter-sensor angles of the robot.
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Fig. 16 Robot trajectories in experimental setups similar to those used in bee experiments by Cartwright and Collett (1983) (A, B) and

Anderson (1977) (C, D). Left column: test with unaltered training setup; the target location is marked with a cross-circle. Right column: test

with altered setup. The dashed lines in A and B connect the target position in the training and the expected target position in the test with

the detectable edges of the landmarks. All detectable edges in C and D are located on the dashed circle. The grey spots in C and D show the

approximate locations where the bees’ search concentrated.

In summary, the data show that homing is as precise as

possible with the available visual resolution. The second fac-

tor limiting the precision of homing is the internal rotation of

the AL vector: as mentioned in Section 4.2, a redesign of the

compass system was necessary in order to reduce the errors

introduced by rotation.

5.2 Reproduction of bee experiments

In two experiments described in Section 4.3 (Fig. 16), the ro-

bot approached approximately the same location in the tests

where bees also concentrated their search. These experiments

demonstrate that the version of the ALV model which was

implemented on the robot exhibits correspondences with the

behavior observed in insects. The experiment in Fig. 16 (A,

B) demonstrates the relation between ALV model and snap-

shot model (Section 2.2): the robot seems to restore the image

perceived in the target location. The experiment in Fig. 16 (C,

D) provides support for the link to the concept of “surround-

edness” (Section 2.3). The robot apparently only memorizes

an overall measure of how it is surrounded by landmarks, the

“center of gravity” of all landmark cues in the image, in this

case expressed by a zero AL vector. In the test, it moves to the

location inside the remaining landmarks, where this measure

(but not the image) is identical.

The simplicity of the implemented model restricts the ex-

periments that can be reproduced. First, landmark size is not

detected; this may also account for the deviation between the

final points of the robot trajectories and the region were the

bees search in the experiment with the semi-circle (Fig. 16,

D). A measure of size could be gained by considering edges

of both polarities (Lambrinos et al., 1999), but this would

have required additional hardware effort. Second, the robot

does not compute the average landmark vector, but only the

sum of all landmark vectors (see Section 2.5.1). This sim-

plification leads to completely different behavior when the

number of landmarks changes between training and test, as

was shown in Fig. 4. The semi-circle experiment could be re-

produced despite changes in the number of landmarks, since

the stored AL vector was zero, and therefore the missing nor-

malization had no effect.

To find a version of the ALV model that optimally repro-

duces the behavioral data, a systematic variation of its struc-

ture and parameters is necessary; for this purpose, a computer

simulation is more suitable. The robot experiments provide

the basis for computer simulations, since they demonstrate

that, first, the model in general does not rely on assumptions
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which are not fulfilled in the real world, and, second, it does

not exhibit a behavior which widely differs from the data of

behavioral experiments.

5.3 Analogies to neural architectures

Correspondences between analog electronic hardware and ner-

vous systems have been pointed out in Section 1.3. In the ana-

log circuit implementing the ALV model, strong similarities

can be found in the first processing stages. These similarities

concern general properties of insect nervous systems; nothing

is known so far about the neural circuits that realize visual

homing in insect brains.

The selection of edges as landmark features is supported

by the fact that “the landmark guidance system of bees can

operate successfully using edges alone” as was shown in ex-

periments by Cartwright and Collett (1983). Lateral inhibi-

tion, a principle underlying both the edge filters in the circuit

and the interaction between them, is common to many visual

systems; in insect brains, certain neurons in the lamina are

supposed to mediate lateral inhibition (Strausfeld and Nässel,

1981; Laughlin, 1981). The specific way in which edge filters

and lateral inhibition interact in the circuit is more a carica-

ture of a system that would enable detection of edges in com-

plex visual scenes. The artifical setup with clearly detectable

edges and constant light conditions is probably the weakest

point of this work, but the visual resolution and the simplic-

ity of the circuit put some restrictions on the properties of

the environment. Feature-detecting circuits have to be devel-

oped where a group of neighboring neurons responds with

constant total activity to one specific feature, as it is required

by the model (see Section 2.5.2).

The computation of the AL vector from the outputs of the

feature-detecting circuit finds a biological counterpart in the

spatial summation of input signals, which is a fundamental

function of neurons. It is very unlikely, though, that synap-

tic weights could be genetically determined to encode vector

components. An alternative was suggested by Möller et al.

(1999): Since the influence of the pre- on the postsynaptic

neuron also depends on the length of the neural processes

connecting both neurons, vector components could be en-

coded solely by a specific spatial arrangement of the cells.

Neurons involved in the AL vector encoding would probably

be identified by electrophysiology as “large-field neurons” as

they are known to exist in the medulla (Strausfeld and Nässel,

1981), since they will respond to visual stimuli over a large

portion of ommatidia. Cartesian coordinates have been arbi-

trarily chosen in the model, but this decision does not entail

problems; in fact, the two coordinates can directly influence

the motor system without a transformation to another system

by a simple crossover of fibers (see Section 3.6).

The circuit used for the rotation of the AL vector will

probably not have a direct biological counterpart. The use of

precision multipliers is a technical solution, which is not pos-

sible given the noise and imprecision of the neural substrate.

A more likely solution is a topological encoding of the vector,

such as the ring structures used in the neural model of path

integration by Hartmann and Wehner (1995). Which type of

compass guides the rotation is not crucial for the model: it

could be a magnetic compass that is known to be used by

bees for landmark navigation (Collett and Baron, 1994) or a

polarized light compass employed for instance by desert ants

(Wehner, 1994).

Experiments have shown that Cataglyphis ants can store

landmark-based information used in pin-pointing the nest en-

trance over at least 20 days (Ziegler andWehner, 1997). Such

long-term storage will presumably be based on modifications

at the synapses rather than on self-stabilizing neural feedback

circuits as suggested by Hartmann and Wehner (1995). The

current storage solution based on capacitors can only guaran-

tee storage times in the range of . An alternative would

be the use of non-volatile analog memory storage based on

floating-gate silicon MOS transistors (see e.g. Diorio et al.,

1997).

It may also be the case that not the vector components are

stored, but a representation with a closer relation to the image

— the vector encoding could only be exploited for the com-

putation of the home vector, which would save the matching

process. Evidence indicating that the image information is not

disregarded comes from decision experiments. Bees had to

decide between two landmark setups where only the images

perceived in the expected target locations differed but the AL

vectors would not (Cartwright and Collett, 1983, Fig. 15); the

bees preferred the array with the “correct” image.

In general, the ALV model may define the lower limit of

complexity for neural circuits that accomplish visual homing.

The number of neurons and synaptic connections required for

a neural implementation of the model is very small. Visual

input and AL vector are linked by a feature-detecting circuit

with only local interconnections and a single convergent path-

way (see Fig. 6). The majority (64) of the 91 operational am-

plifiers of the ALV circuit belong to the retinotopically orga-

nized part of the circuit (from sensor signal to edge-filter out-

put), even though the feature detection circuit is very simple.

This indicates that visual homing mechanisms might mainly

be implemented close to the periphery of the insect visual

system. About the complexity of the neural circuits mediat-

ing the alignment of vectors or images only speculations are

possible, since so far it is not even clear on the functional

level, how the alignment is realized by insects; experiments

show that landmark images seem to be retinotopically bound

(Wehner et al., 1996).

6 Conclusions and future work

It was shown that the ALV model successfully guides a mo-

bile robot to a target location with only small positional er-

rors. The precision of homing is limited by visual resolution

and precision of the compass system. In some landmark se-

tups, the behavior of the robot resembles the behavior of bees.

The analog circuit that implements the ALV model on the ro-

bot provides some insights as to how visual homing might be

implemented in insect brains.
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Future work will try to eliminate the limitations posed

by the low visual acuity and the simple circuits for landmark

detection, which restrict the operation to artificial landmarks

and room light conditions. For larger environments with am-

biguous places, the system has to be extended so that multi-

ple AL vectors can be stored. Larger distances could then be

covered by approaching the corresponding target locations in

a sequence; the stored vectors will thus form a “route map”

of the environment.
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A Proof of global convergence

is a gradient system, i.e., there exists a scalar potential

which satisfies grad . The potential is

given by with

The second order derivatives of are

with , , , and .

The determinant of the Jacobian matrix of is

and can be rewritten as

Elements in the sum with disappear, for the remaining

elements the sum can be split:

which after exchanging indices of the second sum and factor-

ing out gives

The following condition guarantees that :

Geometrically this means that at least two of the landmarks

should not lie on the same line through . If this condition is

fulfilled for , has an isolated local minimum at the

fixed point of equation (4), since ,

, and grad .

is the sum of a norm function and a plane and there-

fore convex in the whole plane. Since the sum of convex func-

tions is convex, also is a convex function. An isolated

local minimum of a convex function is the only local and

therefore the global minimum of that function. From this it

can be concluded that all trajectories following the negative

gradient will run into . Trajectories passing one of the land-

mark positions have to be treated separately, since the gra-

dient is not defined in these points. Note that this proof can

also be extended to more than 2 dimensions.

Since is the only local extremal point of , this

point is the only point where the gradient becomes

zero, i.e., . Equation (3) therefore yields

: there is no second point in the

plane with the same AL vector.
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Möller R, Maris M, Lambrinos D (1999) A neural model of

landmark navigation in insects. Neurocomputing 26-27,

pp 801-808

O’Keefe J (1991) The hippocampal cognitive map and nav-

igational strategies. In: Paillard J (ed) Brain and Space.

Oxford University Press, pp 273–295

Srinivasan MV, Chahl JS, Zhang SW (1997) Robot naviga-

tion by visual dead-reckoning: inspiration from insects. Int

J Pattern Recognition and Artificial Intelligence 11(1):35–

47
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