
Insertion-Deletion Systems
with Substitutions I

Martin Vu1 and Henning Fernau2(B)

1 FB 3 - Informatik, Universität Bremen, Bremen, Germany
martin.vu@uni-bremen.de

2 Universität Trier, Fachber. 4 – Abteilung Informatikwissenschaften,
54286 Trier, Germany
fernau@uni-trier.de

Abstract. With good biological motivation, we add substitutions as
a further type of operations to (in particular, context-free) insertion-
deletion systems. This way, we obtain new characterizations of and nor-
mal forms for context-sensitive and recursively enumerable languages.

Keywords: Computational completeness · Context-sensitive ·
Insertions · Deletions · Substitutions

1 Introduction

Insertion-deletion systems, or ins-del systems for short, are well established as
computational devices and as a research topic within Formal Languages through-
out the past nearly 30 years, starting off with the PhD thesis of Kari [3].

However, from its very beginning, papers highlighting the potential use of
such systems in modelling DNA computing also discussed the replacement of
single letters (possibly within some context) by other letters, an operation called
substitution in [2,4]. Interestingly, all theoretical studies on grammatical mecha-
nisms involving insertions and deletions omitted including the substitution oper-
ation in their studies. With this paper, we are stepping into this gap by studying
ins-del systems with substitutions, or ins-del-sub systems for short.

We put special emphasis on extending context-free ins-del systems with sub-
stitutions. We observe quite diverse effects, depending on whether the substitu-
tions are context-free, one-sided or two-sided. We can characterize the context-
sensitive languages by extending context-free insertion systems with substitu-
tions, which can be seen as a new normal form for monotone Chomsky grammars.
For omitted proofs and further results, see [13].

2 Basic Definitions and Observations

We assume the reader to be familiar with the basics of formal language theory.

c© Springer Nature Switzerland AG 2020
M. Anselmo et al. (Eds.): CiE 2020, LNCS 12098, pp. 366–378, 2020.
https://doi.org/10.1007/978-3-030-51466-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51466-2_33&domain=pdf
http://orcid.org/0000-0002-4444-3220
https://doi.org/10.1007/978-3-030-51466-2_33

Insertion-Deletion Systems with Substitutions I 367

An ins-del system is a 5-tuple ID = (V, T,A, I,D), consisting of two alpha-
bets V and T with T ⊆ V , a finite language A over V , a set of insertion rules I
and a set of deletion rules D. Both sets of rules are formally defined as sets of
triples of the form (u, a, v) with a, u, v ∈ V ∗ and a �= λ. We call elements occur-
ring in T terminal symbols, while referring to elements of V \T as nonterminals.
Elements of A are called axioms.

Let w1uvw2, with w1, u, v, w2 ∈ V ∗, be a string. Applying the insertion rule
(u, a, v) ∈ I inserts the string a ∈ V ∗ between u and v, which results in the
string w1uavw2.

The application of a deletion rule (u, a, v) ∈ D results in the removal of an
substring a from the context (u, v). More formally let w1uavw2 ∈ V ∗ be a string.
Then, applying (u, a, v) ∈ D results in the string w1uvw2.

We define the relation =⇒ as follows: Let x, y ∈ V ∗. Then we write x =⇒ins y
if y can be obtained by applying an insertion or deletion rule to x. We also write
(u, a, v)ins or (u, a, v)del to specify whether the applied rule has been an insertion
or a deletion rule. Consider (u, a, v)ins or (u, a, v)del. Then we refer to u as the
left context and to v as the right context of (u, a, v)ins/(u, a, v)del.

Let ID = (V, T,A, I,D) be an ins-del system. The language generated by ID
is defined by L(ID) = {w ∈ T ∗ | α =⇒∗ w,α ∈ A}.

The size of ID describes its descriptional complexity and is defined by a tuple
(n,m,m′; p, q, q′), where

n = max{|a| | (u, a, v) ∈ I}, p = max{|a| | (u, a, v) ∈ D}
m = max{|u| | (u, a, v) ∈ I}, q = max{|u| | (u, a, v) ∈ D}

m′ = max{|v| | (u, a, v) ∈ I}, q′ = max{|v| | (u, a, v) ∈ D}.

By INSm,m′
n DELq,q′

p we denote the family of all ins-del systems of size
(n,m,m′; p, q, q′) [1,12]. Depending on the context, we also denote the fam-
ily of languages characterized by ins-del systems of size (n,m,m′; p, q, q′) by
INSm,m′

n DELq,q′
p . We call a family INS0,0

n DEL0,0
p a family of context-free ins-del

systems, while we call a family INSm,m′
n DELq,q′

p with m + m′ > 0 ∧ mm′ = 0 or
(q + q′ > 0 ∧ qq′ = 0) a family of one-sided ins-del systems. According to [1], an
ins-del system

ID′ = (V ∪ {$}, T, A′, I ′,D′ ∪ {(λ, $, λ)})

of size (n,m,m′; p, q, q′) is said to be in normal form if

– for any (u, a, v) ∈ I ′, it holds that |a| = n, |u| = m and |v| = m′, and
– for any (u, a, v) ∈ D′, it holds that |a| = p, |u| = q and |v| = q′.

Alhazov et al. [1,12] have shown the following auxiliary result:

Theorem 1. For every ins-del system ID, one can construct an insertion-
deletion system ID′ in normal form of the same size with L(ID′) = L(ID).

In the following sections, we use a modified normal form for ins-del systems
of size (1, 1, 1; 1, 1, 1). Given an arbitrary ins-del system of size (1, 1, 1; 1, 1, 1),
the construction of this modified normal form is as follows:

368 M. Vu and H. Fernau

Construction 1. Let ID = (V, T,A, I,D) be an ins-del system of size (1, 1, 1;
1, 1, 1). Without loss of generality, we assume {$,X} ∩ V = ∅ and $ �= X. We
construct ID′′ = (V ∪ {$,X}, T, A′′, I ′′,D′′) as follows:

A′′ = {X$α$X | α ∈ A}
I ′′ = {(z1, s, z2) | (r, s, t) ∈ I, z1 = r if r �= λ and z1 = $ otherwise,

z2 = t if t �= λ and z2 = $ otherwise}
∪ {(z1, $, z2) | z1, z2 ∈ ({$} ∪ V)}

D′′ = {(z1, a, z2) | (u, a, v) ∈ D, z1 = u if u �= λ and z1 = $ otherwise,
z2 = v if v �= λ and z2 = $ otherwise}

∪ {(z1, $, z2) | z1, z2 ∈ ({$} ∪ {X} ∪ V)} ∪ {(λ,X, λ)}
The basic idea of Construction 1 is the same as in the usual normal form con-
structions (see Theorem 1): the symbol $ is used as a padding symbol to ensure
that the left and right contexts of all rules are of the required size. We can show
that Construction 1 is equivalent to the usual normal form construction.

Theorem 2. Let ID′ = (V ∪ {$}, T, A′, I ′,D′ ∪ {(λ, $, λ)}) be an ins-del system
of size (1, 1, 1; 1, 1, 1) in normal form and ID′′ = (V ∪ {$,X}, T, A′′, I ′′,D′′) be
defined according to Construction 1. Then, L(ID′) = L(ID′′).

Unlike the usual normal form construction, context-free deletions can only
occur at the beginning and the end of a sentential form in the case of Construc-
tion 1. This fact will prove useful below.

Ins-del systems have been extensively studied regarding the question if they
can describe all of the recursively enumerable languages. Let us summarize
these results first by listing the classes of languages known to be equal to
RE: INS1,1

1 DEL1,1
1 [10], INS0,0

3 DEL0,0
2 and INS0,0

2 DEL0,0
3 [7], INS1,1

1 DEL0,0
2 [9,

Theorem 6.3], INS0,0
2 DEL1,1

1 [5], INS0,1
2 DEL0,0

2 and INS1,2
1 DEL1,0

1 [8],
INS1,0

1 DEL1,2
1 [5]. By way of contrast, the following language families are known

not to be equal to RE, the first one is even a subset of CF: INS0,0
2 DEL0,0

2 [12],
INS1,1

1 DEL1,0
1 [8], INS1,0

1 DEL1,1
1 [5], INS1,0

1 DEL0,0
2 and INS0,0

2 DEL1,0
1 [6].

We define substitution rules to be of the form (u, a → b, v); u, v ∈ V ∗;
a, b ∈ V . Let w1uavw2; w1, w2 ∈ V ∗ be a string over V . Then applying the
substitution rule (u, a → b, v) allows us to substitute a single letter a with
another letter b in the context of u and v, resulting in the string w1ubvw2.
Formally, we define an ins-del-sub system to be a 6-tuple IDr = (V, T,A, I,D, S),
where V, T,A, I and D are defined as in the case of usual ins-del systems and
S is a set of substitution rules. Substitution rules define a relation =⇒sub: Let
x = w1uavw2 and y = w1ubvw2 be strings over V . We write x =⇒sub y iff
there is a substitution rule (u, a → b, v). In the context of ins-del-sub systems,
we write =̂⇒ to denote any of the relations =⇒ins, =⇒del or =⇒sub. We define
the closures =̂⇒∗ and =̂⇒+ as usual. The language generated by an ins-del-sub
system IDr is defined as L(IDr) = {w ∈ T ∗ | α =̂⇒∗ w, α ∈ A}.

As with usual ins-del system, we measure the complexity of an ins-del-
sub system IDr = (V, T,A, I,D, S) via its size, which is defined as a tuple

Insertion-Deletion Systems with Substitutions I 369

(n,m,m′; p, q, q′; r, r′), where n,m,m′, p, q and q′ are defined as in the case of
usual ins-del systems, while r and r′ limit the maximal length of the left and right
context of a substitution rule, respectively, i.e., r = max{|u| | (u, a → b, v) ∈ S},
r′ = max{|v| | (u, a → b, v) ∈ S}. INSm,m′

n DELq,q′
p SUBr,r′

denotes the family of
all ins-del-sub systems of size (n,m,m′; p, q, q′; r, r′). Note that, as only one letter
is replaced by any substitution rule, there is no subscript below SUB. Depending
on the context, we also refer to the family of languages generated by ins-del-sub
systems of size (n,m,m′; p, q, q′; r, r′) by INSm,m′

n DELq,q′
p SUBr,r′

. Expanding our
previous terminology, we call substitution rules of the form (λ, a → b, λ) context-
free, while substitution rules of the form (u, a → b, λ) or (λ, a → b, v) with
u �= λ �= v are called one-sided. Substitution rules of the form (u, a → b, v) with
u �= λ �= v are referred to as two-sided.

Let R be the the reversal (mirror) operator. For a language L and its mir-
ror LR the following lemma holds.

Lemma 1. L ∈ INSm,m′
n DELq,q′

p SUBr,r′
iff LR ∈ INSm′,m

n DELq′,q
p SUBr′,r.

We will now define the term resolve. Let IDr = (V, T,A, I,D, S) be an ins-
del-sub system. We say that a nonterminal X of IDr is resolved if X is either
deleted or substituted. It is easy to see that in any terminal derivation of IDr all
nonterminals must be resolved at some point of the derivation. We remark that
a nonterminal X may be resolved by being substituted with a nonterminal Y ,
which in turn must be resolved.

As in the case of ins-del systems without substitution rules, we define a
normal form for ins-del-sub systems. An ins-del-sub system

IDr = (V ∪ {$}, T, A, I,D ∪ {(λ, $, λ)}, S)

of size (n,m,m′; p, q, q′; r, r′) is said to be in normal form if

– for any (u, a, v) ∈ I, it holds that |a| = n, |u| = m and |v| = m′;
– for any (u, a, v) ∈ D, it holds that |a| = p, |u| = q and |v| = q′;
– for any (u, a → b, v) ∈ S, it holds that |u| = r and |v| = r′.

Theorem 3. For every ins-del-sub system IDr of size (n,m,m′; p, q, q′; r, r′),
one can construct an ins-del-sub system ID′

r of the same size in normal form,
with L(ID′

r) = L(IDr).

Proof. Let IDr = (V, T,A, I,D, S) be an ins-del-sub system of size (n,m,m′;
p, q, q′; r, r′). The basic idea is similar to the normal form construction for ins-
del systems in [1,12]. In fact, the sets of insertion and deletion rules of ID′

r =
(V ∪ {$}, T, A′, I ′,D′ ∪ {(λ, $, λ)}, S′) are constructed as in the ins-del system
normal form construction. S′ and A′ are defined as follows:

S′ = {z1, a → b, z2 | (u, a → b, v) ∈ S, z1 ∈ u� $∗, |z1| = r, z2 ∈ v � $∗, |z2| = r′},

A′ = {$iα$t$j | α ∈ A, i = max{m, q, r}, j = max{m′, q′, r′}, t = max{p − |w|, 0}}.

370 M. Vu and H. Fernau

As in Theorem 1, $ is a new symbol, that is, $ /∈ V , which is introduced to
be the padding symbol.

Let h : V ∪ {$} → V be a homomorphism with h(x) = x if x ∈ V and
h($) = λ. α ˆ==⇒

IDr

∗w, α ∈ A if and only if $iα$t$j ˆ==⇒
ID′

r

∗w′ with h(w′) = w can be

shown by induction. While the only-if part follows easily, consider the following
for the if part. We can assume that in any derivation of ID′

r the first i and the
last j letters of the axiom are not deleted until the very end of derivation. Hence,
insertion rules of the form (z1, $n, z2) with z1 ∈ ($ ∪ V)m, z2 ∈ ($ ∪ V)m

′
are

applicable until the very end. It is clear that due to insertion rules of the form
(z1, $n, z2) and the deletion rule (λ, $, λ) it is possible to generate an arbitrary
number of $ at an arbitrary position of a sentential form of ID′

r. ��
The following result will be useful in subsequent proofs; compare to Lemma 1.

Lemma 2. Let L be a family of languages that is closed under reversal. Then:

1. L ⊆ INSm,m′
n DELq,q′

p SUBr,r′
iff L ⊆ INSm′,m

n DELq′,q
p SUBr′,r.

2. INSm,m′
n DELq,q′

p SUBr,r′ ⊆ L iff INSm′,m
n DELq′,q

p SUBr′,r ⊆ L.

Due to the definition of ins-del-sub systems, the following result is clear.

Lemma 3. INSm,m′
n DELq,q′

p ⊆ INSm,m′
n DELq,q′

p SUBr,r′
.

Whether this inclusion is proper, is the question, that will be addressed in
the following sections. We will see that while in some cases an arbitrary
system of size (n,m,m′; p, q, q′, r, r′) can be simulated by a system of size
(n,m,m′; p, q, q′), this is not the general case. Furthermore, we will see that
families INSm,m′

n DELq,q′
p , which are not computationally complete, may reach

computational completeness via an extension with substitution rules. Addition-
ally, we will see below that families of ins-del systems which are equally pow-
erful may no longer be after being extended with the same class of substitu-
tion rules, i.e., we have INSm1,m

′
1

n1
DELq1,q

′
1

p1
= INSm2,m

′
2

n2
DELq2,q

′
2

p2
, but possibly

INSm1,m
′
1

n1
DELq1,q

′
1

p1
SUBr,r′ ⊂ INSm2,m

′
2

n2
DELq2,q

′
2

p2
SUBr,r′

. The reverse case might
occur, as well.

Because the application of an insertion rule (u, x, v) corresponds to the appli-
cation of the monotone rewriting rule uv → uav and the application of a sub-
stitution rule (u, a → b, v) corresponds to the application of the monotone
rewriting rule uav → ubv, a monotone grammar can simulate derivations of
an insertion-substitution system. (More technically speaking, we have to do the
replacements on the level of pseudo-terminals Na for each terminal a and also
add rules Na → a, but these are minor details.) Hence, we can conclude:

Theorem 4. For any integers m,m′, n, r, r′ ≥ 0, INSm,m′
n DEL0,0

0 SUBr,r′ ⊆ CS.

3 Main Results

We will focus on context-free ins-del systems, which are extended with substitu-
tion rules. More precisely, we will analyze the computational power of the family
of systems INS0,0

n DEL0,0
p SUBr,r′

.

Insertion-Deletion Systems with Substitutions I 371

We are going to analyze substitution rules of the form (λ, a → b, λ), which
means that letters may be substituted regardless of any context. We will show
that extending context-free ins-del systems with context-free substitution rules
does not result in a more powerful system. In fact, a context-free ins-del-sub
system of size (n, 0, 0; p, 0, 0; 0, 0) can be simulated by an ins-del system of size
(n, 0, 0; p, 0, 0).

Theorem 5. Let IDr ∈ INS0,0
n DEL0,0

p SUB0,0, then there exists an ins-del sys-
tem ID ∈ INS0,0

n DEL0,0
p such that L(IDr) = L(ID).

Proof (Sketch). Let IDr = (V, T,A, I,D, S) ∈ INS0,0
n DEL0,0

p SUB0,0. It is clear
that any letter a, that is to be replaced by a substitution rule (λ, a → b, λ), has
been introduced by either an insertion rule (λ,w1aw2, λ) or as part of an axiom
w′

1aw′
2 at some point before executing the substitution. As a serves no purpose

other than to be replaced (i.e., it is not used as a context), the basic idea is to
skip introducing a altogether and introduce b instead. More formally: instead
of applying an insertion rule (λ,w1aw2, λ)/an axiom w′

1aw′
2 and replacing a via

(λ, a → b, λ) at a later point, we introduce a new insertion rule (λ,w1bw2, λ)/a
new axiom w′

1bw
′
2, which we apply instead of (λ,w1aw2, λ)/w′

1aw′
2. This idea can

be cast into an algorithm to produce an ins-del system ID = (V, T,A′, I ′,D) with
L(IDr) = L(ID). As only context-free insertion rules of size maximum (n, 0, 0)
are added to I ′, it is clear that ID ∈ INS0,0

n DEL0,0
p holds. ��

Considering the question about the generative power of context-free ins-del
systems with context-free substitution rules compared to usual context-free ins-
del systems, Theorem 5 and Lemma 3 together yield:

Corollary 1. INS0,0
n DEL0,0

p SUB0,0 = INS0,0
n DEL0,0

p .

Example 1. Consider the ins-del-sub system

IDr = ({a, b, c}, {a, b, c}, {λ}, {(λ, aaa, λ)}, ∅, S)

with S = {(λ, a → b, λ), (λ, b → c, λ)}. The language generated by IDr is
L(IDr) = {w | w ∈ {a, b, c}∗, |w| = 3n, n ∈ N}. Using the construction intro-
duced in Theorem 5 yields the ins-del system ID = ({a, b, c}, {a, b, c}, {λ}, I, ∅),
with I = {(λ, x1x2x3, λ) | x1, x2, x3 ∈ {a, b, c}}. While it is clear that L(ID) =
L(IDr), we remark that this example shows that the construction method of
Theorem 5 may yield an ins-del system whose number of rules is exponentially
greater than the number of rules of the system with substitutions.

3.1 Extension with One-Sided Substitution

Now, we will analyze the effect of one-sided substitution rules if used to extend
a context-free ins-del system. We will show that using one-sided substitution
rules can greatly increase the computational power of context-free insertion and
deletion rules. In some cases, we even get computationally completeness results.

372 M. Vu and H. Fernau

We will now construct an ins-del-sub system ID′
r of size (1, 0, 0; 1, 0, 0; 1, 0)

which simulates IDr of size (1, 1, 0; 1, 1, 0; 1, 0). The system ID′
r is constructed

in the following manner:

Construction 2. We assume the system IDr = (V, T,A, I,D, S) to be in nor-
mal form and any rule of IDr to be labelled in a one-to-one manner, i.e.,
there is a bijection between a set of labels and the rule set. Let $ be the
padding symbol used in the construction of the normal form of IDr. The sys-
tem ID′

r = (V ′, T, A, I ′,D′, S ∪ S′) is constructed as follows. For each rule of
IDr, we introduce a new nonterminal Xi and define

V ′ = V ∪ {Xi | i is the label of a rule of IDr}.

The set I ′ of insertion rules of ID′
r contains all (λ,Xi, λ), where i is the label of

an insertion rule of IDr, while the set D′ of deletion rules as contains (λ, $, λ)
and all (λ,Xi, λ), where i is the label of a deletion rule of IDr. Furthermore, we
define the set of substitution rules S′ = S1 ∪ S2, with

S1 = {(u,Xi → a, λ) | i is the label of an insertion rule (u, a, λ) of IDr} and

S2 = {(u, a → Xi, λ) | i is the label of a deletion rule (u, a, λ) of IDr, u �= λ}.

Each deletion rule (u, a, λ) ∈ D of IDr, where i is the label of (u, a, λ),
corresponds to a deletion rule (λ,Xi, λ) ∈ D′ and a substitution rule (u, a →
Xi, λ) ∈ S2 of ID′

r. The basic idea of the construction is to simulate a deletion
rule (u, a, λ) ∈ D by substituting the letter a with left context u via (u, a →
Xi, v) ∈ S2. The introduced nonterminal Xi is then deleted at some point by
the deletion rule (λ,Xi, λ) ∈ D′. It is clear that a derivation of the form

w1uaw2 =̂⇒w1uXiw2 =̂⇒w1uw2,

in which the application of (λ,Xi, λ) ∈ D′ succeeds an application of (u, a →
Xi, λ) ∈ S2 immediately, is equivalent to the application of a deletion rule
(u, a, v) ∈ D. It needs much more care to prove the following converse:

Proposition 1. Let α ∈ A. Consider a derivation α =̂⇒∗ w ∈ T ∗ of ID′
r .

Then, there is an alternative derivation of ID′
r, leading from α to w, in which

all nonterminals Xi ∈ V ′\V are resolved immediately after being introduced.

This allows us to state:

Theorem 6. INS0,0
1 DEL0,0

1 SUB1,0 = INS1,0
1 DEL1,0

1 SUB1,0.

Consider ins-del systems of size (1, 0, 0; 1, 0, 0) extended with one-sided substi-
tution rules; the increase in computational power is quite significant:

INS0,0
1 DEL0,0

1 ⊂ INS1,0
1 DEL1,0

1 ⊂ INS1,0
1 DEL1,0

1 SUB1,0 = INS0,0
1 DEL0,0

1 SUB1,0

Both inclusions are proper. First, observe that ba+ ∈ INS1,0
1 DEL0,0

0 \INS0,0
1

DEL0,0
1 . The system of size (1, 1, 0; 0, 0, 0; 1, 0) presented in Example 2 gener-

ates (ba)+. Verlan [12, Theorem 5.3] has shown that even ins-del systems of size
(1, 1, 0; 1, 1, 1) cannot generate the language (ba)+.

Insertion-Deletion Systems with Substitutions I 373

Example 2. Consider the following ins-del-sub system: IDs = (V, T, I, ∅, S), with
V = {X1,X2,X3, a, b}, T = {a, b} and A = {ba, bX1X3}. The set of insertion
rules is defined as I = {(X1,X2, λ), (X2,X1, λ)}, while the set of substitution
rules is S = {(b,X1 → a, λ), (a,X2 → b, λ), (b,X3 → a, λ)}. The generated
language is L(IDs) = (ba)+, as we can easily see that any generated word begins
with a letter b and ends with a letter a. Furthermore, any word generated by IDs

is not of the form w1bbw2, as the only way to introduce the terminal symbol b
(except for the b introduced via the axiom) is by substituting a nonterminal X2

with b. However, this substitution requires a left context a, which means that at
some point the letter to the left of any b has been a. There are no insertion rules
which can insert an additional b or X2 between a and b. Furthermore, there are
no deletion rules at all, which means that no a can be deleted. Therefore, the
letter to the left of any b cannot be another b. Using the same argumentation,
we can see, that any word generated by IDs is not of the form w1aaw2, either.

It is easy to see that a result identical to Theorem 6 can be shown analogously
for the mirrors of INS0,0

1 DEL0,0
1 SUB1,0 and INS1,0

1 DEL1,0
1 SUB1,0. Therefore:

Corollary 2. INS0,0
1 DEL0,0

1 SUB0,1 = INS0,1
1 DEL0,1

1 SUB0,1.

We now analyze the computational power of ins-del-sub systems of size
(2, 0, 0; 2, 0, 0; 0, 1). While the family of ins-del systems of size (2, 0, 0; 2, 0, 0) is
known to be a proper subset of CF, see [11,12], we will show that an extension
with substitution rules of the form (λ,A → B,C) results in a significant increase
in computational power. More precisely, by simulating an ins-del systems of size
(2, 0, 1; 2, 0, 0), we will show that INS0,0

2 DEL0,0
2 SUB0,1 = RE holds.

Construction 3. Let ID = (V, T,A, I,D) be a system of size (2, 0, 1; 2, 0, 0) in
normal form and all insertion rules of ID be labelled in a one-to-one manner. We
construct the system IDr = (V ′, T, A, I ′,D, S′), which simulates ID, as follows:

V ′ = V ∪ {Ni,2, Ni,1 | i is the label of an insertion rule (λ, ab, c) ∈ I}
I ′ = {(λ,Ni,2Ni,1, λ) | i is the label of an insertion rule (λ, ab, c) ∈ I}
S′ = {(λ,Ni,1 → b, c), (λ,Ni,2 → a, b) | i is the label of a rule (λ, ab, c) ∈ I}

The basic idea of Construction 3 is essentially the same as in Construction 2:
as context-free insertion rules cannot scan for contexts (by definition), this task
is handled by the corresponding substitution rules. Consider an insertion rule
(λ,Ni,2Ni,1, λ) of IDr where i is the label of an insertion rule (λ, ab, c) ∈ I.
Then the substitution rules, corresponding to this rule, are (λ,Ni,1 → b, c) and
(λ,Ni,2 → a, b). This idea leads us to:

Theorem 7. INS0,1
2 DEL0,0

2 ⊆ INS0,0
2 DEL0,0

2 SUB0,1.

As INS0,1
2 DEL0,0

2 = RE holds according to [8, Theorem 5], we conclude:

Corollary 3. INS0,0
2 DEL0,0

2 SUB0,1 = RE.

374 M. Vu and H. Fernau

This is an interesting result as the families of ins-del systems of size (2, 0, 0; 2, 0, 0)
and of size (2, 0, 0; 0, 0, 0) are known to be equal [12, Theorem 4.7], yet both
classes extended with the same class of substitution rules differ in computational
power. As RE and CS are closed under reversal, the next corollary follows with
Lemma 2 and Theorem 4.

Corollary 4. INS0,0
2 DEL0,0

0 SUB1,0 ⊆ CS and INS0,0
2 DEL0,0

2 SUB1,0 = RE.

3.2 Extension with Two-Sided Substitution

After analyzing the effect of context-free and one-sided substitution rules on
context-free ins-del systems, we will now proceed to two-sided substitution rules,
i.e., substitution rules with left and right context. Somehow surprisingly, this lifts
the computational power of even the ‘weakest’ ins-del systems, that is, systems
of size (1, 0, 0; 1, 0, 0), up to the level of RE. Let ID ∈ INS1,1

1 DEL1,1
1 . We will

show that there is a system IDr ∈ INS0,0
1 DEL0,0

1 SUB1,1 capable of simulating
ID. The basic idea is that the context checks, necessary for simulating rules with
left and right context, are performed by the substitution rules. The system IDr

is constructed in the following manner:

Construction 4. Let ID = (V, T,A, I,D) ∈ INS1,1
1 DEL1,1

1 be in normal form
according to Construction 1. For each rule of ID, we have a unique label, say, i,
and we introduce a new nonterminal Xi. Define IDr = (V ′, T, A, I ′,D′, S) with

V ′ = V ∪ {Xi | i is the label of a rule in I or D} ,

I ′ = {(λ,Xi, λ) | i is the label of an insertion rule (u, a, v)} ,

D′ = {(λ,Xi, λ) | i labels a deletion rule (u, a, v) �= (λ,X, λ)} ∪ {(λ,X, λ)} ,

where X is defined as in Construction 1. Finally, S = S1 ∪ S2 with

S1 = {(u,Xi → a, v) | i is the label of an insertion rule (u, a, v)} and
S2 = {(u, a → Xi, v) | i is the label of a deletion rule (u, a, v) �= (λ,X, λ)} .

The basic idea is similar to Construction 2. Each deletion rule (u, a, v) ∈ D of
ID, where i is the label of (u, a, v), corresponds to a deletion rule (λ,Xi, λ) ∈ D′

and a substitution rule (u, a → Xi, v) ∈ S2. We leave the context checks to the
substitution rules. The same idea is applied to the insertion rules. With some
technical effort, we can prove the following result.

Proposition 2. Let α ∈ A. Consider a derivation α =̂⇒∗ w ∈ T ∗. Then, there
is an alternative derivation, leading from α to w, in which all nonterminals
Xi ∈ V ′\V are resolved immediately after being introduced.

This property is the key to show that for a system IDr of size (1, 0, 0; 1, 0, 0; 1, 1)
constructed from a given ins-del system ID of size (1, 1, 1; 1, 1, 1) in normal form
according to Construction 4, we find L(ID) = L(IDr). As such ins-del systems
are known to be computational complete, we conclude:

Insertion-Deletion Systems with Substitutions I 375

Corollary 5. INS1,1
1 DEL1,1

1 = INS0,0
1 DEL0,0

1 SUB1,1 = RE.

We now analyze the power of ins-del-sub systems of size (1, 0, 0; 0, 0, 0; 1, 1). By
definition, it is clear that INS0,0

1 DEL0,0
0 SUB1,1 ⊆ INS0,0

1 DEL0,0
1 SUB1,1 holds.

In the following, we will show that this inclusion is proper. To be more pre-
cise, we will show that ins-del-sub systems of size (1, 0, 0; 0, 0, 0; 1, 1) charac-
terize the context-sensitive languages. By Theorem 4, we are left to prove
CS ⊆ INS0,0

1 DEL0,0
0 SUB1,1.

For every context-sensitive language L, there is a linear bounded automaton
(LBA) LB = (Q,T, Γ, q0, δ,�, F) accepting L. We are going to construct an ins-
del-sub system of size (1, 0, 0; 0, 0, 0; 1, 1) to simulate LB. We first give a brief
sketch of the basic idea behind this simulation in the following paragraph. The
simulation evolves around strings of the form

(u1, $v1)(u2, v2) . . . (ui−1, vi−1)(ui, qjvi)(ui+1, vi+1) . . . (un−1, vn−1)(un, vn#)

with u1, . . . , un ∈ T ; qj ∈ Q and v1, . . . , vn ∈ Γ . The concatenation of the
first component of each tuple, that is, u1 . . . un, is the input word of the linear
bounded automaton LB, while the concatenation of the second component of
each tuple, that is, $v1v2 . . . vi−1qjvivi+1 . . . vn−1vn#, represents a configuration
of LB running on the input word u1 . . . un. The simulation of LB runs entirely
on the second components of the tuples. If $v1v2 . . . vi−1qjvivi+1 . . . vn−1vn# is
an accepting configuration, i.e., qi ∈ F , we substitute all tuples with their respec-
tive first component. For instance (uk, vk) is substituted with uk. In short, this
means that if (the simulation of) LB running on u1 . . . un halts in an accepting
configuration, we generate the word u1 . . . un. More details follow:

Construction 5. Consider an arbitrary LBA LB = (Q,T, Γ, q0, δ,�, F) accept-
ing L ⊆ T ∗. Let $ be the left and # be the right endmarker of LB. We define L :=
{λ, $} and R := {λ,#}. Then, the ins-del-sub system IDr = (V ∪T, T,A, I, ∅, S)
with V = V1 ∪ V2 ∪ V3, where

V1 ={X0} ∪ {Xa | a ∈ T}
V2 ={(a, qib), (a, $qib), (a, qi$b), (a, qib#), (a, bqi#) | a ∈ T, b ∈ Γ, qi ∈ Q}

∪ {(a, b), (a, $b), (a, b#) | a ∈ T, b ∈ Γ}
V3 ={X(a,br);qi;L | a ∈ T, b ∈ Γ, qi ∈ Q, r ∈ R}

∪ {X(a,lb);qi;R | a ∈ T, b ∈ Γ, qi ∈ Q, l ∈ L}
∪ {X(a,qibr),r,X(a,lqib),l | a ∈ T, b ∈ Γ, qi ∈ Q, r ∈ R, l ∈ L}

generates the language L by simulating LB. Strings of the form

(u1, $v1)(u2, v2) . . . (ui−1, vi−1)(ui, qjvi)(ui+1, vi+1) . . . (un−1, vn−1)(un, vn#)

consist of symbols in V2, while the symbols in V1 are auxiliary symbols used to
generate such strings. The symbols in V3 are used to simulate LB’s transitions.
We define A = {X0(a, a#) | a ∈ T} ∪ {a | a ∈ L ∩ T} and I = {(λ,Xa, λ) | a ∈

376 M. Vu and H. Fernau

T}. If λ ∈ L, we add λ to the axiom. The set of substitution rules is defined as
S = Sinit ∪ SN ∪ SR ∪ SL ∪ Sendmarker,L ∪ Sendmarker,R ∪ Sfinal. In

Sinit ={(X0,Xa → (a, a), λ) | a ∈ T} ∪ {(λ,X0 → (a, $q0a), λ) | a ∈ T},

we collect substitution rules used to initialize the simulation.
The substitution rules in the set SN are used to simulate the application of

a transition δ(qi, b) � (qj , c,N). SN consists of substitution rules of the form

(λ, (a, qib) → (a, qjc), λ), (λ, (a, $qib) → (a, $qjc), λ), (λ, (a, qib#) → (a, qjc#), λ),

with a ∈ T, qi, qj ∈ Q, b, c ∈ Γ and δ(qi, b) � (qj , c,N).
The substitution rules in the set SL are used to simulate left moves. For each

transition δ(qi, b) � (qj , c, L) of LB, we add substitution rules

(λ, (a, qibr) → X(a,cr);qj ;L, λ), (λ, (d, le) → X(d,lqje),l,X(a,cr);qj ;L),

(X(d,lqje),l,X(a,cr);qj ;L → (a, cr), λ), (λ,X(d,lqje),l → (d, lqje), (a, cr))

to SL with a, d ∈ T, b, c, e ∈ Γ, qi, qj ∈ Q, l ∈ L, r ∈ R. Similarly, the
substitution rules in SR can simulate right moves δ(qi, b) � (qj , c, R) with:

(λ, (a, lqib) → X(a,lc);qj ;R, λ), (X(a,lc);qj ;R, (d, er) → X(d,qjer),r, λ)

(λ,X(a,lc);qj ;R → (a, lc),X(d,qjer),r), ((a, lc),X(d,qjer),r → (d, qjer), λ) .

The set Sendmarker,L consists of substitution rules of the form

(λ, (a, $qib) → (a, qj$c), λ), (λ, (a, qi$b) → (a, $qjb), λ)

with a ∈ T, b, c ∈ Γ, qi, qj ∈ Q, δ(qi, b) � (qj , c, L) and δ(qi, $) � (qj , $, R).
The set Sendmarker,R consists of substitution rules of the form

(λ, (a, qib#) → (a, cqj#), λ), (λ, (a, bqi#) → (a, qjb#), λ)

with a ∈ T, b, c ∈ Γ, qi, qj ∈ Q, δ(qi, b) � (qj , c, R) and δ(qi,#) � (qj ,#, L).
Both sets are used for the simulation of δ(qi, b) � (qj , c, L) and δ(qi, b) � (qj , c, R)
as well, in the case the read/write head moves to/from an endmarker. The set
Sfinal = Sf1 ∪ Sf2 is used to generate a word w ∈ T ∗ if w has been accepted by
the simulated linear bounded automaton LB. Sf1 consists of the substitutions

(λ, (a, qf b) → a, λ), (λ, (a, $qf b) → a, λ), (λ, (a, qf$b) → a, λ),
(λ, (a, qf b#) → a, λ), (λ, (a, bqf#) → a, λ)

and Sf2 consists of

(λ, (a, b) → a, c), (c, (a, b) → a, λ), (λ, (a, $b) → a, c), (c, (a, b#) → a, λ)

with a, c ∈ T, b ∈ Γ, qf ∈ F .

Working out the correctness of this construction, we can show:

Insertion-Deletion Systems with Substitutions I 377

Theorem 8. INS0,0
1 DEL0,0

0 SUB1,1 = CS.

As a consequence of Theorem 8, we can formulate the following Penttonen-
style normal form theorem for context-sensitive languages. We believe that this
could be useful in particular when dealing with variations of insertion systems.

Theorem 9. For every context-sensitive language L, λ /∈ L, there is a context-
sensitive grammar G = (N,T, P, S), such that L = L(G), with rules of the forms

A → AB

AB → AC,AB → CB

A → a, with a ∈ T, A,B,C ∈ N.

Allowing erasing productions on top, we also arrive at a new characterization of
the family of recursively enumerable languages. By different methods, we could
even prove that either of the two non-context-free forms suffices to achieve RE.

4 Summary and Main Open Questions

We have shown that the addition of substitution rules to ins-del systems yields
new characterizations of RE and CS. In particular we have shown the fol-
lowing equalities: INS0,0

2 DEL0,0
2 SUB1,0 = RE, INS0,0

1 DEL0,0
1 SUB1,1 = RE and

INS0,0
1 DEL0,0

0 SUB1,1 = CS. Additionally we have shown INS1,0
1 DEL1,0

1 SUB1,0 =
INS0,0

1 DEL0,0
1 SUB1,0. While in the above cases an extension with (non-context-

free) substitution rules leads to an increase in computational power, we have also
shown that the addition of context-free substitution rules to context-free ins-del
systems does not affect the computational power.

The main open question is if INS0,0
1 DEL0,0

1 SUB1,0 is computationally com-
plete. We conjecture this not to be the case, as with only left context rules, infor-
mation can only be propagated in one direction. Yet, should INS0,0

1 DEL0,0
1 SUB1,0

equal RE, this would provide an interesting new normal form. A minor open
question is the strictness of the inclusion INS0,0

2 DEL0,0
0 SUB0,1 ⊆ CS.

References

1. Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Small size insertion and
deletion systems. In: Martin-Vide, C. (ed.) Applications of Language Methods, pp.
459–515. Imperial College Press (2010)

2. Beaver, D.: Computing with DNA. J. Comput. Biol. 2(1), 1–7 (1995)
3. Kari, L.: On insertions and deletions in formal languages. Ph.D. thesis, University

of Turku, Finland (1991)
4. Karl, L.: DNA computing: arrival of biological mathematics. Math. Intell. 19(2),

9–22 (1997). https://doi.org/10.1007/BF03024425
5. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion

systems with one-sided contexts. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.)
LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88282-4 31

https://doi.org/10.1007/BF03024425
https://doi.org/10.1007/978-3-540-88282-4_31
https://doi.org/10.1007/978-3-540-88282-4_31

378 M. Vu and H. Fernau

6. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Computational power of insertion-
deletion (P) systems with rules of size two. Nat. Comput. 10, 835–852 (2011).
https://doi.org/10.1007/s11047-010-9208-y

7. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theor. Comput. Sci. 330(2), 339–348 (2005)

8. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-
sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS,
vol. 4664, pp. 205–217. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74593-8 18

9. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Comput-
ing Paradigms. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-
03563-4

10. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. Nat. Comput. 2(4), 321–336 (2003). https://doi.org/10.1023/B:NACO.
0000006769.27984.23

11. Verlan, S.: On minimal context-free insertion-deletion systems. J. Autom. Lang.
Comb. 12(1–2), 317–328 (2007)

12. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J.
Moldova 18(2), 210–245 (2010)

13. Vu, M.: On insertion-deletion systems with substitution rules. Master’s thesis,
Informatikwissenschaften, Universität Trier, Germany (2019)

https://doi.org/10.1007/s11047-010-9208-y
https://doi.org/10.1007/978-3-540-74593-8_18
https://doi.org/10.1007/978-3-540-74593-8_18
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1023/B:NACO.0000006769.27984.23
https://doi.org/10.1023/B:NACO.0000006769.27984.23

	Insertion-Deletion Systems with Substitutions I
	1 Introduction
	2 Basic Definitions and Observations
	3 Main Results
	3.1 Extension with One-Sided Substitution
	3.2 Extension with Two-Sided Substitution

	4 Summary and Main Open Questions
	References

