
Chapter 4 

INSIDER THREAT ANALYSIS USING 
INFORMATION-CENTRIC MODELING 

D. Ha, S. Upadhyaya, H. Ngo, S. Pramanik, R. Chinchani and 

S. Mat hew 

Abstract Capability acquisition graphs (CAGs) provide a powerful framework for 

modeling insider threats, network attacks and system vulnerabilities. 

However, CAG-based security modeling systems have yet to be deployed 

in practice. This paper demonstrates the feasibility of applying CAGs 

to insider threat analysis. In particular, it describes the design and op

eration of an information-centric, graphics-oriented tool called ICMAP. 

ICMAP enables an analyst without any theoretical background to apply 

CAGs to answer security questions about vulnerabilities and likely at

tack scenarios, as well as to monitor network nodes. This functionality 

makes the tool very useful for attack attribution and forensics. 

Keyv^ords: Insider threats, capability acquisition graphs, key challenge graphs 

1. Introduction 

A comprehensive model is required for understanding, reducing and 

preventing enterprise network attacks, and for identifying and combating 

system vulnerabihties and insider threats. Attacks on enterprise net

works are often complex, involving multiple sites, multiple stages and 

the exploitation of various vulnerabilities. As a consequence, security 

analysts must consider massive amounts of information about network 

topology, system configurations, software vulnerabilities, and even so

cial information. Integrating and analyzing all this information is an 

overwhelming task. 

A security analyst has to determine how best to represent individual 

components and interactions when developing a model of a computing 

environment. Depending on the environment and task at hand, the an

alyst may deal with network traffic data [15], routing data [14], network 

Please use the following format when citing this chapter: 

Ha, D., Upadhyaya, S., Ngo, H., Pramanik, S., Chinchani, R., Mathew, S., 2007, in IFIP International Federation for 

Information Processing, Volume 242, Advances in Digital Forensics III; eds. P. Craiger and S Shenoi; (Boston: 

Springer), pp. 55-73. 



56 ADVANCES IN DIGITAL FORENSICS III 

connections [2], and, in the case of static analysis, network configurations 

[13]. Visualization is an effective method for integrating and analyzing 

diverse information, mostly because humans can process large amounts 

of data through images, maps and graphs. 

For this reason, attack graphs have received considerable attention by 

the research community [6, 8, 10, 11]. Attack graphs provide a powerful 

visual framework for understanding the effects of the interactions of local 

vulnerabilities and for identifying global, less visible vulnerabilities that 

are combinations of local vulnerabilities. 

However, attack graphs have several limitations. The manual con-

struction of attack graphs for real network configurations is labor inten-

sive, tedious and error-prone; this means that automating the construc-

tion of attack graphs is critical. Several attack graph methods employ 

model checking, which often produces an internal state explosion. This 

is because model checking may examine all possible states although only 

a fraction of states are eventually analyzed. Large state spaces require 

significant processing time; for example, the NuSMV tool may take two 

hours to analyze a network with a handful of hosts [12]. Even when they 

are available, attack graph tools lack automation features and support 

for interpreting results. For example, initial configuration data is usually 

required as input, but its format is unnatural for humans, e.g.. Boolean 

tables for network connectivity or binary relations for capturing all rela-

tionships [12]. Furthermore, due to their size and notational differences, 

it can be difficult to relate attack graphs to the original physical context; 

this is a task often left to the user. 

Capability acquisition graphs (CAGs) (formerly known as key chal-

lenge graphs (KCGs)) have been proposed as a modeling technique for 

insider threat analysis [4, 5]. From the user's point of view, CAGs are 

more intuitive than attack graphs because they closely resemble the 

input network topology [5]. Although originally developed for insider 

threat modeling, CAGs are capable of modeling vulnerability-exploited 

privilege escalation, similar to attack graphs. 

This paper describes a novel CAG-based tool, which we call ICMAP 

(Information-Centric Modeler and Auditor Program). ICMAP has sev-

eral useful features: 

• Users may import information in a convenient, systematic manner. 

The initial input to ICMAP is a physical graph, which is easy to 

construct as it is similar to a network configuration. 

• ICMAP automatically converts the physical graph to a logical 

graph (CAG). Users may adjust the CAG and add new relation-

ships before performing further analysis. 



Ha, et al. 57 

• System analysts may use ICMAP to answer questions about the 

security of network setups, likely attack strategies and vulnera-

ble points. ICMAP helps in identifying locations for positioning 

monitoring systems. The results are also mapped to the original 

network context, making the display easy to comprehend. 

• Streaming alerts from IDS sensors and network monitoring tools 

can be correlated to generate attack tracks. These attack tracks 

can be compared with projected tracks during off-line analysis to 

narrow probable attack paths and facilitate forensic analysis. 

The next section presents an overview of CAGs and their applications 

to threat assessment. Section 3 describes the architecture of ICMAP, 

a CAG-based information-centric modeling and analysis tool. Sections 

4 and 5 discuss cost assignment techniques, scalability issues, and a 

scenario involving a corporate network. Section 6 examines the forensic 

applications of CAGs and CAG-based tools. The final section, Section 

7, presents our conclusions and discusses avenues for future research. 

2. Capability Acquisition Graphs 

This section describes capability acquisition graphs (CAGs), which 

were formerly known as key challenge graphs (KCGs) [5]. 

DEFINITION 1 A capability acquisition graph is a tuple represented by: 

CAG={y,E,K,Vo,Vs.T^,5) (1) 

F is a set of nodes; each entity in the physical network (hosts, firewalls, 

user accounts) has a node in the graph. E isa set of edges; two nodes are 

connected by an edge if it is possible to reach one node from the other. K 

is a set of tokens; a token can represent system information or individual 

information (e.g., password, date-of-birth or mother's maiden name). VQ 

is the set of start nodes from where an attack can be launched; the skill 

set of an attacker can be modeled by adjusting the set VQ. VS is the set of 

target nodes in the logical graph that an attacker intends to compromise. 

The function TT -.V ^ K assigns tokens to nodes, e.g., a database node 

may have records as tokens. The function 5: E-^KxNxN represents 

the edge attributes, consisting of token challenges and transition costs. 

A CAG can be viewed as an abstract representation of a user's walk 

in a network. The user starts from a particular node in the graph with 

certain tokens (knowledge). From the starting node, the user chooses an 

edge, e{u,v) — {token, min, max), to move to an adjacent node. If the 

token is already present in his set of knowledge, he incurs a cost of min 

otherwise he incurs a cost of max. If V is the set of visited vertices, 



58 ADVANCES IN DIGITAL FORENSICS III 

then the cost of visiting a new vertex v ^V \s the minimum cost edge 

(u,v) for all u G V. The cost of an attack sequence or attack trail 

(t'l, i ;2 , . . . , î n) is the sum of the costs of visiting a new vertex from the 

set of already-visited vertices. An attacker might try to minimize his cost 

of reaching a target node by choosing edges with simple token challenges. 

The goal of a systems administrator is to maximize the cost of attacks 

by assigning proper token challenges to the edges. By enumerating the 

paths of least resistance it is possible to identify the most likely attack 

paths and either remove them from the network or place sensors along 

the path to detect the attacks. 

Model specification begins by identifying the scope of the threat; it 

could be a small portion of the organization or the entire organization. 

The size of the resulting model is a polynomial function of the input 

information. However, the problem of determining the cost of least 

resistance in a CAG is NP-Hard [4]. In fact, the problem is not even 

approximable to within 2^^^^^^ where 5 =^ 1— ^ }c^ for any c < 1/2. 

Therefore, finding a least cost attack in an efficient manner is not possible 

unless P = NP. 

A greedy heuristic approach involving a one-step lookahead may be 

used to identify an optimal walk [4, 5]. Note that even if a shorter path 

to a goal exists, an attacker might avoid it believing that sensors might 

be placed along the path. Therefore, the greedy heuristic approach has 

to be run multiple times to identify the k best paths instead of one 

optimal path. CAGs can also represent social engineering channels (e.g., 

telephone lines when identifying insider abuse paths). Due to the lack 

of tools for measuring security weaknesses in organizations, which is a 

primary concern for assessing insider threats, the majority of the tasks 

related to modeling and analyzing social engineering links fall on the 

security analyst. 

3. I C M A P Architecture 

This section describes ICMAP (Information-Centric Modeler and Au

ditor Program), a CAG-based information-centric modeling and analysis 

tool. 

3.1 I C M A P Framework 

The ICMAP framework is presented in Figure 1. The ICMAP engine 

is the core of the CAG generation process. It takes the physical net

work topology and information about vulnerabilities in network services 

as external inputs, and combines them with network translation rules 

(Section 3.3) and cost rules (Section 4.1) to obtain the CAG. Once the 



Ha, et al. 59 

1. ICMAP framework. 

CAG is constructed, various heuristics, e.g., 1-step, /c-step (constant k) 

and n-step lookahead techniques, can be used to find an optimal path 

from a source to a destination without having to enumerate all possible 

paths. Also, using combinations of source and destination pairs, it is 

possible to identify the best locations to position network sensors. 

Two separate analyses can be performed on a CAG to refine a threat 

assessment. The first is sensitivity analysis where different cost assign

ments are used to identify the optimal cost assignment that results in 

attack paths that are similar to known attacks. The second is to per

form a defense-centric analysis where sensors are placed along the paths 

of least resistance to help prevent network assets from being compro

mised. The cost assignment is refined based on these two analyses. 

The ICMAP engine is written in Java. It incorporates a GUI that 

closely models real-world network components. Network topology infor

mation such as connectivity and services are imported using drop-down 

and pop-up menus. ICMAP also engages an underlying database of com

mon entities such as vulnerabilities and services, which users may add 

to or modify using ICMAP's local menu. To promote interoperability, 

ICMAP uses the MySQL database management system, and its outputs 

are in XML format. 



60 ADVANCES IN DIGITAL FORENSICS III 

3.2 Physical Graph Construction 

Entering network configuration data is arguably the most tedious, 

error-prone and labor intensive work for any security analyst. Unfortu

nately, this is the part that is usually ignored by current graph generation 

tools. The data is either not mentioned [1] or imphcitly assumed to be 

provided [12, 13]. Even when data is provided, it is usually in a format 

that is difficult for humans to comprehend. For example, network con

nectivity is represented as a Boolean table where the columns and rows 

are network hosts, and all trust relationships are represented as binary 

relations. Needless to say, while these formats may simplify computer 

processing, they are a burden for human analysts. 

In contrast, ICMAP assists users in importing data in a most natural 

way using visualization. Figure 2 illustrates the process of constructing 

a physical graph based on input information about accounts and services 

for a host (the topology is shown later in Figure 3). Two types of network 

entities are depicted: normal hosts and a firewall. Each component 

serves a different role; therefore, it is associated with a different set of 

menus for further configuration (e.g., account and service information 

for hosts and filter rules represented as token/key for firewalls). The 

component type determines the conversion to a CAG. ICMAP supports 

several types of components: hosts, firewalls, LANs, database servers, 

hubs/bridges and switches; additional component types are currently 

being implemented. 

3.3 Logical Graph Construction 

ICMAP automates the construction of a logical graph (CAG) from a 

physical graph. This section describes the process, including the basic 

rules used to identify the nodes, edges and tokens in a CAG. 

As discussed in the context of a physical graph, a network consists of 

hosts, physical boundary creators such as routers and firewalls, network 

services such as ssh, f t p , h t t p and nf s, and databases. A host contains 

the host id, user accounts, network services, vulnerabilities and critical 

files (henceforth called "jewels"). In order to build the CAG, for each 

host, it is necessary to draw the user account nodes, service nodes, vul

nerability nodes and jewel nodes. A user (or a malicious insider) either 

connects to a service remotely or logs in from the console. Once the 

user gains access to a host he uses the network resource and connects 

to another host, uses the file system resource and edits files, exploits 

vulnerabilities to escalate his privileges, or uses the cpu resource on the 

host to execute programs, check mails, browse, etc. To represent the 

above activities, edges (with their token challenges) are drawn entering 



Ha, et al. 61 

Figure 2. Constructing a physical graph. 

the user accounts. The token challenges are marked on the edges. If the 

token is known, then traversing the edge incurs a cost of LOW, other

wise a cost of HIGH is incurred. Edges marked "0" do not have a token 

challenge, so they always incur a cost of LOW. From the user accounts 

there exist zero-cost transitions to the host service, and from the host 

there exist transitions to other accounts in the network. We also add 

zero-cost transitions from the root account to other accounts in the same 

host to express the fact that the root can become any user. Once a user 

gets to the host, vulnerabilities in the services can be exploited; thus 

edges are drawn from the services to their vulnerabilities. The tokens in 

the vulnerability node can be used to escalate privileges (e.g., become 

root). Finally, edges exist from the user accounts and network services 

(e.g., ssh and ftp) to the file system (e.g., nf s) of the host and from 

the file system to the jewels. 

It is important to mention that the automatic graph conversion is 

intended to reduce the work of analysts, not to limit it. After the con

version, an analyst can still perform various adjustments to the logical 

graph (e.g., add/remove relationships, tokens and change the costs). 

Adjustments to the physical graph at this step are also automatically 

updated to the CAG. Because a GAG does not incorporate icons as in a 



62 ADVANCES IN DIGITAL FORENSICS III 

physical graph, it employs various colors and shapes to differentiate com

ponent types and status. These features promote visual comprehension, 

especially when dealing with large networks. 

3.4 CAG Example 

A physical graph of a subnet consisting of an ssh server, f t p server 

and a firewall is presented in Figure 3. Figure 4 shows the corresponding 

logical graph (CAG) whose nodes correspond to the various network 

entities. 

Suppose it is necessary to determine if an external user, x -user , can 

become an internal user in the presence of a firewall that allows only 

incoming ssh traflSc. To become roo t on the ssh server, x -use r must 

traverse the node sequence (x-user, hos t , f i r e w a l l , roo t ) and have 

the root_pd token to make the transition from the f i r e w a l l node to 

the roo t node. If x -use r does not have the rootjpd token but only 

the user_pd token, then he can traverse the sequence (x-user , hos t , 

f i r e w a l l , user , sshd, ssh-vuln , sshd, roo t ) , where he exploits the 

ssh vulnerability to become roo t . Similar steps can be followed for the 

f t p service, but for this x -use r will also have to become roo t on the 

firewall by changing the firewall rules. 

3.5 System Analysis 

A major goal of any graph-based security analysis is to identify likely 

attack scenarios based on system configuration and settings, attacker's 

knowledge and potential targets. This task can be done quite easily using 

ICMAP. All the nodes corresponding to the initial states of the attacker 

are marked as compromised. The nodes corresponding to entities that 

must be protected (e.g., root account on a host) are marked as targets. 

Next, the CAG is analyzed using brute force or a heuristic Dijkstra-

like algorithm. In our experience, a brute force approach is not practical 

for graphs with more than 20 nodes. Readers are referred to [4] for a 

discussion of the brute force and heuristic algorithms. The final top k 

attack scenarios (based on minimum total cost), where /c is a config

urable parameter, are returned in a separate file; only the top scenario 

is displayed by ICMAP. Note that because the CAG nodes do not repre

sent network states as in attack graphs, each scenario is not necessarily 

a path, but a walk (or a trail) with some nodes visited multiple times. 

Presenting a walk using directed edges on top of a logical graph is vi

sually complicated, so ICMAP only shows the induced spanning tree 

of a walk. However, it is still possible to visualize the complete attack 

sequence using ICMAP's animation feature. 



Ha, et al. 63 

Figure 3. Physical graph of a subnet. 

Figure 4. Logical graph of a subnet. 

An attacker does not necessarily follow the shortest path when at

tempting to compromise a computer system or network. Critical points 

are points in a graph that the attacker has to pass through no matter 

what attack trail is chosen. These points suggest critical weaknesses in 

the system such as certain service vulnerabilities. They are also ideal 

locations for system administrators to deploy IDS sensors or security 

controls. 

ICMAP is able to identify the critical points in a graph. ICMAP 

recommends these points based on the top k walks returned from the 



64 AD VANCES IN DIGITAL FORENSICS III 

analysis (see Section 5). Note that finding the set of critical points is an 

NP-Hard problem [9]. 

4, Practical Issues 

This section discusses practical issues related to CAGs, including cost 

assignment, scalability and abstraction. 

4.1 Cost Assignment 

After identifying the nodes, edges and tokens in a GAG, the next 

step is to assign costs to the edges. The costs are determined based on 

attack templates, CERT vulnerability reports (www.cert.org), attacker 

privileges, and the assets that must be protected. They are divided into 

three categories: LOW, MEDIUM and HIGH; however, the number of 

cost categories can be adjusted as desired. 

The cost of a transaction depends on certain categories, e.g., authenti

cation mechanism, system patching rate, knowledge of vulnerability, etc. 

We begin by describing the cost values determined by each category and 

then present a technique for combining the cost values. Note that attack 

graphs either assign probabilities for transitions based on the transition 

profile [12] or implicitly consider zero costs for atomic attacks. 

Figure 5 presents the two-tier classification hierarchy used for deter

mining costs. The top tier consists of categories such as remote services, 

level of social engineering and authentication mechanism. The second 

tier consists of the security level within each category. For example, 

remote services can be accessed in cleartext, or through the use of an 

authentication mechanism on top of cleartext, or via an encrypted chan

nel with authentication. The difficulty of compromising such services 

increases as one moves down security levels (Figure 5); hence, the cost 

increases. The classification hierarchy is not fixed, and may be extended 

by adding more categories and security levels. Also note that the actual 

numeric values of the cost categories, as well as the default costs are 

stored in the database and can be set at the user's convenience through 

the ICMAP configuration menu. 

The minimum and maximum costs of traversing an edge are computed 

by querying the cost database. Figure 6 illustrates the queries made for 

two edges. The first edge represents a connection to the root account 

through the f t p service. Assuming that the f t p service belongs to cat

egories such as authentication mechanism, remote access method, social 

engineering, and resources being protected, the cost for each category is 

determined; these are then combined to compute the overall cost. 

http://www.cert.org


Ha, et al. 65 

Figure 5. Cost tree. 

Figure 6. Cost computation. 

The second edge is the cost of exploiting a vulnerabihty in the f t p 

server. Queries are made for the knowledge of vulnerability and the 

system patching rate to find the cost of this edge. The cost is computed 

by taking the average of the values returned by the queries and using 

the average as an exponent so that the cost increases exponentially as 

the difhculty of making the transition increases. Thus, if ni, n2, • • • ,nk 

are the responses of the k queries made to the cost database, then the 

cost of the edge is 2 fe . For flexibility, the actual numeric value 



66 ADVANCES IN DIGITAL FORENSICS III 

corresponding to each category is also stored in the database and can 

be adjusted via the configuration menu. 

4.2 Scalability and Abstraction 

A major hmitation of attack graphs is their inabihty to deal with 

the large numbers of states involved in real-world applications. This 

issue becomes critical for visualization-based tools - when the graph 

is too large, it is extremely difficult for security analysts to assimilate 

the presentation and manipulate the graph, significantly impeding the 

analysis. Consequently, it is important to reduce the size of an attack 

graph without hindering the accuracy of the representation. 

In contrast, the size of a CAG is a polynomial function of the number 

of hosts, services, accounts and vulnerabilities. In fact, the number of 

CAG vertices equals the total number of these entities. Moreover, the 

number of edges is quite small because certain connection topologies can 

be abstracted at the logical level. For example, a physical ring topology 

of hosts is represented not as full mesh, but as a star topology in the 

logical CAG. The center of this star is an abstract node representing the 

connections of individual hosts in the original topology. 

Other abstraction techniques may also be used to reduce the complex

ity of the final graph. One approach is to consider generalized, role-based 

accounts. This is due to the fact that administrators often manage mul

tiple user accounts as groups sharing the same privileges, rather than 

dealing with each user account separately. Using role-based accounts 

significantly reduces the number of CAG vertices without compromising 

the accuracy of the representation. 

However, ICMAP has certain scalability issues that remain to be ad

dressed. For example, even when the number of CAG vertices is a linear 

function of the number of vulnerabilities, dealing with a database of a 

thousand or more entries is overwhelming. Fortunately, it is not neces

sary to represent each vulnerability in the CAG; instead, a representative 

abstract node can be created for each service. We intend to implement 

this capability in a future version of ICMAP. 

5. Enterprise Network Example 

This section illustrates the use of a CAG for modeling an enterprise 

network. In particular, the example elicits the relationships between 

hosts, services, users and vulnerabilities. The network has subnets cor

responding to four departments. Each domain has several network ser

vices, hosts, resources and user accounts. One or more network services 

are associated with a host and every host has at least one user account 



Ha, et al. 67 

and one root account. Moreover, every service has at least one vulnera

bility, which can be exploited to obtain root access. 

Figure 7 presents the network topology. The Civil Affairs, Logistics 

and Procurement network domains each have five machines while the Se

curity network domain has seven machines. Each machine runs a service 

and has at least two accounts (one root and one normal account). Fig

ure 8 presents the corresponding physical graph constructed by ICMAP. 

Note that all the information (services, user accounts and tokens) is not 

shown in the figure, but these are imported into the CAG. 

Figure 9 presents the CAG generated by ICMAP from the physi

cal graph. Hosts are represented by square boxes, accounts by circles, 

and vulnerabilities by ellipses. The source is selected to be the account 

rd .ooty on Ooty, while the target is a jewel file on Taos. In the current 

setup, only the root account on Taos has access to the jewel. However, 

ICMAP's analysis discovered that an insider could access the file by 

logging into Ooty as rd_ooty, then logging into Taos as rd_taos, ex

ploiting a sshd vulnerability to become root_ taos , and finally accessing 

the jewel file. Figure 9 also shows a superimposed attack trail, which 

may be displayed as an animation. 

ICMAP recommended that network sensors be positioned at the LAN, 

switch, source and target. These recommendations are expected; how

ever, the real benefits of ICMAP are realized when the network being 

analyzed is large and a limited number of sensors can be placed. 

6. Forensic Applications 

Forensic tools such as EnCase Enterprise Automated Incident Re

sponse Suite provide sophisticated data gathering and analysis capabil

ities, but are not as useful at assisting with investigations of insider at

tacks. Due to the complexity of insider attacks, special guidance schemes 

are necessary to perform attack attribution. The digital forensics re

search community has only recently started to address this issue. One 

strategy is to use a layered genetic algorithm-based technique to gen

erate an optimized rule set that identifies unauthorized processes and 

performs role-based process verification [3]. However, this work is only 

at a preliminary stage and is admittedly fraught with false alarms. This 

section describes two strategies through which the attack semantics em

bedded in ICMAP can be used to facilitate post-attack analysis. 

As seen in the previous sections, ICMAP's off-line analysis produces 

a list of top k probable attack trails. These trails are constructed based 

on the knowledge of network topology, service vulnerabilities, authenti

cation mechanisms used for the various services and social engineering 



68 AD VANGES IN DIGITAL FORENSIGS III 

Figure 7. Testbed topology (Courtesy Telcordia Technologies, Inc. 

Figure 8. Physical topology. 



Ha, et al. 69 

Figure 9. Security analysis results along with a superimposed attack trail. 

possibilities. In a system where alerts from intrusion detection sensors 

and audit logs (Apache, Windows IIS log files, etc.) are monitored, such 

real-time data can be used to narrow down the list of probable attack 

trails. Since the ICMAP-generated attack trails already have the attack 

semantics embedded in them (attack origination nodes and possible at

tack sequences), the real-time data can be utilized in a variety of ways 

to understand the details of the attacks. 

The first strategy requires no changes to the CAG model and the 

ICMAP engine. The top k attack trails that are generated a priori 

by ICMAP constitute the most likely attacks on the system. The set 

of likely attacks can be further refined using forensic data such as IDS 

alerts and audit logs (Figure 10). The refinement can be run periodically 

at the discretion of the system analyst or forensic investigator. 

The refinement module can make use of well-known techniques for 

correlating alerts in the case of multi-stage attacks. These techniques 

would label involved nodes (hosts) either as stepping stones or as victims 

of full-fledged attacks. Bayesian causality graphs [7] could then be used 

to construct evidence graphs from the evidence stream obtained from the 

log events. Having created the evidence graphs, a sequence of nodes may 

be extracted from these graphs and matched (fully or partially) with the 



70 ADVANCES IN DIGITAL FORENSICS III 

Figure 10. Combining monitored data sequentially for forensic analysis. 

Figure 11. Combining monitored data with static knowledge for forensic analysis. 

k attack trails generated by ICMAP to determine in < k most probable 

attack trails. In a sense, the refinement module works as a likelihood 

function in statistics. Indeed, some likelihood estimators could play a 

major role in implementing the module. 

The second strategy is to use a notion of "distance" to indicate how 

close an attack is to the observed data stream. For instance, depending 

on how real-life events are captured and modeled, an investigator may be 

able to reconstruct the CAG edges that most likely caused the security 

compromise. This way the set of events would correlate strongly to a set 

of CAG edges. A suitable distance function in this case is the number 

of "real-life" edges contained in an attack trail. 

The first strategy is highly modular, allowing for increased design 

flexibility. The main limitation is inaccuracy due to the fact that the 

top k attack scenarios are generated a priori without considering the 

events that actually occurred. 



Ha, et al. 71 

Implementing the second strategy requires the CAG model and the 

ICMAP engine to be modified to accommodate incremental updates of 

the physical network graphs (Figure 11). For example, logged events 

may change tokens at vertices, edge costs and token challenges. Each 

incremental update to the parameters and/or topology of the CAG re

quires an adjustment to the top k attack trails. Ensuring that the current 

heuristic technique works with on-line updates is an important topic for 

future research. This feature is useful not only for forensic purposes, but 

also for speeding up the heuristic technique when there are actual (good) 

changes made by system administrators. The advantage of this strategy 

is more accurate input, which leads to more accurate top k trails. 

7. Conclusions 

According to the annual CSI/FBI surveys, internal attacks and insider 

abuse constitute a significant portion of security incidents in enterprise 

networks. Insider attacks are extremely damaging and can be launched 

with a short or non-existent reconnaissance phase. Security controls such 

as firewalls and intrusion detection systems developed to protect against 

external attacks are inadequate because insider attacks may be launched 

from any server and from a position of privilege in terms of resource ac

cess and knowledge of targets and vulnerabilities. Consequently, insider 

threat detection and attack attribution have become major issues, which 

are just beginning to be addressed by the research community. 

The ICMAP tool presented in this paper is very effective at modeling 

insider threats, analyzing vulnerabilities and evaluating sensor deploy

ment locations. Red teams can also use the tool to determine attack 

trails when evaluating network security. 

ICMAP has several features that make it very useful for conducting 

post-incident (forensic) analyses. In particular, it captures the seman

tics of possible insider attacks via the generation of top k attack trails. 

Moreover, the CAG representation retains the topological structure of 

the enterprise network; this facilitates the mapping and displaying of the 

results of forensic analysis in the original network context. 

Our future research will refine the cost estimation process of ICMAP 

based on larger real-world experiments. Also, we will investigate summa

rization methods to address scalability while retaining the visualization 

features. Another important topic is to enhance automation capabilities, 

e.g., automatic configuration, file input and output format conversion 

(to promote interoperability with other tools). Finally, we will work on 

refining ICMAP to support large-scale network forensic investigations, 

which require comprehensive analysis and visualization facilities. 



72 ADVANCES IN DIGITAL FORENSICS III 

References 

[1] P. Ammann, D. Wijesekera and S. Kaushik, Scalable, graph-based 

network vulnerability analysis, Proceedings of the Ninth ACM Con

ference on Computer and Communications Security^ pp. 217-224, 

2002. 

[2] R. Ball, G. Fink and C. North, Home-centric visualization of net

work traffic for security administration. Proceedings of the ACM 

Workshop on Visualization and Data Mining for Computer Secu

rity, pp. 55-64, 2004. 

[3] P. Bradford and N. Hu, A layered approach to insider threat de

tection and proactive forensics. Proceedings of the Twenty-First 

Annual Computer Security Applications Conference (Technology 

Blitz), 2005. 

[4] R. Chinchani, D. Ha, A. Iyer, H. Ngo and S. Upadhyaya, On the 

hardness of approximating the Min-Hack problem, Journal of Com

binatorial Optimization, vol. 9(3), pp. 295-311, 2005. 

[5] R. Chinchani, A. Iyer, H. Ngo and S. Upadhyaya, Towards a theory 

of insider threat assessment. Proceedings of the International Con

ference on Dependable Systems and Networks, pp. 108-117, 2005. 

[6] M. Dacier and Y. Deswarte, Privilege graph: An extension to the 

typed access matrix model. Proceedings of the European Symposium 

on Research in Computer Security, pp. 319-334, 1994. 

[7] M. Jordan (Ed.), Learning in Graphical Models, MIT Press, Cam

bridge, Massachusetts, 1998. 

[8] S. Mauw and M. Oostdijk, Foundations of attack trees, in Informa

tion Security and Cryptography (LNCS 3935), D. Won and S. Kim 

(Eds.), Springer, Berlin-Heidelberg, Germany, pp. 186-198, 2005. 

[9] C. Phillips, The network inhibition problem. Proceedings of the 

Twenty-Fifth Annual ACM Symposium on the Theory of Comput

ing, pp. 776-785, 1993. 

[10] C. Phillips and L. Swiler, A graph-based system for network vulner

ability analysis. Proceedings of the New Security Paradigms Work

shop, pp. 71-79, 1998. 

[11] B. Schneier, Attack trees: Modeling security threats. Dr. Dobb^s 

Journal, December 1999. 

[12] O. Sheyner, J. Haines, S. Jha, R. Lippmann and J. Wing, Auto

mated generation and analysis of attack graphs. Proceedings of the 

IEEE Symposium on Security and Privacy, pp. 273-284, 2002. 



Ha, et al. 73 

[13] L. Swiler, C. Phillips, D. Ellis and S. Chakerian, Computer-attack 

graph generation tool, Proceedings of the DARPA Information Sur

vivability Conference and Exposition^ vol. 2, pp. 307-321, 2001. 

[14] S. Teoh, K. Ma and S. Wu, A visual exploration process for the anal

ysis of Internet routing data. Proceedings of the Fourteenth IEEE 

Visualization Conference, pp. 523-530, 2003. 

[15] X. Yin, W. Yurcik, M. Treaster, Y. Li and K. Lakkaraju, Visflow-

connect: Netflow visualizations of link relationships for security sit

uational awareness, Proceedings of the ACM Workshop on Visual

ization and Data Mining for Computer Security, pp. 26-34, 2004. 


