UNIVERSITY OF TWENTE.

POLITECNICO DI TORINO

Inside Dropbox: Understanding Personal Cloud Storage Services

- → Idilio Drago
- → Marco Mellia
- → Maurizio M. Munafò
- → Anna Sperotto
- \rightarrow Ramin Sadre
- → Aiko Pras

IMC 2012 - Boston

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つくぐ

Personal cloud storage services are gaining popularity

Dropbox:

□ "the largest deployed networked file system in history"

□ "over 50 million users – one billion files every 48 hours"

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Personal cloud storage services are gaining popularity

Dropbox:

"the largest deployed networked file system in history"

□ "over 50 million users – one billion files every 48 hours"

Little public information about the system

□ How does Dropbox work?

□ How is the system performing?

□ Are there typical usage scenarios?

Some public information about Dropbox

- □ Native client, Web interface, LAN-Sync, etc
- Storage in Amazon S3
- Files are split in chunks of up to 4MB
- Delta encoding, encrypted communication

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Some public information about Dropbox

□ Native client, Web interface, LAN-Sync, etc

Storage in Amazon S3

Files are split in chunks of up to 4MB

Delta encoding, encrypted communication

- To understand the client protocol
 - MITM against our own client
 - Squid proxy, SSL-bump and a self-signed CA certificate

Replace a trusted CA certificate in the heap at run-time

Proxy logs and decrypted packet traces

Clear separation between **storage** and meta-data/client **control**

Sub-domains identifying parts of the service
 □ notifyX → client notification
 □ client-lb/clientX → meta-data control
 □ dl-clientX → Client storage
 □ etc

HTTP/HTTPs in all functionalities

How does Dropbox (v1.2.52) work?

- Kept open
- Not encrypted
- Device ID
- □ Namespaces

Rely on Tstat¹ to export layer-4 flows

Isolate Dropbox flows
 DN-Hunter², TSL/SSL certificates, IP addresses

1 - http://tstat.polito.it/

2 - DNS to the rescue: Discerning Content and Services in a Tangled Web

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● のへぐ

Rely on Tstat¹ to export layer-4 flows

- Isolate Dropbox flows
 DN-Hunter², TSL/SSL certificates, IP addresses
- Device IDs and namespace IDs
- Use the knowledge from our own decrypted flows to
 Tag Dropbox flows e.g. as store and retrieve flows
 Estimate the number of chunks in a flow
 - Estimate the number of chunks in a flow

- 1 http://tstat.polito.it/
- 2 DNS to the rescue: Discerning Content and Services in a Tangled Web

	Туре	IP Addrs.	Dropbox		
			Flows	Vol. (GB)	Devices
Campus 1	Wired	400	167,189	146	283
Campus 2	Wired/Wireless	2,528	1,902,824	1,814	6,609
Home 1	FTTH/ADSL	18,785	1,438,369	1,153	3,350
Home 2	ADSL	13,723	693,086	506	1,313
Total			4,204,666	3,624	11,561

42 consecutive days in March and April 2012

□ 4 vantage points in Europe

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● ○ ○ ○ ○ ○

	Туре	IP Addrs.	Dropbox		
			Flows	Vol. (GB)	Devices
Campus 1	Wired	400	167,189	146	283
Campus 2	Wired/Wireless	2,528	1,902,824	1,814	6,609
Home 1	FTTH/ADSL	18,785	1,438,369	1,153	3,350
Home 2	ADSL	13,723	693,086	506	1,313
Total			4,204,666	3,624	11,561

42 consecutive days in March and April 2012

□ 4 vantage points in Europe

 \square Number of IP addresses in home probes \approx installations

(□) (□) (□) (Ξ) (Ξ) (Ξ) (0)

	Туре	IP Addrs.	Dropbox		
			Flows	Vol. (GB)	Devices
Campus 1	Wired	400	167,189	146	283
Campus 2	Wired/Wireless	2,528	1,902,824	1,814	6,609
Home 1	FTTH/ADSL	18,785	1,438,369	1,153	3,350
Home 2	ADSL	13,723	693,086	506	1,313
Total			4,204,666	3,624	11,561

- 42 consecutive days in March and April 2012
 - □ 4 vantage points in Europe
 - \square Number of IP addresses in home probes \approx installations
 - □ 11,561 unique devices
- 2nd capture in Campus 1 in June 2012

How much traffic to personal cloud storage?

Equivalent to 1/3 of YouTube volume at campus

How much traffic to personal cloud storage?

- Equivalent to 1/3 of YouTube volume at campus
- Popularity: 6–12% adoption in home networks
- 90% of the Dropbox traffic is from the native client

How does the storage traffic look like?

Flow size
 Store: 40%-80% < 100kB

 → Deltas, small files
 Larger retrieve flows

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

8/14

How does the storage traffic look like?

Flow size
 □ Store: 40%–80% < 100kB
 → Deltas, small files
 □ Larger retrieve flows

- Chunks per flow
 80% ≤ 10 chunks
 Remaining: up to 100
 - → Limited by the client

Where are the servers located?

- Minimum RTT per flow → stable over 42 days
- PlanetLab experiments → the same U.S. data-centers worldwide

Where are the servers located?

- Minimum RTT per flow → stable over 42 days
- PlanetLab experiments → the same U.S. data-centers worldwide
- "less than 35% of our users are from the USA"

- Storage throughput in campuses
- Most flows experience a low throughput

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

- Flows carrying 1 chunk
 - \Box Size \leq 4MB, RTT \approx 100ms
 - Most of them finish in TCP slow-start

Flows carrying several chunks

 \square Pause between chunks \rightarrow RTT and client/server reaction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

- Flows carrying several chunks
 - \square Pause between chunks \rightarrow RTT and client/server reaction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Transferring 100 chunks takes more than 30s

 \square RTTs \rightarrow 10s of inactivity

Delaying acknowledgments

- □ Bundling chunk → recently deployed
- \Box **Distributing servers** \rightarrow storage traffic is heavy!

イロト イヨト イヨト イヨト

э

How much improvement from chunk bundling?

New version released on Apr 26th (v1.4.0)

Small chunks are bundled together

	Mar/Apr		Jun/Jul		
	Median	Average	Median	Average	
	Flow size				
Store	16.28kB	3.91MB	42.36kB	4.35MB	
Retrieve	42.20kB	8.57MB	70.69kB	9.36MB	
	Throughput (kbits/s)				
Store	31.59	358.17	81.82	552.92	
Retrieve	57.72	782.99	109.92	1293.72	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

How much improvement from chunk bundling?

New version released on Apr 26th (v1.4.0)

Small chunks are bundled together

	Mar/Apr		Jun/Jul		
	Median	Average	Median	Average	
	Flow size				
Store	16.28kB	3.91MB	42.36kB	4.35MB	
Retrieve	42.20kB	8.57MB	70.69kB	9.36MB	
Throughput (kbits/s)					
Store	31.59	358.17	81.82	552.92	
Retrieve	57.72	782.99	109.92	1293.72	

■ Less small flows → less TCP slow-start effects

Average throughput is up to 65% higher

- More downloads → download/upload ratio up to 2.4
- What about download/upload per user?

イロト イヨト イヨト イヨト

ъ

Occasional:

Users: 31%

Devices per user: 1.22

12/14

Abandoned Dropbox clients

No storage activity for 42 days

- Backup and content sharing
- Geographically dispersed devices

12/14

Synchronization of content in a household

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ ● の � @ ◆

Adoption above 6% in our datasets, data hungry application!

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ ● の � @ ◆

- Adoption above 6% in our datasets, data hungry application!
- Architecture and performance

Bottlenecks from system design choices

- Adoption above 6% in our datasets, data hungry application!
- Architecture and performance
 Bottlenecks from system design choices
- Extensive characterization of workload and usage
 User groups, number of devices, daily activity etc.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Questions?

Thank You.

Anonymized traces and scripts

□ http://traces.simpleweb.org/dropbox/