
I N S I D E A S O F T W A R E D E S I G N T E A M :
K N O W L E D G E A ¢ O U I S I T I O N ,

S N A R I N G , A N D I N T E G R A T I O N

V
Diane B. Walz, JoyceJ. Elam, and Bill Curtis

ore than half the cost of the develop-

ment of complex computer-based

information systems (IS) is attrib-

utable to decisions made in the

upstream port ion of the software

d e v e l o p m e n t process; namely ,

requirements specification and design

[20]. There is growing recognition

that research on how teams actually

go about making requirement deter-

minations and design decisions can

provide valuable insights for improv-

ing the quality and productivity of

large-scale c o m p u t e r - b a s e d IS

development efforts [9, 12, 23]. Tradi-

tional models of group dynamics,

group decision making, and group

development are not rich enough to

thoroughly explain the real-world
complexities faced by software design

teams. Most of this research was per-

formed on tasks that were shorter,

less complex and did not require the extensive integration of knowledge

domains that characterizes software systems design [9, 12].

Knowledge is the raw material of software design teams. For complex pro-

jects, knowledge from multiple technical and functional domains is a necessity

[12]. Ideally, a software design team is staffed so that both the levels and the

distribution of knowledge within the team match those required for the suc-

cessful completion of the project. Because of knowledge shortfalls such as the

thin spread of application domain knowledge in most organizations, however,

this is seldom the case [12]. In general, individual team members do not have

all of the knowledge required for the project and must acquire additional infor-

mation before accomplishing productive work. The sources of this informa-

tion can be relevant documentation, formal training sessions, the results of

trial-and-error behavior, and other team members. Group meetings are an

important environment for learning, since they allow team members to share

information and learn about other domains relevant to their work.

Productive design activities need to revolve around the integration of the

various knowledge domains. This integration leads to shared models of the

problem under consideration and potential solutions. A software design team

seldom starts its life with shared models of the system to be built. Instead, these

models develop over time as team members learn from one another about the

expected behavior of the application and the computational structures required

to produce this behavior. This means that team members need to be speaking

the same language (or, at least, dialects whose semantics are similar enough to
facilitate communication and understanding) in order to share knowledge

about the system.
Knowledge acquisition, knowledge sharing, and knowledge integration

a r e significant, t ime-consuming activities that precede the development of a

design document. The purpose of this

article is to examine how these

activities unfolded over time inside an

actual software design team. Two

related questions with respect to this

team will be resolved:

1) How do the group members acquire, share,

and integrate project-relevant knowledge?

2) Do the levels of participation in these

activities differ across team members?

The f ind ings r epo r t ed h e r e

challenge some of the conventional

wisdom and common practices of

managing software design teams. An

initial caveat is that the design team

studied here worked in a research

and development environment where

knowledge acquisition, sharing, and

integration activities are accentuated.
However, to varying degrees, these

activities characterize most software

projects [12]. A better understanding

of the role and process of knowledge

acquisition, sharing, and integration

in software design has very real

implications for managing large soft-

ware projects, particularly in the areas

of planning, staffing, and training.

The Software Project:
An Overview
A software project involving the

development of a system to manage

persistent data within an object-

oriented framework, an object server,

was undertaken in 1986 at Microelec-

tronics and Computer Technology

Corporation (MCC). A single team of

individuals worked on the project. The

team was formed specifically for the

project, and, in general, the team

members had not previously worked

with one another. All participants were

either experienced software designers,

researchers, or both. No specific design
techniques or disciplined development

methodology was forced upon the

project team. Team meetings during

the design phase of the project (August

C O M M U N I C A T I O N * I f O P ¥ H I I A C M Octobe_r 1993/Vol.36, No.10 6 3

through November) were videotaped

by researchers as part of M C C ' s Soft-

ware Technology Program (STP).

Team members were aware they were

being videotaped. They reported that

the taping was not intrusive and did

not affect their behavior•

The design team met 19 times

from August th rough November. In

two of these meetings, technical in-

format ion was formally presented to

the team in seminar fashion by an

outside expert . The remaining 17

meetings were more tradit ional team

meetings. In early November, a for-

mal project plan, including specific

tasks and relevant stop and start

dates, was developed by the project

manager . Once this project plan was

in place, and the project shifted f rom

design to coding, videotaping of the

team meetings ceased. By February,

the project team had produced a

prototype of the object server and

two language interfaces, along with

relevant documenta t ion (functional

specifications and users' guides). No

formal measure of the quality of the

team's output was available. The ac-

tual system that was developed was

an exploratory prototype, and al-

though it was executable, it was not

installed for commercial use. The

customers stated they were, in gen-

eral, pleased with the project 's out-

come in supplying the organizat ion

with a valuable prototype and con-

siderable learning in a specialized

technical area.

A time line, shown in Figure 1,

describes project staffing and some

major events over the four months

dur ing which the 19 team meetings

were videotaped. The team members

are identif ied as eight designers (D l -

D8), a project manager (PM), and

one representat ive from the cus-

tomer group (C1). A br ief summary

of each o f 1:he 19 meetings is given in

the r ema inde r of this section•

Meeting # 1 of the design team was

held on August 6. The team was

given a one-page specification docu-

ment that described the object server

from the customers ' perspective• A

deadl ine of January 15 was given for

delivery of the object server• The dis-

cussion dur ing this meet ing focused

on areas that different members

found to be unclear in the specifica-

P r o j e c t O r g a n i z a t i o n and M a n a g e m e n t

tion document they were given. The

designers with the least experience

wanted to request that the customers

produce a specification that was

more clear and precise. The experi-

enced designers agreed the specifica-

tion was fuzzy, but stated that this

was fairly s tandard.

• '7 haven't seen any good ones and they

always come up with exactly the same

thing. This is just characteristic of them."

Exper ienced designers recognized

that the customers may not, them-

selves, unders tand the true nature of

the requirements at the beginning of

a project.

• "The big problem is they don't know

what they want. Articulating it is not al-

ways the problem, it's really knowing what

you want in the first place."

While this first meet ing primari ly

focused on the specification docu-

ment suppl ied by the customers, one

of the team members (D 1) presented

his ideas about the general concept

of an " informat ion base." His pre-

sentation was very interactive and

was in te r rup ted every 2 or 3 sen-

tences with questions f rom others. At

the end of the meeting, team mem-

bers agreed to write their questions

for discussion in the next meeting.

Meeting #2 was held on August 8.

Dur ing this meeting, the questions

concerning requirements p repa red

in advance by team members were

discussed. This discussion, however,

was not limited to requirements . In

fact, the g roup spent considerable

time talking about various technical

aspects of an object server (e.g.,

classes, objects, inheritance, mes-

sages, locking, concurrency). The

discussion in this meet ing was quite

lively, with team members in terrupt-

ing and disagreeing with one another

as well as expanding on their own or

others ' comments. Dur ing this meet-

ing, D4 stated he wanted to develop a

prototype of the object server in Pro-

log for (personal) educational pur-

poses. Team members were in-

formed that the project deadl ine had

been ex tended two weeks to

February 1.

Meeting #3 was held August 12.

The team invited two customers (C2

and C3) to at tend the meet ing to help

clarify the requirements . D1 had a

list of 23 questions he had assembled

from the previous two team meet-

ings. T h e r e were four general ques-

tions and 19 specific questions. Dur-

ing this meeting, the four general

questions and four of the 19 specific

questions were discussed. D1 re-

corded answers to the questions on

the typed document which contained

the questions, writing in the margins

and between lines. One of the cus-

tomers offered fairly elaborate "sce-

narios of use" to explain his views.

• "Let me give you a sense of the kind of

dynamics that we're talking about here

• "Let's put it this way, I stated it, and I

think I probably stated it wrongly . . .

What I would like is . . ."

These complete scenarios were not

recorded anywhere; only small frag-

ments of them were noted next to the

questions. The two customers had

several disagreements about the

overall approach to the task.

Meeting # 4 was held the next day

(August 13) with C2 and C3 to com-

plete a discussion of the design

team's questions. Again, C2 and C3

disagreed about many things, includ-

ing the specific language in which to

implement the object server. This

d isagreement can be clearly seen

with respect to one of the questions

being discussed:

Question: Are messages to be posed in the

same language in which the server itself is

written ?

• C3: "'no"

• C2: "yes"

• D1 records "Y (for now)"

• D4: "And we can have another meeting

without him (C3) where we can talk about

the language issue again."

Meeting #5 was held on

August 19. D3 was present for the

first time. The activities of the proj-

ect (so far) were described for D3,

including the disagreements between

C2 and C3 on ideas about the proj-

ect.

• DI: "Basically, we sat down, we de-

cided what it was that we wanted clarified

about the spec, made up a list of questions,

strapped C2 in a chair, beat him force-

fully with a list, required that he at least

verbalize something about what he was

t h i n k i n g . . . It became quite clear that the

4 October 1993/Vo1.36, No.10 I I O I M I I ~ U N I C A T I O I I S O I I Y I I E A ¢ I U

August September October

Y T Y
November

questions to I D3, D6 Customer review
initial customers _1_ prepare of revised
spec requirements requirements

D4 builds document
prototype

Design intent
document
produced

When staff members were assigned

D1
D2 D3
D4 D6
D8 D7
PM
C1

PM writes
commitment
statement

D5

intersection of the ideas of C2 and C3 are

very very small, at least as related to this

project . . . But, it has ceased to be our

problem--he's (C3) gone o f f . . .

• D4: "Is it really no longer a problem?

Is he no longer a customer officially?"

• DI: "Apparently"

• CI: "Well, given the wide diversions

among customers, we probably should feel

free to choose which customers we want,

who speaks loudest to us . . ."

During this meeting, the team mem-

bers learned that D1 had p repared a

prel iminary design intent document

and that D4 had developed a proto-

type of the object server in Prolog.

• DI: " . . . I then . . . created a docu-

ment expressing our preliminary design

intent, in a very informal way. Sort of

encapsulating the answers we've gotten

from (C2), plus the discussions that I had

with (D4). (D4) had been building a Pro-

log implementation of an object-oriented

environment, partly for his own under-

standing, and partly to see how, i f at all, it

related to this."

D 1 stated that he had sent the design

intent document to C2. He took C2's

lack of "complaints" as an indication

that he approved of the document.

Dur ing the meeting, D4 spent con-

siderable time explaining why Prolog

was an appropr ia te environment for

implement ing the object server as

well as describing the current state of

his implementat ion of the object

server. He requested that others read

his documentat ion, examine the

code, and work with the prototype in

o rde r to de termine if an extension of

the prototype could satisfy the speci-

fications. Few of the designers were

familiar with Prolog and were reluc-

tant to commit to implement ing the

object server in Prolog. Thus, the

issue of whether the object server

should be written in Prolog or some

other language remained unre-

solved. The meeting ended with a

request for D4 to provide team mem-

bers with a tutorial on Prolog.

During meet ing #6 on August 22,

D1 presented a plan for implement-

ing the "master information base" in

Ingres. The stated goal of the meet-

ing was to "educate" everyone on

Ingres so that the group could evalu-

ate its potential as a tool for building

the object server. A great deal of

technical information on Ingres was

shared. The team spent considerable

time compar ing how various require-

ments could be met in Ingres vs. Pro-

log. The team was beginning to con-

sider different designs and how

those designs could be implemented

using both Prolog and Ingres.

• D3: "An observation I'd like to offer at

this point is that you've gone essentially

from a set of requirements that aren't com-

pletely finished yet to a specific implemen-

tation without expressing things in a more

generic s e n s e . . , in the future we're

going to have a bit of a problem under-

standing what the original intent was be-

cause we've gone directly to implementa-

tion."

Figure 1. T ime l ine

An outside exper t was invited to

come and talk to the group about

Prolog on August 27 (Meeting #7).

He described some current research

on the subject in a fairly abstract

manner . The group pushed strongly

to br ing the discussion to issues di-

rectly relevant to the system they

were building. One of the issues dis-

cussed by the group concerned the

paging of Prolog facts between pri-

mary and secondary storage.

• Expert: Paging is done by the host oper-

ating system, it's not a Prolog-controlled

paging.
• D4: You could have Prolog write its

own facts out.

• Expert: Right, you could have commu-

nication between Prolog and some data-

base system.

• D4: That's the way I imagined doing it.

Do you think that's feasible?

• Expert: Yeah, sure. O f course, it's not

going to be very efficient but that is a good

first pass.

Meeting #8 on September 3 was

devoted to discussing a revised de-

sign intent document that had been

p repared by two of the designers.

Recall that D 1 had written the initial

design intent document. Dur ing the

meeting, it became clear that the

team members were not at all happy

with this document. It seemed to the

customer representat ive on the team

that the current document had not

¢OMMUMICATIONSOI~'VMIACldl October 1993/Vol.36, No.10 ~ S

Experienced designers recognized that the c u s t o m e r s

m a y n o t u n d e r s t a n d t h e t r u e n a t u r e

o f t h e r e q u i r e m e n t s at the beginning of a project.

captured much of what the design

team had ;agreed to earlier.

• CI: "We had a bunch of discussions

during last week and I thought we were

starting to get agreement but now that I've

read this I can't (see that agreement)."

The team spent a great deal of t ime

discussing exactly what should be

p repa red for the cus tomers - - shou ld

it be a requirements document , a

design intent document , or a func-

tional specification? This discussion

led to another detai led discussion of

requirements , which in turn led to a

detai led discussion of design issues•

Two impor tan t decisions emerged

f rom the discussions: first, a decision

was made to start f rom scratch in

p repar ing the design intent docu-

ment. Second, D 1 and D4 were given

the approval to continue to work on

the Prolog prototype•

Meeting #9 was held on Septem-

ber 5. A new outline for the design

intent document was distributed• As

the team members went th rough the

outline, requirements were discussed

further . The team discussed the dif-

ficulties in getting feedback f rom

cus tomers T h e extent to which the

team had moved toward developing

a design became very clear when the

customer representat ive on the team

indicated his intent to get feedback

f rom a large number of customers on

the design intent document being

p repa red by the design team.

• C1: Incidentally, when you give this to

the customers, I'm going to reexpand the

customer group from the original group.

• D4: Isn't it a little bit late? I mean after

all the preliminary design work that we

have done . . . It worries me that it's

going to start the whole thing all over

again.

During Meeting #10 on Septem-

ber 17, C1 informed the design team

that the customer group had re-

ceived the design intent document

and was working on a response• He

said the customers wanted a func-

tional specification p repa red in the

form of three users manuals: one

user manual for an applicat ion pro-

g rammer using Lisp/Flavors to inter-

face with the server, a second user

manual for an application program-

mer using Prolog/Biggertalk to inter-

face with the server, and a third user

manual for someone who wanted to

write the interface for another lan-

guage such as Objective C. At this

meeting, it was announced that the

prototype being developed by D4

would be ready to show to customers

as soon as D4 built an example case

and D 1 wrote a user manual• A good

par t of the meet ing was taken up by

D4 describing his prototype• At this

meeting, two basic design ap-

proaches were articulated: Plan A

and Plan W.

• D6: Should we start on Plan A or

Plan W? Because they're different design

issues, very different ones.

• PM: I don't think that we have enough

information right now to make a decision

• . . we need to come up with the process

cost for each plan and decide when we will

reconvene and make a decision on it.

Meeting # 11 was held on Septem-

ber 26. Al though the design team

was still waiting for the next round of

requirements from the customers,

they proceeded to write the user

manuals that C 1 out l ined in the pre-

vious meeting• T h e r e was much tech-

nical discussion on how to pe r fo rm

different tasks, such as handl ing con-

flicts su r round ing objects. Some

changes to the prototype were sug-

gested•

Dur ing Meeting #12 on Septem-

ber 30, the design team discussed the

requirements document received

back f rom the customers• Team

members were not h a p p y - - t h e y

were frustrated because the require-

ments still were not clear•

• DI: D3 and I basically decided that

rather than go through another iteration

of make up the questions, give the ques-

tions to customer, wait a month-and-a-

half for their response, we're simply going

to list things and say these are now imple-

mentation-defined.

Much of the meet ing was devoted

to trying to "read between the lines"

to de te rmine what the users really

wanted and discussing how they

could adapt the design approaches

they had been pursuing to do this.

• D3: What C2 wants is to be able for his

reusability project to work in Flavors en-

vironment. He doesn't want to comingle

languages; he just wants an information

base server that has many objects that is

accessible to his Flavors environment.

• PM: This (the document) does not say

it.

• D3: It doesn't say it, no.

Meeting # 13 was a cont inuat ion of

Meeting #12. Dur ing this meeting,

the team went th rough the customer

requ i rement document point by

point a t tempt ing to clarify and reach

a consensus o f unders tanding• T h e r e

were still unclear areas; there were

appa ren t contradictions• Since the

team did not get all the way th rough

the document , they agreed to meet

the next morn ing to continue•

During Meeting #14 on October

1, the design team cont inued their

jo in t review of the customer 's docu-

ment. They went th rough the docu-

ment, discussing items that were un-

clear, wrong, and so forth. They kept

track of matters they could not re-

solve and which needed to be ad-

dressed by the customer group•

Some of the discussion was very

high-level (. . . "different language

environments"); some o f it was very

detai led (" . . . We have to explicitly

follow the pointers in the applicat ion

code.")

At the start of Meeting #15 on

October 8, the PM distr ibuted a draf t

of a "Commitment Statement for the

6 October 1993/Vol.36, No.10 C O M M U N I C A T I O N S O F T H E A C M

Informat ion Base Server." D4 men-

t ioned C2's "revised expectations"

about sharing objects between lan-

guages. The team was not willing to

commit to this new requirement .

The re was not a lot o f controversy

involved with PM's draf t document.

Only minor wording changes were

suggested. Most of the discussion

refer red to fairly high-level issues

concerning the requirements: multi-

ple languages and the sharing of ob-

jects. The next steps for the project

were discussed, including the need to

develop a r igorously laid-out plan,

with specific tasks, dates, and so

forth.

Th ree members of the design

team had been working on a part of

the object s e r v e r - - a n object base

management system (OBMS). The

in tended format of Meeting #16 on

November 5 was to let each of these

members run through their presen-

tations and save questions for the

end. Only two of the designers were

able to present. The re was some de-

tailed discussion of issues such as

locking, notification, time stamps,

serializing problems, and atomic

operations.

Meeting # 17 occurred later in the

day on November 5. This meet ing

involved the discussion of a huge

PERT chart that the PM had pre-

pared. It was a plan for complet ing

the project tasks• The PM wanted the

team members to evaluate the plan,

especially to see if the start and stop

dates were reasonable. This was a

short meeting, barely 20 minutes

long. Much was still unclear and un-

resolved, as was evident in the longer

meet ing earl ier in the day. However,

with time runn ing out, the project

leader was obviously trying to get

beyond any fur ther discussion of

requirements.
The purpose of Meeting #18 on

November 11 was to discuss work

that had been done concerning data-

base issues. It was to be a continua-

tion of the discussion of database is-

sues from Meeting #16. At the start

of the meeting, D4 requested that C2

be invited into the meeting:

• D4: Can we get C2 here for this be-

cause something was raised during the

meeting we just had with him that struck

me as remarkable, and I think his new

P r o j e c t O r g a n i z a t i o n

notions of what he wants should be ex-

pressed directly to the group. I just spoke

to him and he sounded like he'd be willing

to come and talk at this meeting about that

certain topic.

C2 commented on what he wanted:

• C2: In the time frame between now and

February I, I want to focus my personal

activities on just . . . reusability issues

• . . I'm going to sit and ask questions

about what kind of objects do I want to

build in a Flavors environment. And I

think realistically, I or anybody else, am

not going to have a good idea of what re-

quirements there are until you've gone

through that, until you actually tried out

in a fairly large-scale experiment with a

set of objects trying to do some reusability.

• D4: I f you tell us in aprecise way what

you want to do with this thing, we can

build in the functionality right now.

• C2: That's indeed why I want to spend

the next few months f iguring out what

that precise way is, that's what I'm saying.

The design team discussed several

alternatives for providing the func-

tionality requested by C2. By the end

of the meeting, five possible ap-

proaches were identified. After C2

left, the discussion turned more tech-

nical about "how to do it" including

such issues as dangl ing pointers,

locking objects, locking subtrees, de-

leting objects, garbage collection, and

global backup and integrity of the

object store.

Meeting #19 was held on Novem-

ber 21. A functional specification

document that had been previously

p repa red by one designer was dis-

cussed. Much of the discussion was

related to the goal of trying to assure

the specification document was com-

plete. The team discussed whether

this project related to others at MCC,

the system, and how it would work.

Questions about the system were

posed, relative to D4's system and the

various documents describing the

server and the OBMS. The re was

some discussion about how to pro-

ceed. D4 discussed starting work "on

the languages": D3 suggested split-

ting the current functional specifica-

tion by category (e.g., maintenance,

storage, etc.) and assigning a cate-
gory to each team member who

would critically evaluate the docu-

ment and part icipate in fu ture dis-

cussions with that "bent." These as-

and M a n a g e m e n t OR
signments were made late in the

meeting. After this meeting, the

project shifted to implement ing the

specification•

Observations from the
videotapes
The observations presented in this

section are based upon our analysis

of the 19 design team meetings. We

first reviewed the transcripts of the

group meetings to qualitatively assess

the nature and level of knowledge

acquisition, sharing, and integrat ion

activities. Next, the transcripts were

analyzed in a s t ructured manner in

o rde r to obtain measurements which

might suppor t or deny our qualita-

tive assessments. A description of this

analytical approach is described in

Append ix A; fur ther details are pro-

vided in [24].

The design meetings were very

professional in nature. Interactions

were, for the most part, task-oriented

with lively discussions. Participants

were serious about their assignment

and appeared to be trying hard to do

a good job. In general , we identif ied

three general topics of discussion: 1)

background knowledge (technical

and application knowledge, espe-

cially knowledge that was new to

some or all team members), 2) system

requirements , and 3) design ap-

proaches.

The tradit ional approach to soft-

ware development recommends that

these topics be addressed in se-

quence. Projects are supposed to be

staffed to cover the di f ferent "knowl-

edge domains." I f necessary, early

t raining is supplied• The design team

begins its work by de termining re-

quirements, a l though dur ing this

time, designers may require "educa-

tion" about the functional area. After

requirements are de termined, de-

signers invent some reasonable de-

sign approaches to meet system re-

quirements and evaluate these

approaches, selecting one to be im-

plemented.

In the design project we studied,

we saw these three "steps." From the

descriptions of the team meetings, it

is clear that these steps were not ad-

dressed in sequence, they were not

independen t of one another , and

they did not appear to have clear

starting and ending points. Technical

COMMUNICATIONS OF THIE ACM October 1993/Vol.36, No.10 6 7

knowledge was introduced, ex-

changed, and evaluated according to

its ability t,o meet requirements in the
context o f one or more specific de-

sign approaches. New information

about requirements was evaluated in

the context o f design approaches

framed in terms of technical and

application knowledge. Presentations

about new technology were discussed

in light of various design approaches

and whether or not such approaches

met requirements. Thus, new infor-

mation was sought, filtered, and inte-

grated in context.

Very early in the project

(Meeting #5), the team began to

focus on what they called a design in-

tent document--a document for cus-

tomers that said "this is what we un-

derstood '.you to mean and this is

what we intend to do about it." The

team also was introduced to the pro-

totype being developed by D4, which

provided a very concrete design for

meeting requirements. Beginning in

the middle of August, discussions

related to technical knowledge, re-

quirements, and design became

closely intertwined. We did, however,

see shifts over time in the team's

focus with respect to these three top-

ics (see Figure 2). In the early meet-

ings, the team focused on learning
what they needed for producing a

design and identifying the require-

ments of the system. Discussions,

however, generally related to as-

sumed, or "trial" design approaches.

This emphasis was evident through

meeting #7, in late August. Around

this time, the emphasis on new tech-

nical knowledge appeared to lessen

and the focus o f the team was one of

getting a clear handle on require-

ments and relating these to specific

design approaches. In fact, design

approaches discussed in previous

meetings appeared to have been so-

lidified by the middle of September

and were referred to by names (e.g.,

"Plan A") for the first time, starting
in meeting #10.

After meeting #10, the team was

still attempting to get requirements

clarified. The discussion of require-

ments f rom this point, however, was

rooted in 1:he context of specific de-

sign alternatives ("Plan A vs. Plan

W"). As can be seen in meeting #12,
the team was close to reaching its

P r o | e c t O r g a n i z a t i o n and M a n a g e m e n t

limit on accepting additional require-

ments from customers. By

meeting #16 (early November) the

process of actively determining re-

quirements was simply 'shut down,'

even though requirements were still

not entirely clear, either to the de-

signers or the customer representa-

tive. The team's focus from this point

is on the various design alternatives,

discussed in the context of known

requirements. It appeared that the

shifting of the team's attention from

requirements determination to de-

sign activities was precipitated by

members ' awareness o f time and

deadlines.

The phenomenon of 'shutting

down' in other software design proj-

ects was observed by Gersick [14],

who noted that it tended to occur

near the halfway point between a

project's starting date and its dead-

line. It is interesting that the shift

observed here, in early November,

corresponds to the midway point be-

tween project inception in early Au-

gust and the February 1 delivery

deadline.

We have classified our observa-

tions of this software design team

along three dimensions: acquiring,

sharing, and integrating the neces-

sary knowledge for the design task
(getting up to speed), integrating the

knowledge into a shared under-

standing of the application and the

design (creating the team memory), and

the role of individuals in these activi-

ties (the players). The analysis of the

transcripts from the project has

yielded some interesting observa-

tions in these areas, suggesting that

some of our traditional approaches

to managing the software design

process may need rethinking.

Getting up to Speed

From Meeting # 1 through

meeting # 16 in early November, the

team members focused on obtaining

both technical and requirements-

oriented information. The junior

designers were appalled at the amor-

phous nature of the initial require-

ments document and wanted to de-

mand something with more specifics.

The experienced designers recog-

nized that customers "don't know

what they want" and the fuzziness in
their requirements document was

common. Customers, like designers,

needed to go through a learning pro-

cess in order to clarify the require-

ments. Once this was recognized, it

was not surprising that it took so long

to gain closure on the requirements.

Determining requirements was

also complicated because different

customers had different require-

ments. The design team clearly

wanted to avoid this complication by

being responsible to a customer (or

customer group) that shared the

same view of the requirements. The

customer they chose was C2 and

much of their thinking was shaped

by what C2 wanted. The design team

was quite alarmed when the cus-

tomer representative on the design

team wanted to open the discussion

of requirements to a larger customer

audience once the project had be-

come established.

On the technical side, the team

actively sought information about

the object-oriented paradigm and

the relevant characteristics o f various

database environments. From the

meeting discussions we can infer the

kinds of activities in which they en-

gaged outside of the project meet-

ings: tracking down and reading

documentat ion and research papers;

consulting with experts (both inter-
nal and external to MCC), technical

specialists, and vendors. Even during

the first meeting, it is obvious that

team members had "done home-

work" before assembling.

During the meetings, team mem-

bers exchanged knowledge through

discussions. Individuals often asked

one another direct questions. Team

members appeared eager to supply

their own expertise where relevant.

We observed numerous examples of

knowledge exchange in a classic dia-

lectic process, in which a statement of

position was criticized as a catalyst for

a discussion process whose outcome

involved individuals accepting new

knowledge or revising beliefs.

We observed a large amount of

conflict in the meetings we studied.

On average, about 16% of all state-

ments were made in disagreement or

challenge to another. While we did

observe some cases o f disagreements

that appeared to be the result of in-

compatible goals, most of the conflict
that occurred during the design team

6 8 October 1993/Vol.36, No.10 C O M M U N I C A T I O N S OF THE ACM

meetings was dialectic, or educa-

tional, in nature. This conflict was

not personal, it did not appear to be

hostile or antagonistic, and individu-

als did not appear to be dis turbed by

these interactions; in fact, they

seemed to be learning from one an-

other.

The design team was very deliber-

ate in choosing the application do-

main and technical knowledge

needed to complete the design task.

While team members may have ini-

tially had their own ideas concerning

the mapping between the require-

ments of the application and a de-

sign, a few members of the team suc-

ceeded in getting the team to focus

on only a small subset of possible

mappings. The group seemed to

only recognize and assimilate techni-

cal knowledge seen as directly rele-

vant to this subset. Requirements

were also viewed within the bounda-

ries of this subset as well. Around

meeting #16 (early November), the

group began to focus almost exclu-

sively on design issues. After this

point, the group seemed to "close its

mind" to any new knowledge.

However, even before this point,

we observed the reluctance of the

group to significantly shift its current

thinking. Two analysts were added to

the project at relatively late dates:

one in late September and one in

early November. Both analysts were

exper ienced professionals who were

brought into the project because they

possessed expert ise in specific areas

that was lacking on the team. On

both occasions, the addi t ion of an-

o ther analyst appea red to have little

effect on the direction of the project.

Both analysts were initially given in-

format ion in tended to br ing them up

to speed regard ing the history and

status of the project. Nevertheless,

work seemed to progress as be-

fore. Potential design approaches

were not al tered (or even considered

for alteration) after the new analysts

were added to the team.

Implications for Management

Knowledge acquisition, sharing, and

integrat ion are all activities that en-

able the software design team to

learn what it needs for producing an

appropr ia te design. Seldom are these

activities explicitly accounted for in

the design phase. Consequently, the

time required for design is often seri-

ously underes t imated [12]. The

length of t ime that a team spends in

its learning phase depends on the

breadth and dep th of knowledge the

team members br ing to the project.

It is also affected by the extent to

which customers unders tand the re-

quirements of the project. In the

software design team we studied,

Figure 2. Shifts in emphasis over
t i m e

there was some relevant technical

knowledge but little application-

domain knowledge, and customers

were unclear on requirements. As a

result, over 75% of the time devoted

to the design phase of this project

was spent in learning. Al though the

team had not learned everything it

needed to know, time pressures

forced it to move ahead with what-

ever knowledge it had gained. This

insight can help project managers set

more realistic estimates for the de-

sign phase of a project by including

the requi red learning curve in the

equation.

Also, dur ing the learning phase, it

is impor tant to facilitate the open air-

ing and exchange o f ideas across all

relevant domains of expertise. Proj-

ect managers should not be too con-

cerned dur ing this phase if the team

does not demonst ra te visible prog-

ress toward developing design speci-

fications, since it is generat ing the

raw material necessary to move to the

next phase of actually producing a

design [14]. It is only if the g roup

fails to move out of the learning

phase midway through the project

that overt actions should be taken.

Our observations also indicate the

¢ O M M U N I C A T I O N I i OF TH I i ACM October 19931Vo|.36, NoA0 ~

C o n f l i c t w a s t h e m e c h a n i s m f o r

f a c i l i t a t i n g l e a r n i n g .]! w a s not a debilitating
factor needing to be suppressed in the software design team.

importance o f including relevant

team members from the beginning

of the project. I f new members (and

their relevant expertise) are added

after the g roup has come to closure

in its learniing phase, the group may

be reluctant to deal with the new

knowledge they br ing to the team.

Thus, knowledge at this point may

not be incorpora ted easily into the

group 's work. I f new members must

be added dur ing the project, project

managers should take special care to

ensure the knowledge brought by

these members gets integrated into

the team's cur rent thinking.

T h e r e are implications for train-

ing as well. Conventional approaches

to software design allow for t raining

of team members in technical meth-

ods or tools, as necessary. Usually,

this is done at the beginning of a

project. Often, designers are physi-

cally removed from their day-to-day

work envi ronment in o rde r to re-

ceive formal training. And typically,

this t ra ining is separate and indepen-

dent o f the actual project activities.

In our study, the software design

team was involved in two formal

t raining s e s s i o n s i o n e involving

database technology and one on

P r o l o g I t h a t were held on-site.

These formal sessions did not seem

to have much impact, pr imari ly be-

cause the training did not focus o n

those things that were especially rele-

vant for the project. When team

members are immersed in a design

activity, they are often unable (or

unwilling) to acquire knowledge that

cannot be immediately put to use. We

recommend that formal t raining ac-

tivities, when appropr ia te , be inte-

gra ted into project activities ra ther

than remain independen t (just in time

training). One way to achieve this

might be to have a technical t ra iner

part icipate in a few design meetings

so the training can be custom-

tailored to the project.

Conflict was the mechanism for

facilitating learning. I t was not a de-

bilitating factor needing to be sup-

pressed in the software design team.

In fact, we recommend considerat ion

of formal techniques for managing

conflict to help with knowledge ac-

quisition, sharing, and integration.

Two techniques for p rogramming

conflict into organizational decision

making processes have been sug-

gested: the devil's advocate decision

p rogram (DADP) and the dialectic

method (DM) [6, 8]. In the devil's

advocate method, an individual or

group plays the formal role of critic

in o rde r to help a decision maker test

the assumptions and the logic of the

ult imate decision. The dialectic

method pits a thesis against an an-

tithesis. Most modern legal systems

today are formal dialectic processes.

Two sides exist, each with champi-

ons, and cases are made for each.

This method is especially appropr i -

ate when a g roup is a t tempt ing to

define problems and generate the

necessary informat ion for decision

making under conditions of uncer-

tainty, or where there is more than

one way to solve a problem [7].

Formal methods for the use of dia-

lectic techniques for strategic plan-

ning are presented by Mason [17,

18]. The strategic assumption surfac-

ing technique (SAST) offers a

method by which facilitated groups

can identify and resolve under ly ing

differences and similarities. Thus, it

seems especially suited to heading off

communicat ion problems that may

occur in such knowledge-intensive

tasks as software design.

We recommend that at least o n e

person within the group, perhaps the

PM, serve in the capacity of a facili-

tator of p r o g r a m m e d conflict. This

individual would receive formal

t raining in the DADP or the SAST as

well as training in dialectic thinking

and philosophy. The methods may

need to be adapted somewhat to take

into account the informal nature of

the group interactions. We believe

that formalizing these methods to the

management of software design

teams represents a potential area for

significantly improving software de-

sign quality and productivity.

Creating the Team Mem0w

The team sought clarification of the

requirements contained in the initial

specification document by address-

ing a number of questions to their

customer representatives. Interest-

ingly, the customers were not willing

to provide written answers, but

agreed to a t tend meetings to be in-

terviewed (specifically meetings #3

and #4). Thus, most of the informa-

tion given to the team concerning the

nature of the requirements of the

system was given orally. And, inter-

estingly, a large amount of this infor-

mation was lost. A very influential

customer (C2) a t tended three of the

team's meetings, dur ing which he

spoke a great deal, usually in re-

sponse to designers ' questions. In

fact, this customer offered many

elaborate scenarios of use to explain his

views, needs, and preferences. While

the designers listened attentively,

made comments, asked questions,

expressed disagreement , and other-

wise interacted with this customer,

very little of the informat ion con-

tained in the interactions was re-

corded.

In one interchange, the designers

asked C2 to priori t ize three distinct

approaches which seemed to be indi-

cated by the initial specification. C2

did this within a very long discussion

which included detai led and elabo-

rate scenarios as well as modifications

and clarifications of these three ap-

proaches. After this discussion, the

designer taking notes wrote simply:

"2-3-1." In fact, the documenta t ion

p roduced by the scribe designer dur-

ing the two lengthy meetings with C2

(meetings #3 and #4) consisted of

less than 150 words written on the

70 Octobcr 1993/Vol,36, No.10 I ~ O M l l 4 U N O e A T I O N I O F T H m A ¢ M

design team's copy of the question

sheet• This documenta t ion was used

by the designer who took the notes to

help produce a first draf t of a design

intent document. However, as was

apparen t from Meeting #8 , when

two other designers from the team

took over the product ion of this doc-

ument, even the small amount of in-

formation here seems to have been

lost.

It was clear from our observations

that the designers were learning

from C2, gaining insights into his

needs, and at tempting to relate these

to possible design alternatives. The

process of interviewing C2 served to

br ing out information that was ab-

sent from formal requirements and

was elusive, in that it was difficult to

get from any direct source. However,

it was also clear that the designers

were not always able to integrate all

of the new information they re-

ceived. The designers were not jus t

trying to accept information f rom

C2. They were at tempting to inte-

grate this information into their own

working model of the design task. In

the beginning, these models were

very sketchy [1]. Consequently, it was

difficult to integrate requirements

information into what they current ly

knew and unders tood: the informa-

tion did not "stick," since they had

yet to develop adequate "hooks" for

it in their unders tanding of the prob-

lem.

The process of acquiring informa-

tion and integrat ing this information

was driven by design bites. The de-

signers were only capable of integrat-

ing a design bite's worth of informa-

tion into their current unders tanding

of the design task, based on the abil-

ity of the new information to "attach"

to that a lready integrated into the

design• Therefore , a large amount o f

information from C2 was ei ther lost

or unnoticed. The discussions in

later meetings often went back to

"what C2 said," or "what C2 would

say now." Some of the information

provided by C2 had to be painfully

(and only partially) reconstructed by

the designers at later stages. Some of

the information he provided in these

earl ier meetings was solicited again

in a later meet ing to which he was

invited. A good example of this can

be seen with respect to the issue of

P r o j e c t O r g a n i z a t i o n

reusability. C2 was mainly interested

in how reusability could be enhanced

through the use of an object server.

He made this clear in Meeting #3.

Later dur ing Meeting #12, D3 reit-

erated what he believed C2 wanted

out of the object server. Since this

requi rement had not been captured

in any design document , no one else

on the design team seemed to pay

much attention to it. In Meeting # 18,

D4 states "I think his (C2's) new no-

tions of what he wants should be ex-

pressed directly to the group." In

fact, these were not new notions;

what he said he wanted was almost

identical to what he stated in Meet-

ings #3 and # 4 and what D3 had

perceived to be his desires back in

Meeting #12.

We also observed cases in which

design decisions became lost, or were

forgotten, from one meeting to the

next. Situations in which previously

made decisions were quest ioned

were fairly common. The following

three episodes illustrate this phe-

nomenon.

EPISODE 1: Meeting #5, August 19

PM relays the news that the accep-

tance test requested by C2 involves

the ability to run a p rogram that pro-

duces Nassi-Shneiderman diagrams.

This p rogram is written in Lisp. The

design team has been less than en-

thusiastic up to this point of bui lding

the object server so that Lisp pro-

grams can be run. They are very re-

luctant to accept this as a valid test

for their system.

• CI: "A test of the product. He wants to

be able to run this Nassi-Shneiderman

program."

• D1 : "See, I don't take that seriously, I

really don't."

• D4: "Why didn't you tell us i f you

meant us to take it seriously. I mean why is

it just mentioned in passing?"

The team has ei ther not remem-

bered (or they did not take seriously)

C2's comments from a specific sce-

nario he gave them in Meeting #3 on

August 12.

• C2: " . . . So what happens is maybe

you want to implement a Nassi-Shneider-

man chart so (D4) goes off and he does

some magic with Lisp and whatever and a

week later the Nassi-Shneiderman classes

and M a n a g e m e n t 0 1 7

get in there and they'll largely stay un-

changed for a long time "

EPISODE 2: Meeting #9, Septem-
ber 5
D3 has worked on a version of a re-

quirements document. C1 points out

that a major aspect of the project

concerning its database functionality

has been left out.

• C1: " . . . what this is is an extension of

the normal capabilities we've come to ex-

pect of databases, in terms of reliability,

and failure recovery."

• D3: "That's what we're doing?"

• C1 : "That was part of it."

• D3: "Not in any document I've ever

read. I had three documents relating to
• . . "

• C1: "That's the odd thing•"

EPISODE #3: Meeting #12, Sep-
tember 30

• D4: "And if you store that, and the hi-

erarchy changes in any way, you have to

search through everything stored to

reresolve those static references. I thought

I won that argument a long time ago."

• D1 : "Yes, but you did that in the back-

ground. The other problem--the problem

with doing it your way is that in order to

f ind the code here, you have to search

every method of every single object all the

way up, which makes . . . "

• D4: "That's logarithmic. Everything

else is everything. I f you're talking N ver-

sus log N . . . "

• D1 : "Logarithmic?"

• D4: "Yes, the one path or set of paths

up instead of the whole thing. That's how

I won the argument five tapes ago."

• DI: '7 don't think we ever did it on

tape, I think we did it in my office."

• D4: "No, we did it here, and you came

to a point where you sort of said 'Oh:

Even after that, I remarked, you actually

agreed you were wrong and admitted you

do that occasionally. I remember it quite

vividly."

• DI: "Good for you. Well, I don't re-

member it, but I'll take your word for it."

One possible explanat ion for de-

sign team "forgett ing" is that every

team member was not present at

every meeting, and some designers

were added to the project fairly late.

For instance, D3 missed the first two

weeks of the project. Because of this,

he missed many relevant conversa-

COMMUNICATIONS OPTHll AGM October 19931Vo1.36, No.10 i ~

tions covering significant aspects of

the project ,which were discussed but
not clearly documented. Participants

in the early meetings understood

these issues but D3 did not. This

hampered him when he was put in

charge of preparing a revised re-

quirement document and highlights

the difficulty o f bringing new team
members "up-to-speed."

Sometimes the design team could

not "remember" some information

because they considered it unimpor-

tant. Since t]he design team was lean-

ing against implementing the object

server in a Lisp/Flavors environment,

they ignored relevant information

such as the fact that the object server

must be able to run a specific pro-

gram in Lisp. Even when individuals

remembered that a decision had

been made, they often found it diffi-

cult (if not impossible) to recreate the

logic, or the rationale, behind the

decision ("Why did we do it this way?").

Another aspect of the design

meetings that contributed to a diffi-

culty in "remembering" was the com-

plexity and lack o f structure in the

discussions. Design is an intense cog-

nitive activity and the project we ob-

served for this study was no excep-

tion. In general, the discussions

within the meetings were informal.

Issues were not discussed hierarchi-

cally, but in a free-flowing, unstruc-

tured string of quasirelated episodes.

A discussion of one issue seemed to

trigger the discussion of new issues

(see Appendix B for a detailed listing

of the issues discussed in a fairly rep-

resentative meeting). It was reported

in [21] that design teams appear to

have limited attention spans. The

design team studied here did not at-

tend to issues at great length. Many

times, they never came to a decision

on what to do about an issue, but

were distracted from the issue, mov-

ing on to other topics. It appeared

from our analysis that the group was

aware of an unresolved issue only if it

was raised again at some later time.

These team memory limitations

were enough of a problem that the

design team eventually requested

access to the videotapes of their pre-

vious meetings. However, even

though the}, were granted access to

the tapes, they decided it would be

too time-consuming to view them.

Pro |ec t O r g a n i z a t i o n and M a n a g e m e n t

Implications for Management
Design teams have historically been
expected to manage their collective
"memory" in an ad hoc manner. The

design team's formal memory is rep-

resented by its trail o f formal docu-

mentation, such as functional specifi-

cations and users' manuals. An

increasing number of tools exist to

help design teams manage their for-

mal memory: CASE tools, document

preparation tools, and modeling

software provide help in this area by

managing the formal record of the

output o f the various design stages.

They do little, however, to provide a

record of the process of the design.

Prototypes provide limited help in

this area since they are products o f

the design team's consensus model o f

the customers' requirements. They

represent output (a model of a sys-

tem), not process. A prototype can

trigger a conversation which includes

customers' scenarios of product use,

but does not provide a means to cap-

ture a priori the information from

these conversations.

The team's informal memory is
much more complicated and more

difficult to manage. It consists of the

material scrawled by individuals in

the margins of their personal copies

of formal documents, the notes on

the blackboard on any given day

("Do Not Erase"), and the thoughts

and impressions of the individual

team members themselves.

Software design teams could bene-

fit f rom tools that are intended to

record and capture the process of

software design. Such tools would

provide methods for capturing design

rationale [3, 5, 19] including scenarios

of use as supplied by customers or

suggested by designers. Groupware

tools that allow the capture, storage,

and retrieval of the design process in-

formation have been suggested for

software process management [11,

15, 16]. Such tools may use the de-

sign process as input. For example,

on-line conversations about various

issues and videotapes o f design meet-

ings, can be stored and processed so

that information can be retrieved.

Such tools could also keep track of

key issues raised during group meet-

ings and the position, if any, taken by

the group with respect to these is-

sues.

Relative Participation by Team
Members

It was reported in [21] that team

members in design groups partici-

pate unequally. In a study of 17 large

projects, it was found that the early

phases o f software design projects

were dominated by a small coalition

of individuals, occasionally even a

single individual [12]. Our observa-

tions are consistent with these find-

ings. We identified 3 individuals out

of the 10 members o f the software

design team who seemed to domi-

nate the design process. One of these

individuals was the customer repre-

sentative, C 1 and the others were two

designers (D 1 and D4) who emerged

as leaders o f the design effort.

C1 was a customer representative

with a rich technical background and

excellent communication skills who

used examples and scenarios of use

to convey information about the cus-

tomers' needs and preferences effec-

tively. He drew on his technical back-

ground to frame these examples and

help the designers to understand the

system requirements.

D1 and D4 were the only project

team members who attended all of

the meetings. They participated

more frequently than other team

members. In fact, counts of individ-

ual speech acts from the transcripts

of the meetings reveal that these in-

dividuals actually spoke more often

than any of the others by a factor of

nearly 2 to I (see Figure 3). D1 and

D4 worked hard, both in and out of

the group meetings, and performed

more tasks than they were explicitly

asked to do. They routinely con-

tacted outside experts, searched for

relevant research papers, and dis-

cussed unresolved issues with the

customers. They both developed

plans for addressing the design (not

all of which panned out) and they

presented these suggestions to the

team, after discussing them with

the PM.

D 1 impacted the team effort both

technically and administratively. As

described previously, he tried to seek

out and integrate new technical

knowledge into a framework for pro-

ducing the design. He also influ-

enced the team process by taking the
initiative in the administration of

team duties. He routinely volun-

72 October 1993/Vol.36, No.10 ¢ O N N U N I C A T I O N S O F T H I I A C M

teered to coordinate g roup activities

(assemble lists of questions, solicit

input and produce documentat ion)

and he actively led the group (in

terms of both meeting and project

management) for several of the

meetings.

D4's influence on the project was

largely technical. He exhibited con-

siderable technical expert ise and

other team members regularly

sought his help and defe r red to his

opinions. He seemed to be some-

thing of a loner, not especially inter-

ested in reaching consensus. Without

being overpowering, he would do his

own work and offer the results to the

g r o u p - - i t was D4 who built the Pro-

log prototype in the first few weeks

of the project. When D4 initially sug-

gested building the prototype, the

PM was not supportive. But D4 built

the system anyway, explaining that

he wanted to do this as a learning

tool. Interestingly, the Prolog proto-

type that he built became an impor-

tant piece o f the finished system.

D1 and D4 formed a very influen-

tial coalition over the course o f the

project. They were influential not

only in de te rmining the overall de-

sign approach and its subsequent

decomposit ion, but also in the alloca-

tion of responsibilities. D4 ended one

of the meetings by reading f rom his

notes (written on a Styrofoam coffee

cup!), where he summarized the

project status and suggested assign-

ments for team members; the others

assented.

We surveyed the team members to

learn about their backgrounds,

knowledge, and expertise. Interest-

ingly, D1 and D4 had the fewest

number o f years of professional ex-

perience (2 and 1 years, respectively),

al though they had a number of years

of p rogramming experience (7 and

11) in a variety (5 and 20) of lan-

guages (see Figure 4). We infer that

most of their experience was in an

academic or personal comput ing

environment . We also asked each

team member to identify (for 12

project-related knowledge areas)

those individuals on the team who

they felt were knowledge resources

in these areas. We studied the re-

sponses to see if there were any

knowledge-related differences be-

tween the emergent leaders (D1 and

D1 D2 D3 D4 D5 D6 D7 D8 PM Cl

D1 D2 D3 D4 D5 D6 D7 D8 PM Cl

30.

2 5

20

15

10

5

0

i ' ~ Number of votes from others

8 1 Number of knowledge areas
represented

D1 D2 D3 D4 D5 D6 D7 D8 PM C1

D4) and the other team members.

We recorded the number of times

each team member was ment ioned

by others as being a knowledge re-

source. We also noted the number of

knowledge areas for which each per-

son received votes. This is a measure

of the breadth of an individual 's ex-

pertise. See Figure 5 for a summary

of these results.

Plgure S. N u m b e r o f s t a t e m e n t s
p e r m e e t i n g

F igUre 4. Years o f p r o f e s s i o n a l
serv ice

F igure S. Exper t i se as p e r c e i v e d
by t e a m m e m b e r s

COHHUNICATION| O I I T I l l ACH October 1993/V01.36, NO.IO m / ~

have historically valued both technical and communication skills

in software designers. W e s u g g e s t o r g a n i z a t i o n s

p u t p r o g r a m s i n p l a c e f o r d e v e l o p i n g

t h e s e s k i l l s in more depth.

Interestingly, D4 was mentioned

most often by teammates as a knowl-

edge resource, receiving 30 votes.

Also, D4's votes covered 7 knowledge

areas, implying that he had a breadth

of knowledge as well as depth and

expertise. D1 and C1 (the customer

representative) were also mentioned

in 7 knowledge areas. No one else on

the team received votes in more than

7 knowledge areas.

Implications for Management

The conventional wisdom for hiring

programmers and designers values

experience, where experience is

often equated with knowledge. Of

Boehm's [2] five basic principles of

software staffing, three are especially

related to knowledge and expertise.

The basic premise of The Principle of
Job Matching involves fitting the task

to the skills and motivations of the
available staff. Operationally, how-

ever, this usually involves matching

individuals' technical experience

(software environments, operating

systems, databases, programming

languages, application areas) with

the technical requirements of the

task. The Principle of Team Balance
suggests that an appropriate mixture

of knowledge, technical skills, and

personality characteristics are espe-

cially important. The Principle of Top
Talent recommends the use of fewer

and better people.

In the design team we studied, the

two individuals who were identified

as the most knowledgeable were also

the least experienced. This supports

the findings of other studies that

breadth of experience is a better pre-

dictor of individual performance

than years of experience [13, 22]. In

spite o f this,, years of experience is

often used as a key input into staffing
decisions.

We suggest that a better approach
would be to develop a "knowledge

profile" for each member of the soft-

ware design and programming staff.

The Principle of Job Matching could be
operationalized by matching knowl-

edge profiles of staff members to the

knowledge profile of a particular

project. These knowledge profiles

could also be used to ensure, as much

as possible, that requisite knowledge,

skills, and abilities are appropriately

distributed among the members of

the team, in accordance with the

Principle of Team Balance. Where this

is not possible, management would

need to be aware of any knowledge

gaps that need to be addressed.

There were 10 members o f the

design team that we studied. How-

ever, three members dominated its

functioning. They dominated not

only because they were the most

knowledgeable on the team, but also

because they had the skills necessary

to exchange and integrate knowl-

edge. I f the Principle of Top Talent had

been adhered to, a design team with

fewer individuals might have been

adequate. It is often difficult to iden-

tify, a priori, who the key team mem-

bers will be. Slack, in the form of

extra members, is necessary in order

to increase the probability that key

contributors are included. Identifica-

tion and management o f knowledge

profiles could help reduce this need

for slack. An organization may, how-

ever, choose to include a few extra

members on a design team in order

to move them up the learning curve.

We have historically valued both

technical and communication skills in

software designers. We suggest that

organizations put programs in place

for developing these skills in more

depth. On the technical side, individ-

uals with the intelligence, talent, and

desire should be exposed to a variety

of knowledge areas through appro-

priate task assignments and formal
training. On the communication

side, we recommend that special at-

tention be paid to developing team

building, negotiation, and teaching

skills. Due to the abundance and

importance of verbal information

received by team members, it is im-

portant that team members develop

good listening skills and the ability to

translate this verbal information into

a form that can later be retrieved.
Software designers must be knowl-

edgeable in the application domain.

The software design team in this

study, like many others, had design-

ers who were knowledgeable in the

techniques of computer science.

They lacked some knowledge in the

application domain (i.e., object serv-

ers). Consequently, significant learn-

ing costs were incurred by this team.

Through this experience, however,

these designers acquired knowledge

that could only be obtained by going
through this learning process.

Conclusion
Observing a software design team

closely has allowed us to gain some

important insights into the design

process. We observed needs that

were not met within the project life

span. We were surprised to see how

important context-sensitive learning

was to the design process. We were

surprised at how much information

was presented to the team and never

captured. We were surprised to see

that the requirements determination

did not end cleanly, but was a lengthy

process that seemed to "shut down"

based more on project timing than

on achieving a full understanding of

the requirements. And we were also

surprised at the extent to which

knowledge and expertise was the

force behind participation and lead-

ership o f the design process.

These observations, however, are

less surprising if we acknowledge the
criticality of knowledge acquisition,

7 4 October 1993/Vol.36, No.10 C O M M U N I C A T I O N S O F T H l l A C M

sharing, and integration activities.

Adopting a knowledge perspective

leads to some specific recommenda-

tions for managers of software de-

sign efforts. One obvious recommen-

dation is to increase the amount of

application domain knowledge

across the entire software develop-

ment staff. Assigning one or two in-

dividuals with deep application do-

main and technical knowledge to a

design project can significantly re-

duce the learning time involved.

Another recommendation is to ac-

tively promote the acquisition, shar-

ing, and integration of knowledge

within a design effort through team

facilitation techniques and to for-

mally recognize these activities by al-

locating time to them. Explicitly

managing conflict as a way to facili-

tate learning has been proposed as

one way of doing this. Finally, it is

also important to recognize that

much of the information that needs

to become part of the team's memory

is not captured formally, particularly

in standard documentation. New

computer-based tools are needed to

easily and unobtrusively capture this

process-based information.

The software design project exam-

ined in this study was an exploratory

R&D project undertaken within a

research organization. An unan-

swered question is the extent to

which we would observe the same

types and levels of activities related to

knowledge acquisition, sharing, and

integration along with the same pat-

terns of participation and leadership

in software design teams engaged in

commercial application develop-

ment. It seems liked that the fre-

quency of behaviors we observed ex-

ists on a continuum dominated by

how much is already known about a

software product. For projects in-

volving a new application area in

which considerable learning is re-

quired to produce a design, it is likely

that our observations and findings

would be very similar. In projects

building well-understood products

requiring little learning, our observa-

tions might have been quite differ-

ent. A broader range of empirical
research on software design teams is

necessary to determine how far our

observations and findings generalize

to projects in other organizations.

P r o j e c t O r g a n i z a t i o n and M a n a g e m e n t

Acknowledgments

The authors wish to acknowledge the

support of the Software Technology

program at Microelectronics and

Computer Technology Corporation

in Austin, Texas. We thank Jef f

Conklin and Herb Krasner for vid-

eotaping the meetings, and extend

special thanks to Herb Krasner for

invaluable input throughout this

project. []

A p p e n d i x A:

Transcr ip t Coding
M e t h o d s
The transcripts of videotaped group

meetings were broken Into speech acts

(by speaker) which were then classified

according to the following predefined

coding scheme:

Expository

--offers opinion

--offers clarification

--agrees

--disagrees

--modif ied previous position

Acquisitive/Facilitative

-- interprets

--asks

Other

To test the interrater reliability of the

coding scheme, a subset of the tran-

scripts was independently coded by

three employees at the research site.

None of these individuals had partici-

pated in the design project or in this

research project, and all had experience

with classification of interaction data

according to coding schemes. For these

subsets, the average percentage Of in-

terrater agreement was 66%. Sources of

discrepancies did not appear to be sys-

tematic across coders.

A p p e n d i x B:

E x a m p l e I s s u e s
The following issues were addressed (in

chronological order) in meeting #8, Sep-

tember 3.

Agenda

Staffing

Agenda

Formalize design intent document

Time frame for competing

Changing, dynamic nature of require-

ments

What is this document called?

Quality Of draft of requirements docu-

ment

2

Project status

Suggest change to agenda

Discuss requirements

Goals/nature of requirements documen-

tation

Project history, background

Text processing, sharing files for project

management

Document history--who wanted this

document?

Schedule--can we wait 2 weeks?

User's manual/reference manual/func-

tional spec

Communication with customers using

functional spec

Text processing, sharing files for project

management.

Distribution of document

HOW much to include in document (hide

anything?)

Customer's application program (NaSsl-

Shneiderman) for acceptance

Project overview--original intent and

goals

Possible implementation languages

(Smalltalk, Flavors, Objective C)

Store objects and methods

Base classes

Concurrent use

Translators

Object-oriented systems with respect

to requirements

Objective C, Flavors

Prolog

Translators

Nature of requirements document

Actual requirements

Access objects from different lan-

guages

Actual requirements

Translators

Multiple copies

Support for object-oriented languages

Requirements vs. design decisions

Languages

Character string translation

Prolog prototype

Flavors

Server--access, store objects

HOW it works, what it does

Prototype vs. requirements document

for communicating design

Instructions for using prototype

Functional spec

How to express requirements

Define prototype in relation to require-

ments

Document prototype

Environment: C program that uses ob-

jects

Store and access objects

Convert to C

Methods

Relation to objective C

Project plans:

Proceed with prototype

Object-manager (interface to disk)

C O M M U N I C A T I O N S O P THlll ACre October 1993/Vol.36, No.10 ~ S

• 0 P r o j e c t O r g a l

Flavors interface

Difficulty of doing design. . .
Translate into Smalltalk or Flavors

Local objects

Object n a m e . . , how does it work?

Flavors;

Define'? pointer?

Surrogate objects

AccesslnO objects

Object name

Character string, pointer

ReCluirement: Lisp machine--include in

spec?

send messages

Character strings, surrogate

Object pointer

Object name, object id

Send messages

Flavors objects

Same Ii1 Prolog

Flavors details

Access tO objects Is external access

Flavors with Blggertalk, e.g.,

Internal vs. external objects

Transient/permanent, e.g.,

Implementation Issues, project manage-

ment: who decides this?

Flavors in s;Peclflcation (designers

don't want it:)

Scope of soeciflcation, requirements

Server--base set of classes, objects

Arrays, lists

Define

NOt on server

Methods in separate environment

Class of integers, class of arrays

Base set, base classes

Server functions
Data types

Prolog, handling integers

Add to a string

Tag to identify language

Methods

Storage tracks

Speed

Portability

Hardware

Track size, block size

Database access sPeed

WHO'S going to do what? Assignments

for the near future

References

1. Adelson, B. and Soloway, E. The role
of domain experience in Software
Design. IEEE Trans. Softw. Eng. (Nov.
1985), 1351-1360.

2. Boehm, B.R. Software Engineering
Economics. Prentice-Hall Inc., Engle-
wood Cliffs, N.J., 1981.

3. Burgess-Yakemovic, K.C. and Conk-
lin, J. Report on a development proj-
ect use of an issue-based information
system. In Proceedings of CSCW.
ACM, New York, 1990, pp. 105-118.

4. Carroll, J.M., Thomas, J.C. and Mal-

a n l z a t i o n and M a n a g e m e n t

hotra, A. Clinical-experimental anal-
ysis of design problem solving. Design
Studies 1, 2 (1979), 84-92.

5. Conklin,J. and Begman, M. gIBIS: A
tool for all reasons.J. Am. Soc. Inf. Sci.
(1989), 200-213.

6. Cosier, R.A. Methods for improving
the strategic decision ~. Dialectic versus
the devil's advocate. Strategic Manage.

J. 16 (1982), 176-184.
7. Cosier, R.A. and Dalton, D.R. Com-

petition and cooperation: Effects of
value dissensus and predisposition to
help. Human Relations 41, ll(Nov.
1988), 823-839.

8. Cosier, R.A. and Schwenk, C.R.
Agreement and thinking alike: In-
gredients for poor decisions. Acad.

Manage. Exec. 4, 1 (1990), 69-74.
9. Curtis, B. By the way, did anybody

study any real programmers? In Em-

pirical Studies of Programmers,
E. Soloway and S. Iyengar, Eds.,
Ablex, Norwood, N.J., 1986.

10. Curtis, B. Technology transfer in
knowledge-intensive organizations.
In Technology Transfer in Consortia and
Strategic Alliances, R. Smilor, Ed.,
Roman and Littlefield, Savage, Md,

1992.
11. Curtis, B., Kellner, M.I., and Over, J.

Process Modeling. Commun. ACM 35,

9 (Sept. 1992), 75-90.
12. Curtis, B., Krasner, H., and Iscoe, N.

A field study of the software design
process for large systems. Commun.

ACM 31, 11 (1988), 1268-1287.
13. Curtis, B., Sheppard, S.B., Kruesi-

Bailey, E., Bailey, J. and Boehm-
Davis, D. Experimental evaluation of
software specification formats.J. Syst.

Softw. 9, 2 (1989), 167-207.
14. Gersick, C.J. Time and transition in

work teams: Toward a new model of
group development. Acad. Manage. J.

31, 1 (1988), 9-41.
15. Krasner, H., McInroy, J. and Walz,

D.B. Groupware research and tech-
nology issues with application to soft-
ware process management. IEEE

Trans. Syst. Man. Cybern. 21, 4 (July/
Aug. 1991), 704-712.

16. Krasner, H., Terrel, J., Linehan, A.,
Arnold, P. and Ett, W.H. Lessons
learned from a software process
modeling system. Commun. ACM 35, 9
(Sept. 1992), 91-100.

17. Mason, R.O. A dialectical approach
to strategic planning. Manage. Sci. 15
(1969), 403-414.

18. Mason, R.O. and Mitroff, I.I. Chal-

lenging Strategic Planning Assumptions.
Wiley and Sons, New York, 1981.

19. Moran, T.T. and Carroll, J.M. (Eds.)
Design Rationale: Concepts, Techniques
and Use. Erlbaum, Hillsdale, N.J., to
be published.

20. Myers, W. MCC: Planning the revolu-
tion in software, IEEE Softw. (Nov.
1985).

21. Olson, G.M., Olson,J.S., Carter, M.R.
and Storrosten, M. Small group de-
sign meetings: An analysis of collabo-
ration. Human-Comput. Inter. 7, 4

(1992).
22. Sheppard, S.B., Milliman, P., Curtis,

B. and Love, T. Modern coding prac-
tices and programmer performance.
Computer 12, 12 (1979), 41-49.

23. Soloway, E. What tO do next: Meeting
the challenge of programming-in-
the-large. In Empirical Studies of Pro-
grammers, E. Soloway and S. Iyengar,
Eds., Ablex, Norwood, N.J., 1986.

24. Walz, D.B. A longitudinal study of
group design of computer systems.
Ph.D. dissertation, University of
Texas, Dec. 1988.

CR Categories and Subject Descrip-

tors: D.2.9 [Software Engineering]: Man-
agement; D.2.10 [Software Engineering]:
Design; K.6.1 [Management of Comput-

ing and Information Systems]: Project
and People Management; K.7.2 [The
Computing Profession]: Organizations

General Terms: Management
Additional Key Words and Phrases:

Case study, empirical studies of software
development, requirements determina-
tion, software design teams, software
management

About the Authors:

DIANE B. WALZ is an assistant professor
of information systems at the University
of Texas at San Antonio. Current re-
search interests include group processes
in software development, problems of
outsourcing, and creativity and software
design. Author's Present Address: Divi-
sion of Accounting and Information Sys-
tems, University of Texas at San Antonio,
6900 N Loop 1604 W, San Antonio, TX
78249; email: IlSDXW@ UTSAVM1

JOYCE J. ELAM is the James L. Knight
Scholar in management information sys-
tems at Florida International University.
Current research interests include the
competitive use of information technol-
ogy to support both individual and group
decision making. Author's Present Ad-
dress: Department of Decision Sciences
and Information Systems, Florida Inter-
national University, University Park,
Miami, FL 33199; emaii: elamj@servax.
bitnet

76 October 1993/Vol.36, No.10 ¢ : O M M U N I C A T I O N S O I I THIE A l ~ l ~

BILL CURTIS is former director of the

Software Process program at the Software

Engineering Institute (SEI) at Carnegie

Mellon University. He continues to work

with the SEI and is helping to establish a

software quality institute at the University

of Texas at Austin. Current research in-

terests include improving organizational

capabilities for developing software, em-
pirically based models of software design,

and software measurement and design
process. Author's Present Address : 3644

Ranch Creek, Austin, TX 78730; email:

bcurtis@cs.utexas.edu

Permission to copy without fee all or part of this

material is granted provided that the copies are not

made or distributed for direct commercial advantage,

the A C M copyright notice and the title of the publi-

cation and its date appear, and notice is give that

copying is by permission of the Association for

Comput ing Machinery. To copy otherwise, or to

republish, requires a fee and/or specific permission.

©ACM0002-0782/93/1000-062 $1.50

Twenty of the 34 ACM Special Interest Groups (SIGs) held elections last June for terms running

from July 1, 1993 through June 30, 1995. The newly elected officers are listed below. For a full

list of current SIG chairs, see the ACM masthead in this issue; for a complete list of SIG

officers, contact SIGS@acm.org.

N e w l y E l e c t e d A C M S I G O f f i c e r s

SIGACT SIGART Janet Har tman
F. Thomson Leighton Stuart C. Shapiro Board of Directors
Chair Chair J. Paul Myers
Jeffrey s. Vitter Alan M. Frisch Board of Directors
Vice Chair Vice Chair Margaret Reek
Michael Luby Lewis Johnson Board of Directors
Secretary~Treasurer Secretary~Treasurer SIGDA
Michael T. Goodrich SIGBIT Jim Cohoon
Member-at-Large George M. Kasper Chair
Vijaya Ramachandran Chair Joanne DeGroat
Member-at-Large Janice C. Sipior Vice Chair
SIGAda Vice Chair Robert A. Walker
Hal Hart Don Hardaway Secretary~Treasurer

Chair Secretary~Treasurer SlGDOC

Jerry Mungle SIGCAS Nina Wishbow
Vice Chair, Mtgs. & Confs. C. Dianne Martin Chair
Edward Colbert Chair Stephanie Rosenbaum
Vice Chair for Liaison David Bellin Vice Chair
Brad Balfour Vice Chair Barbara Mirel
Secretary Deborah G. Johnson Secretary
Russell R. Plain Secretary~Treasurer Katherine Haramundani
Treasurer SIGCHI Treasurer

Rudolf Landwehr James R. Miller SIC, G R A P H
International Rep. Chair Mary C. Whitton

SIGAPL Michael E. Atwood Chair
Dick Bowman Executive Vice Chair Sylvie J. Rueff
Chair Gene Lynch Vice Chair
Stuart Yarus Vice Chair for Conferences Steven M Van Frank
Vice Chair Vivienne Begg Treasurer
Michael Kent Vice Chair for Operations SIGMETRICS
Secretary~Treasurer Beth Adelson Linda S. Wright
Dick Holt Vice Chair Chair
Member-at-Large Clare-Marie Karat Donald Towsley
Christopher H. Lee Vice Chair for Finance Vice Chair
Member-at-Large Jakob Nielsen Daniel A, Reed
David M. Weintraub Vice Chair for Publications Secretary~Treasurer
Member-at-Large SIGCPR Domenico Ferrari
SIGARCH Thomas W. Ferratt Board of Directors

David A. Patterson Chair Mike Molloy
Chair Albert Lederer Board of Directors
Jean-Loup Baer Vice Chair Richard Muntz
Vice Chair Catherine M. Beise Board of Directors
Alan Berenbaum Secretary Randolph Nelson
Secretary~Treasurer Bruce E. Breeding Board of Directors

Mark D. Hill Treasurer SIGMOD
Board of Directors SIGCSE Won Kim
Mary Jane Irwin Lillian (Boots) Cassel Chair
Board of Directors Chair Laura Haas
Norman P. Jouppi G. Michael Schneider Vice Chair
Board of Directors Vice Chair Michael Carey
Alan J. Smith Henry M. Walker Treasurer
Board of Direc tors Secretary~Treasurer

SIGNUM SIGSMALL/PC

John R. Gilbert Hossein Saiedian
Chair Chair
Robert S. Shreiber Gerald P. Crow
Vice Chair Vice Chair
Christian Bischof Richard McBride
Secretary/Treasurer
David H. Bailey SIGSOFT
Board of Directors Lori Clarke
Alan Edelman Chair
Board of Directors John Gannon
David M. Gay Vice Chair
Board of Directors David Notkin
Andreas Griewank Secretary~Treasurer
Board of Directors Barry Boehm
Stephen G. Nash Member-at-Large
Board of Directors Thomas Ostrand
Maria Elizabeth Ong Member-at-Large
Board of Directors Mary Lou Sofia
Lloyd N. Trefethen Member-at-Large
Board of Directors
David W. Walker
Board of Directors

SIGPLAN
Brent T. Hailpern
Chair
Barbara Ryder
Vice Chair for Conferences
John Pugh
Vice Chair for Operations
Bernard Lang
Secretary
Mary Lou Sofia
Treasurer
Marina C. Chen
Member-at-Large
Ron K. Cytron
Member-at-Large
David W. Wall
Member-at-Large

SIG SAM

Erich Kaltofen
Chair
Stephen Watt
Vice Chair
Bruce W. Char
Secretary
Gene Cooperman
Treasurer

COMMUNICAT IONS O I I THE ACM October 1993/Vol.36, No.10 7 7

