
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 216, 1976

INSEPARABLE FINITE SOLVABLE GROUPS
BY

HOMER BECHTELL

ABSTRACT.  A finite group is called inseparable if the only proper
normal subgroup over which it splits is the identity element.   The i'-residual,
for the formation E of groups in which all Sylow subgroups are elementary
abelian, appears to control the action of splitting.   In this article, inseparable
solvable groups are identified that have a metacyclic Fitting subgroup and the
E-residual a p-group.

1. Introduction. Attention is given to finite groups. The notation used is
considered to be standard and may be found in [8] with the exception that G =
[A]B denotes the semidirect product of the normal subgroup A of G with the
subgroup B of G.  A reduced product G of the normal subgroup A by the sub-
group B is the product G = AB such that ,4C is a proper subgroup of G for each
proper subgroup C of B.  Frequently reference will be made to [8], because of
its availability, rather than to the original article.

Definition 1.1. A finite group is called inseparable if the only normal
subgroups over which it splits are the identity element and the group itself.

It follows from the definition that all nontrivial simple groups and groups
of one element are inseparable.

Motivation for this study stems from several directions. Each group G,
|G| =£ 1, can be decomposed into the form G = AnAn_x • • • Ax, \A¡\ # 1 for

i= 1, . . . ,n,(An • • -Aj+x)<\(An • • -A¡),(An • ■ -A¡)= [An • • ■ Aj+x]Aj
for 1 < / < n, and A¡ is inseparable for i = 1, . . . , n.  If n > 2, then G is called
a separable group. Consequently each group is formed through a succession of
semidirect products by inseparable groups. The primary interest with such a de-
composition is in regard to groups that are not expressible as a direct product.
If a group G is defined by an extension 1 —*■ ZV —> G —* A —*■ 1, then it is only
natural to examine G to see if there exists a nonidentity proper normal subgroup
over which G sprits and to express G as a semidirect product. The extreme case
occurs whenever G does not split over any nonidentity proper normal subgroup,
for example, the generalized quaternion group.

A classification of the inseparable p-groups would be an onerous task. The
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obvious ones are the cyclic groups of prime power order, the generalized quaternion
groups, and p-groups of maximal class that have all elements of order p contained
in the Frattini subgroup. In §4, the inseparable metacyclic p-groups are identified
for p > 2. For odd primes p, there is only one inseparable p-group of order p4,
and this group exists only for p = 3; it has maximal class (see p. 334 of [8]).

Inseparable supersolvable groups are p-groups, as well as inseparable solvable
A -groups and p-nilpotent groups. However solvable, but nonnilpotent, inseparable
groups do exist as the next example indicates. Its uniqueness will be identified
in Theorem 5.1.

Example 1.2. Let H = (a, b\a* = 1, b2 = a2, b~lab = a3) he the qua-
ternion group andK = (x, y\x3 = v4 = 1, xy = x2) = [<jc>] (y). There exists
a homomorphism 0: K —► Aut(ZZ) having Ker(0) = (y2) and image isomorphic to
the symmetric group of degree three.  Form the semidirect product G = [H]K
with respect to 0. The mapping 7: a2 —>■ y2 is an isomorphism from Z(H) onto
Z(K).  Following the method of D. Gorenstein for forming partial semidirect
products (p. 27 of [7]), set D = {z^z'^z E Z(H)} = (a2y2). Consider G =
G/D.  Then G = HK fot, H = HD/D = H, K = KD/D s K, H < G, and H n K
= Z(H)D/D = Z(H). A Sylow 2-subgroup of G is a generalized quaternion group
of order 24 and a Sylow 3-subgroup is cyclic.

Suppose that G = [N]M, \N\ # 1. Since a Sylow 3-subgroup is not normal
in G, then \Ñ\ ¥= 3 and 2 divides \Ñ\. Hence there exists a Sylow 2-subgroup P
such that P splits over N C\ P. But a generalized quaternion group does not split
over any nonidentity proper normal subgroup. Hence PEN.  Since P-ÂG, then
3 divides IN]. Therefore Ñ = G. So G is inseparable.

The study of inseparable groups inadvertently reflects on our knowledge of
the structural components within a group that permit splitting over a normal
subgroup. One of these components is the F-residual (or elementary commutator
in [1]) for the formation E of groups having all Sylow subgroups elementary
abelian. Let GE denote this residual in a group G.  It is known (see [1],
[2, p. 66] ) to have the following properties:

(1.3) GE is generated by the Frattini subgroups of all Sylow p-subgroups of G.
(1.4) G/GE splits over each normal subgroup.
(1.5) If G splits over M = N n GE for a subgroup N<G, then G splits

over N.
The dihedral group indicates that the converse of (1.5) is not valid since in

a nilpotent group, GE = $(G).
(1.6) G splits over each normal subgroup of G if and only if G splits over

each normal subgroup of G that is contained in GE.
In the case of solvable groups, the property F of splitting over each normal

subgroup is a formation (see [3]). Denoting the F-residual of a group G by GF,
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it is noted that 1 C i>(G) EGFCGE. Examples of groups exist for each of the
possibilities that could occur for the various equalities and proper containments.
In particular for p-groups, GF = &(G) = GE. Groups satisfying (1.6) have GF
= 1.

As the symmetric group S of degree four indicates, SE nilpotent does not
imply that SE is either SF or <&(S). In S, $(5) = SF — 1, and SE is isomorphic
to the elementary abelian normal subgroup of order four.

There are several reasons for the restrictions put on GE in this article.  For
control purposes, it seems reasonable to have the Frattini subgroup of a Sylow
p-subgroup to be different than the identity element for only one prime. To
allow GE to be nilpotent forces GF = $(G) by Corollary 3.1. However, this
still allows too much latitude on the nilpotency class of the Sylow p-subgroup
for the prime p.   For instance, C. Christensen [5] has given an example of a
group in F in which the Sylow p-subgroups can be of arbitrarily large nilpotence
class. If the ZT-residual is a metacyclic p-group, then the corresponding Sylow
p-subgroup of G has a Frattini subgroup which is also metacyclic. There is enough
known on the structure of these p-groups (see [4]) to be of use here.

In §2, general properties of inseparable groups related to the Zvresidual
will be given. The remainder of the article will examine the case that the ZT-
residual is a metacyclic p-group.   § §3 and 5 will deal with the inseparable group
that is solvable but not a p-group and §4 is concerned with p-groups.

2. General properties.  Epimorphic images, subgroups, and normal sub-
groups of inseparable groups are not necessarily inseparable. The cyclic groups
of prime power order and the generalized quaternion groups raise a question on
the type of group that has each subgroup inseparable.

Theorem 2.1. A group G has each subgroup H CG inseparable if and
only if G is either a cyclic group of prime power order or a generalized quaternion
group.

Proof.   By induction on the order of G, each proper subgroup of G is
either a cyclic p-group or a generalized quaternion group. G must be nilpotent
for otherwise G is a minimal nonnilpotent group and such groups split over some
Sylow subgroup. Hence G is a p-group and the result follows. The converse is
evident in either case.

The next theorem answers several questions on the extreme cases involving
epimorphic images of solvable groups.

Theorem 2.2. (1) Each epimorphic image of a solvable group G is insep-
arable if and only if G is cyclic of prime-power order.

(2) A solvable group G is separable, but has each proper epimorphic image
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inseparable, if and only if G satisfies one of the following for primes p and q :
(a) G is elementary abelian of order p2.
(b)G = (x\xp = l)®(y\yc¡ = l),p*q.
(c) G = [A]B, for B a cyclic p-group acting faithfully and irreducibly on

the elementary abelian q-group A and p + q.

Proof.  Consider (1). Each abelian group satisfying this condition must
be a cyclic p-group. So G/G' is a cyclic p-group. Suppose that G' ^ G". Then
G'/G" contains a subgroup normal in G/G" and having an index relatively prime
to its order, unless it is a p-group. In the former case G splits over this normal
subgroup since it is a Hall subgroup.   Therefore G/G" is a p-group.   But
(G/G")I$(G/G") = T must be inseparable. Hence T is cyclic of prime order.
This contradicts G' ^ G". Hence G' = G" and so G is abelian. The converse is
evident.

Next, consider (2).  Let N be a minimal normal subgroup of G.  By (1),
G/N is cyclic of prime power order. If G is a p-group, then \N\ = p.  Hence G
is of type (a). Suppose that (\G/N\, \N\) = 1. Then G satisfies (b) whenever G
is abelian. If G is nonabelian, then N coincides with its centralizer in G.  So G
has form (c). Again, the converse is evident.

If the condition of solvability is relaxed in Theorem 2.2, then the resulting
groups are not sharply defined.  For example, the special linear groups SL(2, q)
for primes q > 3 would be included in the classification of (1) and (2) would
include the symmetric groups of degree « > 5 as well as each direct product of
two nonabelian simple groups.

Next let us examine the role of the F-residual in an inseparable group.

Theorem 2.3. A group G = [N]S if and only if there exists a reduced
product G = NS such that GE= [N n GE]SE.

Proof.   Let G = [N]S.  Since F is a subgroup inherited formation, then
HE C GE for all subgroups H in G.  In particular, SE EGE. Moreover G/NSE
E E implies that GE C NSE. Hence GE = GE D NSE = SE(N n GE) =
[NHGE]SE.

Suppose that G = NS is a reduced product fot N< G such that GE =
[N n GE]SE. Then N n S C $(5) C SE implies that N n S C (N n GE) n SE
= 1. Therefore G = [N]S.

In general, if G = NT for N<G, then GE = (N n G^Fg..

Corollary 2.3. IfGE is inseparable, then G=[N]S if and only ifN n GE
= I or there exists a reduced product NT, for TES, such that TEE.

Proof.  The only part of the proof that needs to be mentioned is that if
G = NS yields a reduced product G = NT, TES, and TEE, then NHTE
$(F) = 1 implies that G = [N] T.
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Theorem 2.4. A solvable group G is inseparable if and only if
(1) GE ¥= [N n GE]SE whenever G = NS is a reduced product for each

proper normal subgroup N and 1 < \N O GE\ < \GE\,
(2) the normal subgroup £2(G) generated by all the elementary abelian p-

groups for all p dividing \G\ is contained in the intersection R of all normal max-
imal subgroups of G, and

(3) each minimal normal subgroup of G is in <3?(G).

Proof.   Let G be inseparable. Then (1) is valid by Theorem 2.3, and
clearly £2(G) C R.  Let M be a minimal normal subgroup of G  Then M n $(G)
= 1 implies that G splits over M.  Hence (3) is necessary.

Suppose that conditions (l)-(3) hold and that G = [N] T for N + 1 + T.
By Theorem 2.3, GE=[NH GE] TE. By (1), N n GE = 1 or GE. If N C\ GE
= 1, then N contains a minimal normal subgroup of G that is not contained in
$(G). This contradicts (3). Therefore GE C N and T E E.  By (2), T Ç Çl(G)
C R.  Since N is contained in a normal maximal subgroup M of G, then AT C
MEG.  This contradiction implies that G is inseparable.

Corollary 2.4. A p-group G is inseparable if and only if
(1) $(G) ■£ [N n $(G)] $(S) whenever G = NS is a reduced product for

each proper normal subgroup N and 1 < \N n $(G)| < 10(G)!, and
(2) Í2,(G) C $(G).
3. The ZT-residual as a p-group; general comments.  If GE is a p-group, then

a Sylow p-subgroup P of G has a nontrivial Frattini subgroup. All Sylow ^-sub-
groups for q =£ p are elementary abelian. As a result of the next theorem, GF =
*>(<?)•

Theorem 3.1. For a solvable group G, GF is nilpotent if and only if GF
= $(G).

Proof.   From [6] it is known that the identity element is the prefrattini
subgroup of a solvable group G if and only if each normal subgroup in G possesses
a complement. Hence GF is the least normal subgroup in G generated by the
prefrattini subgroups in G.  Since <E>(G) C W for a prefrattini subgroup W in G,
then W/$(G) is a prefrattini subgroup of G/$(G) (see [6]). Moreover, (G/$(G))F
= GFI$(G) = < R/s<I>(G)|£ £ G).  If GFI$>(G) ± $(G), then GF\$(G) C F(G)f$(G)
is avoided by Hy<I>(G) since a prefrattini subgroup avoids all complemented chief
factors. The contradiction implies that GF = ®(G). The converse is evident.

Corollary 3.1. If GE is a p-group and G is solvable inseparable, then
GF = *(G)¥=1.

Condition (2) in Theorem 2.4 yields the next result.
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(3.2) If G is solvable inseparable and GE is a p-group, then each normal
maximal subgroup of G has index p in G.

Theorem 3.3. Let G be an inseparable nonnilpotent solvable group, GE a
p-group, and P a Sylow p-subgroup of G.   The following properties are satisfied:

(1) 1>(G) C GE.
(2)$(P)rfG.
(3) GE cannot be a cyclic group of prime power order.
(4)(GE:$(G))>p2.
(5) GE = F(G), F(G) the Fitting subgroup ofG, whenever F(G) is metacyclic.
(6) If(GE : $(G)) = p2, then GEI$(G) is an irreducible subgroup in G/$(G).

Proof.  If G is inseparable, then F(G) is a p-group. Otherwise G would
split over each nontrivial direct (^-factor of F(G) for q ¥= p.  Suppose that 3>(G) =
GE. Then P/$(G) is abelian for each Sylow p-subgroup P.  Since $(G) C F(G) in
a solvable group G and CG(F(G)I^(G)) Ç F(G)I$(G), then P/<t>(G) C F(G)I$(G).
Therefore P<G and G splits over P.   This contradicts the inseparability of G;
(1) is valid.

By (1.3), $(P) = GE whenever $(P) < G.  Since $(P) < G implies that
$(P) C $(G), then 3>(G) = GE. This contradicts (1) and so verifies (2).

(3) is an immediate consequence of (2).
For (4), suppose that (GE : $(G)) = p.  Then $(P/<I>(G)) < G/®(G). Hence

i>(P/$(G)) = $(G). So *(P) C $((7). This imphes G£ = $(G), contradicting (1).
Since ®(F(G)) C $(G) C(?£C F(G), then F(G) = GE by (4). This verifies

(5).
Examine (6). GEI$(G) is completely reducible. If GEI$(G) is the direct

product of two subgroups of order p and normal in G = G/<ï>(G), then at least
one of them, say A, is noncentral in G.  Hence p -f (G : Cq(^4)).  But this implies
that G contains a normal maximal subgroup of index other than p.  (3.2) is con-
tradicted.

Theorem 3.3(5) motivates the remainder of the article. If GE is a p-group
and G is inseparable, then GE cannot be cyclic by Theorem 3.3(3).  Because of
Example 1.2, it seems reasonable to restrict GE to being a noncyclic metacyclic
p-group. As the next theorem points out, the class of nonnilpotent solvable groups
minimal with the property of being inseparable and having GE a metacyclic p-
group will also have F(G) = GE. Therefore the condition put on F(G) in Theorem
3.3(5) arises in a nontrivial way. In §5, it will be shown that this class reduces
to the group of Example 1.2.

Lemma 3.4. Let G be an inseparable nonnilpotent solvable group such that
GE is a metacyclic p-group.  Suppose that G/$(G) = [N/$(G)] (A/<&(G)), N n GE
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C d>(G),and A = [B]C for B, C* 1. Then
(1) GE=AE = CE and
(2) G/$(G) = [A®/$(G)](C/$(G)) with NB D GE C $(G), B </L N, C £ NB.

Proof.   By Theorem 2.3, AE = [B n AE]CE. Moreover AE C GE. GE
metacyclic implies that <b(GE) = $(G), by Theorem 3.3(4). Therefore GE =
GE n NAE = AE(N n GE) Ç AE$(G) - ^(G^) = AE.

Suppose BC\AE<$ 4>(G). (5 n yl^) < .4 and [N, GE] C $(G). Hence
$(G)(B n ^¿Z) < G.   By Theorem 3.3(6), GEf<b(G) is irreducible in G/$(G).
Since 5 n ^ Ç <ï>(G), then 3>(G)(5 n 4^) ■ ¿Ä - $(AE)(B D ̂ £) = (5 n X£).
Since 5 D C = 1, then Cg. = 1. This implies that A = [B]Cand CEE.  Since
NB < G, then G = [7VZi]C* for some subgroup C* Ç C.  But G is inseparable.
Hence G = TVA  Therefore yá = NB n ¿ = B(N n A) = 5<Ï>(G) = B$(AE) = B.
This contradicts C ̂  1 in the hypothesis. Therefore (B n AE) C $(G) = $(/!£•).
SoAE= [BC\AE]CE = CE.

Since $(G) C CE, consider G = (NB/$(G))(C/$(G)). Let xENBDC.
Then x = c = ne, for c £ C, n E N, and b E B, and n = cô_1 £ TV n .4 C $(G).
Therefore nEC.  This implies that è = 1 and x = n £ $(G). So ZVB n C C
$(G). Consequently G/$(G) = [NB/$(G)] (C/<ï>(G)). Moreover since GE = Q,
then NBOGEE $(G).

Theorem 3.5. Let G be minimal as an inseparable nonnilpotent solvable
group having GE as a metacyclic p-group.   Then F(G) = GE.

Proof.   Suppose that GE =t F(G). Since GE/$(G) is irreducible in G/$(G)
and F(G)I$(G) is completely reducible, there exists an irreducible factor M/<b(G)
C F(G)l<ï>(G) such that M n GE C $(G).  Hence G/$(G) = [M/$(G)] (4*/i>(G))
and Iñi* = "i(G). Let N be a normal subgroup maximal with respect to the
property that MEN, G/$(G) = [N/$(G)] (4/$(G)), N n GE C $(G), and TV is
proper in G.   By Lemma 3.4, AE = GE. Suppose that A is inseparable. Then the
minimality of G is contradicted unless A is nilpotent. So A would be a p-group.
Therefore AE = i>(yl). Since $(G) + 1, then $(/4) =£ 1. Since $(4) Ç $(?) C
GE for a Sylow p-subgroup P of G that contains .4, it follows that $(P) < G. This
contradicts Theorem 3.3(2). Therefore A is separable, say A = [5] C with Z? =£ 1
and C * 1. By Lemma 3.4, G/$(G) = [NB/$(G)] (C/4>(G)) andNBDGEC $(G).
A contradiction is reached in that AT is not maximal with respect to the required
properties. This contradiction arose by having assumed that GE =£ F(G).

4. p-groups with a metacyclic Frattini subgroup.  For p-groups, GE = $(G).
Since Berkovic [4] has already identified the structure of these groups, then his
results will be used in both this section and the next in order to characterize the
inseparable group G.   A summary from [4] is given in (4.1).
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A p-group P is absolutely regular if (P: Ut(P)) < Pp■  Each absolutely
regular p-group is regular and an absolutely regular 2-group is cyclic. If i>(P) is
metacyclic, then P has the following structure:

(4.1)  For $(P) cyclic, P = AB such that A is generated by $0 = fij(<i>(P))
and all normal subgroups of P containing 3>0 of type (p, p), B is either cyclic or
a 2-group of maximal class, $(P) Ç B, and A/®0 C Z(P/<I>0).  For dj>(P) noncyclic,
/I is generated by 3>0 = £2j(<I>(P)) and all normal subgroups of P having order p3,
exponent p, and containing 3>0, Z? is absolutely regular or a 3-group of maximal
class, 4>(P) C Z?, and ^4/i>0 is elementary abelian and contained in Z(P/dj>0).

Theorem 4.2. Let G be an inseparable p-group with a cyclic Frattini sub-
group.   Then G is either cyclic or a generalized quaternion group.

Proof.   Since G is inseparable, then S2X(G) = Í2X($(G)) by Corollary 2.4.
By (4.1), A = <3>0 and G = B.  The 2-groups of maximal class are known and of
these only the generalized quaternion group is inseparable.

Theorem 4.3. Let G be an inseparable p-group and i>(G) be metacyclic,
but not cyclic, for p > 2. Then G is either metacyclic or of maximal class. If
G is of maximal class, then p = 3.

Proof.  Since G is inseparable, then A = $0 and G = B, by (4.1). If G is
regular, then \<&0\ = p2 implies that G is metacyclic (see p. 337 of [8]).

The corollary to Theorem 4.8 will remove the possibility in Theorem 4.3 that
an inseparable 3-group of maximal class could be metacyclic. However, other
inseparable 3-groups of maximal class exist that satisfy the conclusion of Theorem
4.3, for example, consider

G = (a, b, c\a9 = b3 = c9 = l,ab = ba, c~xac = ab, c~lbc = ba3, c3 = a3).

G is neither metacyclic nor regular.
More generally, the best possible result about inseparable p-groups of maxi-

mal class seems to be the following:
(4.4) A p-group G of maximal class is inseparable if and only if £lx(G) =

nx(<t>{G)).
For p > 2, the characterization of a nonabelian inseparable metacyclic p-

group can be stated explicitly. By Theorem 4.2, we know that i>(G) cannot be
cyclic. As is known a metacyclic p-group G has the form

(4.5) G = <a, b\aPn = 1, bPm = aPt, b^ab = ak) with t > 0, kPm - 1 =
p\k - 1) = 0 mod p", and |G| = pn+m.

Lemma 4.6. Let G be a nonabelian p-group in (4.5) for p > 2.  77ze« G
splits over (a) if and only if exp(G) = p" or pm.

Proof. Since U ¡(G) = $''(G) = 4>($i_1(G)) = W'XbP*), for $0(G) = G,
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$i(G) = $(G), and |G| = p"+m, then G = [<a>]<A> implies that exp(G) =
exp(<fl>) or exp(<&>).

Now suppose that exp(G) = pn or pm. Clearly if exp(G) = pm, then G
splits over <a>.  Let exp(G) = p". Then exp(<i>) = p"+m-f <p". Therefore
m < t.  So S^ÍG) = iaPm~l){bPm~l) is noncyclic, $m(G) = <aPm), and
{aPm~X > is a maximal subgroup of $'"'"1(G). Since $m_1(G) is not cyclic, then
\Çlx(¥"~l(G))\ = p2. There exists an element x £ $m_1(G) such that $m_1(G)

»7 — 1= [{aP       >]<x).  From the regularity of G, this implies that there exists y EG
such that G = [<fl)]<7> and ypm     = x.   Therefore G splits over <a>.

Lemma 4.7. Let G be an inseparable nonabelian p-group for p> 2 given
by (4.5). Then

(1) (b) <ft G and
(2) exp(G) = p""1-"1-' /or 0 < t < n, m > t, and 0 < (k - 1) < pt < p".

Proof.   Since G is nonabelian and inseparable, then 0 < t < n.  By Lemma
4.6, exp(G) * pn nor pm. Therefore exp(G) - pm +"_f = exp(<ô» > p». Hence
m > f.  If <&) < G, then exp(G) = exp((Z>>) by application of Lemma 4.6 to ib).
Hence <ô> <A G.  If (k-i)> pt, then (b)< G.  So 0 < (k - 1) < r/.

Theorem 4.8. Let G be a nonabelian metacyclic p-group for p>2 as
given in (4.5). G is inseparable if and only i/exp(G) = pm+n~t, for 0 < t < n,
m > t, and 0 < (k - 1) < px < pn.

Proof.  Lemma 4.7(2) states the necessity.
Suppose that G satisfies the conditions. First note that

G/G' = G/{ak-x ) = (ia)^-1 ))((ak-l){b)l{ak~l »

and
<û> n {ak~l)(b) = {ak-l)(apt) = <afc_1>.

Hence G/<a*_1> is abelian of type (k -l,pm) since \{ak~l){b)l{ak-l)\ = pm.
Assume that G = [N]A and 1 < \N\ < \G\. Since G is nonabelian and p > 2,
then |i2j(G)| = p2. Hence N and A are cyclic; G' C N.  Moreover G/G' -
N/{ak-i > ® <afc_1 )/l/<afc~1 > has order pn+ml(k - 1). Then AyXff*-1 > has order
(k - 1) or pm. If |Ay<afe_1 >| = (k - 1), then \N\ = pn and HI = pm. Hence
exp(G) = p" or pm which contradicts the hypothesis. If \N/{ak~l )\ = pm, then
\N\ = pn+mf(k - 1) and \A\ = (k - 1). Since exp(G) ̂  (A; - 1), then exp(G) =
pn+ml(k - 1)> pn+m~t. This contradicts the hypothesis. Therefore G is in-
separable.

Corollary 4.8.    An inseparable 3-group G of maximal class having 4>(G)
metacyclic, but not cyclic, cannot be metacyclic.
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Proof.   Let G be a metacyclic 3-group satisfying the hypothesis and
having defining relations (4.5). The class ofGis« = « + m-2. Hence m = 2.
By Theorem 4.8, t = 1.  Since (k - 1) > 3, a contradiction is reached.

The class of groups satisfying Theorem 4.8 is certainly not empty. Just
consider G = <a, b\a^ = 1, bP* = aP3, b~lab = a1+p2,p* 2) of order p8
and exponent p5.

Even though Theorem 4.8 identifies succinctly the inseparable metacyclic
p-groups for p > 2, it also points out that all other types can be expressed as
splitting extensions.

Nothing further will be discussed for the prime p = 2, since for other than
the cases presented by 0. Tausky (see p. 339 of [8]), there does not seem to be
a well-defined direction in which to go toward the identification of the 2-groups
having a noncyclic metacyclic Frattini subgroup. Of the metacyclic 2-groups of
maximal class, only the generalized quaternion group is inseparable.

5. Minimal inseparable nonnilpotent solvable groups with the F-residual a
metacyclic p-group. In view of Theorem 3.5, the groups G to be considered in
this section will be nonnilpotent and solvable having F(G) metacyclic and GE a
noncyclic metacyclic p-group.  The main result of this section is the following:

Theorem 5.1. Let G be a nonnilpotent solvable group having a metacyclic
Fitting subgroup. If GE is a p-group, then G is separable whenever G is not the
group of Example 1.2.

The proof will be a culmination of a succession of lemmas. Let G be an
inseparable nonnilpotent solvable group with GE = F(G) a noncyclic metacyclic
p-group and denote a Sylow p-subgroup by P.  The following properties are
immediate consequences of the properties of the Frattini subgroup.

(5.2) <i>(GE) C $(G) n <K(P).
(5.3) $(G) = *(GE).
(5.4) (GE: $(G)) = p2 and GEI$(G) is irreducible in G/®(G).
(5.5) $(G) C rJ>(P) C GE.

Lemma 5.6. Let G be a nonnilpotent solvable group. IfF(G) is metacyclic,
GE is a metacyclic p-group for p > 2, and $(G) is noncyclic, then G is separable.

Proof.  Assume that G is inseparable and let P denote a Sylow p-subgroup
of G.   By (5.5), $(P) is noncyclic.  In the notation of (4.1), let P = AB.  Since
$(G) is noncyclic, then 3>0 E <ï>(G). Hence P/®(G) = (A$(G)I®(G))(B/®(G)).
By (4.1), /44>(G)/$(G) centralizes F(G)/<I>(G). Hence A E A$(G) C F(G) = GE.
A is metacyclic and cannot contain subgroups of order p3 having exponent p.   So
A = $0 C $(P). Therefore P = AB = B and P/$(G) is a nonabelian p-group of
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order p3. Since 3>0 = £lx(P) has order p2, then if P is regular,P is metacyclic
(see p. 337 of [8]). Consequently G£/«ï>(G) is the unique elementary abelian
subgroup of P/$(G). But GF = <E>(G) by Theorem 3.1. Since G is inseparable,
then each normal maximal subgroup M of G has index p.  However G/<fr(G) split-
ting over Af/<ï>(G) implies that P/®(G) splits over GEl<b(G). This contradicts
Sl^P/^G)) = GE/<b(P). Hence Z> cannot be regular. So assume P to be of maxi-
mal class. Then p = 3 and G/Gjj is isomorphic to a subgroup of GZ,(2, 3). But
GZ,(2, 3) contains no subgroups that have all Sylow subgroups elementary abelian
and in which the normal maximal subgroups have only index 3.  So P cannot have
maximal class. Hence G is separable.

Lemma 5.7. Let G be a nonnilpotent solvable group. If F(G) is metacyclic,
GE is a metacyclic 2-group, and $(G) is noncyclic, then G is separable.

Proof.   Assume that G is inseparable. Then GE = F(G), 4>(G) = $(GE),
GEI$(G) is an irreducible subgroup in G/$(G), and G/GE is isomorphic to the
symmetric group of degree three. Since <b(GE) is noncyclic, there is a smallest
integer k such that <bk(GE) is noncyclic and <ï>fc+1{GE) is cyclic. £lx(GE) C
®k(GE). Let a denote an automorphism of order three induced by G on GE. If
$k+\GE) * 1, then A = ^k(GE)l^k+2(GE) has order 23. A cannot be nonabel-
ian (see p. 306 of [8]). Hence A is abelian of type (2.1). Therefore a acts
trivially on A and hence on $k(GE)f$k+1(GE).

Next consider GE = GEI$2(G) and $(G|) = $(G)/<Ï>2(G). Since $(GE) is
elementary abelian and GE is metacyclic, then $(GE) C Z(GE). $(GE) contains
all the proper a-invariant subgroups of GE. Hence GE is abelian of type (22, 22).
This implies that <b(GE) is irreducible under a. By an induction argument,
<S>i(GE)/$'+1(GE) is irreducible under a for 1</ < k.  If $fc+ l(GE) * 1, there
is a contradiction. Therefore $k+1(GE) = 1 and $>fc(G£) = Q,X(GE).

Since i>(G) =£ GE, there exists a reduced product G = GEA such that GE O A
= <ï>(4) = AE and yl/G^ n A is isomorphic to the symmetric group of degree
3. i>(4) is cyclic, for otherwise A/$2(A) is a group of order 24; such groups have
|$(/1)/<Ï>204)| < 2. Since <¡>(A) = AE, then $(/) = $(A), by (1.3), for a Sylow
2-subgroup P of A.  Hence P = (b) is cyclic. The inseparability of G implies that
b2 ¥= 1. For some integer t, (è2'> is a nontrivial subgroup of SîjiG^). This leads
to a contradiction since Çlx(GE) is A -irreducible, and yet A centralizes (b2*).
Hence G is separable.

Lemma 5.8. Let G be a nonnilpotent solvable group.  If F(G) is metacyclic,
GE is a metacyclic p-group, P is a Sylow p-subgroup of G having $(P) noncyclic,
and <ï>(G) is cyclic, then G is separable.

Proof.   Assume G to be inseparable. Since GE and $(P) are noncyclic, then
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nx(GE) = n,($(P)) <G.  Moreover $(P) = 4>(G)Í2,(<Í>(P)). Hence $(P)< G.
This contradicts Theorem 3.3(2).

Lemma 5.9. Let G be an inseparable nonnilpotent solvable group and
F(G) = GE be metacyclic. Then GE is a generalized quaternion group if and
only if G is the group of Example 1.2.

Proof.   Let P denote a Sylow 2-subgroup of G and suppose that GE is a
generalized quaternion group of order 2". If « > 4, then GE has a unique cyclic
maximal subgroup M < G.  Since <£(/>) cannot be nonabelian with a cyclic center
(see p. 306 of [8]) and $(P) <jt] G by Theorem 3.3(2), then $(P) <£ M and |$(P)|
= 4. But |4>(G£.)| = 2"~2 and $(GE) C $(P). Therefore $(G£) = $(P) which
implies that <ï>(P) < G.  So « = 3 and G£ is the quaternion group. Since <b(G)
¥= GE and $(G) # 1, then |$(G| = 2 or 4.  By Theorem 3.3(4), |$(G)| = 2.
Since $(P) «5Û G, then $(P) has order 4. G¿. = F(G) implies that CG(F(G)) =
Z(GE) = <E>(G). Therefore G/<I>(G) is isomorphic to a subgroup of the symmetric
group 54 of degree four that contains the normal Klein four-group. This subgroup
cannot have order a power of two nor can it just contain the alternating group.
Hence G/$(G) s S4. The subgroup H = [GE] T, T a Sylow 3-subgroup of G, is
normal in G.   Since G = HNG(T), there exists an element y E NG(T) of exponent
2m, m > 1. (y) cannot centralize T and <^>i>(G)/$(G) must have order two and
normalize a Sylow 3-subgroup of G/®(G). Therefore {y2) = $(G) = $(GE).
Hence there exists a subgroup K = [F](^) such that the homomorphism d: (y)
—* Aut(F) has kernel <;>2>. Then G = G^ZC such that GEC\K = Z(GE) = {y2),
G/{y2) s iS'4, and K/{y2) is isomorphic to the symmetric group of degree three.
This is the group of Example 1.2. The converse was proved in that example.

Lemma 5.10. Let G be a nonnilpotent solvable group having a metacyclic
Fitting subgroup and suppose that GE is a p-group of maximal class. G is insepa-
rable if and only if G is the group of Example 1.2.

Proof. The sufficiency has been established. First note that if GE is
abelian, then IG^I = p2. GE cannot be cyclic by Theorem 3.3(3). If GE is
elementary abelian, then $(G) = 1 by Theorem 3.3(4).  Hence GE is not abelian.

Let P be a Sylow p-subgroup of G for p dividing IG^-I. Then <I>(P) must be
a maximal subgroup of GE. Let K¡(H) denote the i-term in the upper central
series of the p-group H = KX(H), and Hx = CG(K2(H)IK^(H)). It is known that
Hx is a characteristic subgroup of index p in H.   Hence (GE)X is a characteristic
maximal subgroup of GE and (GE)X < G.  Assume that KG^jl > p4.  Since
K4(GE)<i G, then G/KJGE) exists, has order equal to or greater than p4, and
GE/KÁGE) — (G/K4(GE))E has maximal class. Without loss of generality, assume
that K4(GE) = 1. Then (GE)X = CG(K2) is an abelian maximal subgroup of GE.
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<J>(P) ¥= {GE)X by Theorem 3.3(2). If GE has two abelian maximal subgroups,
then \Z(GE)\ = p2. This contradicts GE having maximal class.  Therefore all
other maximal subgroups of GE are nonabelian of order p3 and $(P) must be
one of them. But <p(P) cannot have a cyclic center. The contradiction arose by
assuming that \GE\ >p4. Hence \GE\ = p3.

Since $(GE) C $(G) and (GE : 3>(G)) > p2, then $(G£) ■ $(G). Suppose
that p > 2. Of the two nonabelian p-groups of order p3 only one of them is
metacyclic. Hence GE has precisely one maximal subgroup A of type (p, p);
therefore A < G.  This contradicts Theorem 3.3(6). So if GE has maximal class,
then p = 2.

If GE is the dihedral group, then GE has a cyclic maximal subgroup that is
normal in G  This contradicts Theorem 3.3(6). Therefore GE is the quaternion
group and by Lemma 5.9, this is the group of Example 1.2.

Lemma 5.11. Let G be an inseparable nonnilpotent solvable group. If
F{G) = GE is a noncyclic metacyclic p-group and $(P) is cyclic for a Sylow p-
subgroup P of G, then G is the group of Example 1.2.

Proof.   Let p > 2. By (5.5), 1 C 3>(G) C $(P) and by (4.1), P = AB
such that A is generated by <ï>0 and all normal subgroups of type (p, p) in P,
A/<i>0 C Z/(P/4>0), $(P) C B, and B is cyclic. Hence P/$(G) is abelian. Since
GE = F(G), a contradiction is reached. Therefore p^-2.

Let p = 2. Then by (4.1), P has the same form as above except that B is
either cyclic or of maximal class. The same argument just used shows that B is
not cyclic.  Suppose that B has maximal class.  If GE £ B, then B C\GE = 4>(P).
Hence A £ $(P). Since GE = F(G),A®(G)l<t>(G) C GE/$(G). So GE = A<t>(G).
But |$(P)/$(G)| = 2 implies that B/$(G) C GE/$(G). A contradiction arises
since this implies that P EGE. Therefore GE C B and B = P.  Hence G^. is a
maximal subgroup of P and \P\ > 24. P is either a dihedral group, a quasidihedral
group, or a generalized quaternion group (see p. 339 of [8]).

If P is a dihedral group, then P has precisely one cyclic and two dihedral
maximal subgroups. By Theorem 3.3(3), GE cannot be cyclic. If GE is a dihedral
maximal subgroup, then $(P), being cyclic, is characteristic in GE. Hence $(P)
< G.  This contradicts Theorem 3.3(2). Consequently GE is not a dihedral group.

A quasidihedral group has three characteristic maximal subgroups; one is
cyclic, one is generalized quaternion, and one contains 3>0 and has $(P) as a
characteristic subgroup. By Theorem 3.3(3), the first case is eliminated, Lemma
5.10 settles the second case, and Theorem 3.3(2) removes the third case.

A generalized quaternion group contains one cyclic maximal subgroup and
the other two maximal subgroups are generalized quaternion. Appealing to
Theorem 3.3(3) and Lemma 5.10, G must be the group of Example 1.2.
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Proof of Theorem 5.1. Assume that G is inseparable. GE = F(G) is
noncyclic by Theorem 3.5(3, 5) and <i>(G) C d>(P) C GE for a Sylow p-subgroup
P of G by (5.5). By Lemmas 5.6, 5.7, and 5.8, <3>(P) must be cyclic. Lemma
5.11 reduces this case to Example 1.2. Hence all other groups G satisfying the
hypothesis of Theorem 5.1 are separable.

Corollary 5.1. The minimal inseparable nonnilpotent solvable group with
a metacyclic p-group as an E-residual is the group of Example 1.2.

Proof. By Theorem 3.5, such a group has F(G) = GE. By Theorem 5.1,
this is the group of Example 1.2.
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