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1. Introduction

In his seminal contribution, Kyle (1985) derives the equilibrium price dynamics in a

model where a large trader possesses long-lived private information about the value of a

stock that will be revealed at some known date, and optimally trades into the stock to

maximize his expected profits. Risk-neutral market makers try to infer from aggregate

order flow the information possessed by the insider. Because order flow is also driven by

uninformed ‘noise traders,’ who trade solely for liquidity purposes, prices are not fully

revealing. Instead, prices respond linearly to order flow. Kyle’s lambda, which measures

the equilibrium price impact of order flow is constant in the model. In the cross-section,

stocks with more insider trading relative to noise trading experience larger price impact.

More precisely, Kyle’s lambda, which can be estimated from a regression of price change

on order flow, is higher for stocks with more private information (relative to the amount

of liquidity trading).

Recent empirical results (Collin-Dufresne and Fos (CF 2012)) suggest however, that

informed traders may condition their trades on such measures of price-impact, thus

leading to selection biases in estimates of liquidity measures. Specifically, CF document

that informed traders tend to trade more aggressively, when measures of stock price

liquidity are better (and measured price impact is lower). In Kyle’s model (and indeed

in many extensions, such as Back, 1992; Foster and Viswanathan, 1990) this cannot

happen because measures of market depth are constant in equilibrium (as discussed in

Back and Pedersen, 1998).

In this paper, we propose an extension of Kyle’s model that helps explain some of

these findings. We generalize Kyle’s model (in the continuous time formulation given by

Back, 1992) to allow noise trading volatility to change stochastically over time. The main

(economic) restriction we put on the process is that it be independent of the insider’s
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private information and of shocks to the order flow.

We ask the following questions. How does the insider adapt his optimal trading

strategy to account for these time-varying noise trader liquidity shocks? How are the

equilibrium price dynamics affected by these shocks, which are by assumption orthogonal

to the private information of the insider, and to the aggregate order flow dynamics?

Kyle’s model provides the insight that the larger the noise trading liquidity for a

given amount of private information, the more aggressive the insider will trade, since, in

equilibrium, his optimal trading rule is inversely related to Kyle’s lambda (a measure of

price impact). The insider makes more profits when there is more noise trading, since

the market maker can recoup more profits himself from the greater volume of uninformed

traders. In a dynamic setting where ‘noise trader volume’ changes stochastically, one

therefore expects price impact measures to move over time, and the insider to adjust his

trading to take advantage of those moments when ‘liquidity’ is greater.

At first, this problem may seem like a simple extension of the Back (1992) model,

as one might conjecture that one can simply ‘paste together’ Kyle economies with

different levels of noise-trading volatility. However, this is not so. Indeed, the insider

will optimally choose to trade less in the lower liquidity states than he would were

these to last forever, because he anticipates the future opportunity to trade more when

liquidity is better and he can reap a larger profit. Of course, in a rational expectations’

equilibrium, the market maker foresees this, and adjusts prices accordingly.

Therefore, price dynamics are more complex than in the standard Kyle model.

First, in equilibrium, price impact measures are stochastic. Price impact is larger

when noise-trading volatility is lower. When noise trading volatility is lower, the

informed trader trades less aggressively. Thus, in equilibrium, the probability of facing

an informed trader, may actually decrease in price impact (Kyle’s lambda).

Second, market depth (the inverse of price impact) is a martingale in equilibrium,
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which implies that price impact (Kyle’s lambda) is a submartingale, i.e., is expected to

increase on average. This is in contrast to much of the previous theoretical models (e.g.,

Baruch, 2002; Back and Baruch, 2004; Back and Pedersen, 1998; Admati and Pfleiderer,

1988; Caldentey and Stacchetti, 2010).1 The prediction of our model that price impact

is expected to rise on average is consistent with the empirical evidence in Madhavan

et al. (1997) who find that estimated execution costs rise significantly on average over

the day.

Third, when noise trading volatility is predictable, then equilibrium price dynamics

display time-varying volatility. Because, the insider has an incentive to wait and

trade during higher ‘liquidity’ states, in equilibrium, the price follows a multi-variate

‘stochastic bridge’ process, whose volatility is stochastic and driven by both noise trader

volatility and the posterior variance of the insider’s private information. Mathematically,

the price process resembles the Brownian Bridge process used, for example, in Back

(1992). However, the dynamics are more complex in that they are multi-variate and

exhibit stochastic volatility. These dynamics should also be useful for applications

outside the current model. Interestingly, when noise trader volatility is a martingale

(i.e., it is unforecastable), equilibrium prices are identical to the original Kyle/Back

equilibrium, even-though market depth is stochastic.

Fourth, when noise trader volatility is predictable, then information revelation,

as measured by the decrease in the posterior variance of the informed’s signal, is

faster when price volatility is higher. In particular, when there is more noise trading,

more information gets into prices. This is consistent with the evidence in Foster and

Viswanathan (1993) who find a positive relation between their estimates of the adverse

1In Baruch (2002) and Back and Baruch (2004) Kyle’s lambda is actually a super-martingale. As
discussed in these papers, this arises because the insider faces a random deadline or is risk-averse. See
the discussion in Back and Pedersen (1998) page 387.
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selection component of trading costs and volume (for actively traded stocks).

The model highlights the fact that, as often, ‘liquidity,’ has several facets. Empirical

measures of price impact may not be good proxies for the level of ‘adverse selection

risk’ (as measured by the arrival rate of private information) if the volatility of noise

trading liquidity fluctuates over time. For example, in a regime switching model of

noise trading volatility, execution costs for uninformed traders are lower in the low noise

trading volatility regime than in the high noise trading volatility regime. However, the

high noise trading volatility regime is also the one where measured price impact is lower.

This paper is primarily related to work by Back and Pedersen (1998) who extend

Kyle’s original model to allow for deterministically changing noise trader volatility to

capture intra-day patterns (clustering) of liquidity trading. They also find that the

informativeness of orders and the volatility of prices follow the same pattern as the

liquidity trading. However, in their setting there are no systematic patterns in the price

impact of orders. This implies that ‘expected execution costs of liquidity traders do not

depend on the timing of their trades’ (BP p. 387). Instead, in our model, equilibrium

price impact is a submartingale, i.e., is expected to increase on average. Expected

execution costs of noise traders tend to be higher when noise trader volatility is lower.

Our paper is also related to a long list of papers investigating the impact of

asymmetric information on asset prices and volatility (see Brunnermeier (2001) for a

survey). For example, Admati and Pfleiderer (1988) investigate a dynamic economy, with

myopic agents (essentially a sequence of one-period Kyle models), where they generate

time variation in price volatility. In their model, price volatility is stochastic because the

amount of private information changes from period to period, not because noise trading

volatility is time varying.2

2Indeed, in the standard Kyle model, price volatility only depends on the volatility of private
information and not on noise trading volatility. Since Admati and Pfleiderer (1988) consider a sequence
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Foster and Viswanathan (1990) also propose a model with discrete jumps in noise

trader volume. In their framework, market depth is also constant over time (as proved

in Back and Pedersen, 1998).

As pointed out in Kyle and Vila (1991), noise trading liquidity (which one typically

thinks of as a measure of market inefficiency) can incite traders with private information

to act on their information, and thus, paradoxically, to make markets more efficient. We

find, somewhat related, that more information (as measured by the decrease in private

information posterior variance) gets into prices when price level volatility is higher, which

tends to occur when the level of noise trading volatility is higher.

Section 2 introduces the general model and solves for an equilibrium. Section 3

investigates a few special cases, arbitrary deterministic noise trading volatility, and

continuous time Markov Chain, to show some numerical simulations of equilibrium

quantities. Section 4 concludes.

2. Informed Trading with Stochastic Liquidity Shocks

We extend Kyle’s (1985) model (in the continuous time formulation given by Back,

1992) to allow for time varying volatility of noise trader liquidity shocks. As in Kyle, we

assume there is an insider trading in the stock with perfect knowledge of the terminal

value v. The insider is risk-neutral and maximizes the expectation of his terminal profit:

max
θt

E

[∫ T

0

(v − Pt)θtdt |FYt , v
]
, (1)

of such one period models, where informed traders have short-lived private information, all variation in
price volatility arises because of variation in the private information volatility. (Watanabe, 2008, extends
their work to capture GARCH features in equilibrium prices, by directly incorporating stochastic
volatility in the (short-lived) private information process.) This is very different from our model where
the insider has long-lived information and optimally chooses to trade when noise trading volatility is
high, thus generating a link between noise trading volatility and price volatility.
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where we denote by FYt the information filtration generated by observing the entire past

history of aggregate order flow Y (which we denote by Y t = {Ys}s≤t).3 In addition, the

insider knows the actual value v of the stock, and, of course, his own trading. Following

Back (1992) we assume that the insider chooses an absolutely continuous trading rule θ

that satisfies E[
∫ T

0
θ2
sds] <∞.4

The market maker is also risk-neutral, but does not observe the terminal value.

Instead, he has a prior that the value v is normally distributed N(µ0,Σ0).

The market maker only observes the aggregate order flow arrival:

dYt = θtdt+ σtdZt, (2)

where Zt is a standard Brownian motion independent of v. We assume that the

uninformed order flow volatility, σt, follows a general process, that is independent of

the Brownian motion driving order flow. Specifically, we assume there is a Brownian

motion Mt, which is independent both of v and of Z, such that:

dσt = m(t, σt)dt+ ν(t, σt)dMt, (3)

where the drift and diffusion of σ can depend on the past history of σ, but not on the

3In the standard Kyle-Back model, assuming that the informed observes total order flow is innocuous,
since if the insider only observes equilibrium prices, he can typically recover the total order flow (and,
given his own trading, the uninformed order flow). In our setting, when uniformed order flow has
stochastic volatility, this assumption is important for our equilibrium construction. Alternatively, we
could assume that the informed agent observes prices and uninformed order flow volatility. The point
is that observing total order flow allows to recover uninformed order flow volatility, whereas observing
only prices may not (we give some examples below, where equilibrium prices are independent of noise
trading volatility, even though the insider’s trades depend on it). The assumption that insiders observe
noise-trader volatility, seems reasonable given that volume information is available in many markets.

4A shown in Back, it is optimal for the insider to choose an absolutely continuous trading strategy,
since, in continuous time, the market maker can immediately infer from the quadratic variation of the
order flow the informed component with infinite variation.
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history of Y (or Z). Further, we assume they satisfy standard integrability requirements

for the SDE to admit a unique strong solution and allow standard filtering tools to be

used (specifically, the technical conditions imposed in theorem 12.1 p. 22 in Liptser and

Shiryaev (LS 2001)). Importantly, we assume that the volatility process is uniformly

bounded away from zero (to avoid the case of ‘degenerate learning’).5 For simplicity

we also assume that the volatility is bounded above uniformly.6 Specifically, we assume

there are two constants σ, σ such that 0 < σ ≤ σt ≤ σ.

We assume that both the market maker and the insider observe the history of σ

perfectly. This is natural, since by observing aggregate order flow in continuous time, its

quadratic variation is perfectly observed. Thus the filtration FYt contains both histories

of order flow (Y t), and of volatility (σt).

We ask the following questions. How does the insider adapt his optimal trading

strategy to account for these time-varying noise trader liquidity shocks? How is the

equilibrium price dynamics affected by these shocks, which are by assumption orthogonal

to the private information of the insider, and to the aggregate order flow dynamics?

At first, this problem may seem like a trivial extension of the Kyle (1985) model,

as one might conjecture that one can simply ‘paste together’ Kyle economies with

different levels of noise-trading volatility. However, this is not so. Indeed, the insider

will optimally choose to trade less in the lower liquidity states than he would were

these to last forever, because he anticipates the future opportunity to trade more when

liquidity is better and he can reap a larger profit. Of course, in a rational expectations’

equilibrium, the market maker foresees this, and adjusts prices accordingly.

To solve for an equilibrium, we proceed in a few steps. First, we derive the

5The positive lower bound is uniform across all (t, ω), see condition 11.6 page 2 in LS (2001).
6The assumptions are stronger than necessary, but simplify the derivation of the equilibrium in

the general case. In the last section, we relax some of these assumptions. Specifically, we construct
equilibria where Mt is not a purely continuous martingale, and where σt is not bounded uniformly.
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dynamics of the stock price consistent with the market maker’s risk-neutral filtering

rule, conditional on a conjectured trading rule followed by the insider. Then we solve

the insider’s optimal portfolio choice problem, given the assumed dynamics of the

equilibrium price. Finally, we show that the conjectured rule by the market maker

is indeed consistent with the insider’s optimal choice.

Since the market maker is risk-neutral, equilibrium imposes that

Pt = E
[
v | FYt

]
. (4)

We further, conjecture that the trading strategy of the insider will be linear in his per

period profit, i.e.,

θt = β(t, σt,Σt)(v − Pt), (5)

where β measures the speed at which the insider decides to close the gap between the

fundamental value v (known only to him) and the market price Pt and where we define

Σt as the conditional variance of the terminal payoff:

Σt = E
[
(v − Pt)2 | FYt

]
. (6)

Given our assumptions, this is a standard conditionally gaussian filtering problem,

as treated in LS (2001) Chapter 12. We can prove the following result:

Lemma 1. If the insider adopts a trading strategy of the form given in (5), then the

stock price given by equation (4) satisfies P0 = µ0 and:

dPt = λ(t, σt,Σt)dYt, (7)
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where the price impact is a function of the conjectured trading rule:

λ(t, σt,Σt) =
β(t, σt,Σt)Σt

σ2
t

. (8)

Further, the dynamics of the posterior variance are given by:

dΣt = −λ(t, σt,Σt)
2σ2

t dt. (9)

Proof 1. This follows directly from an application of theorems 12.6, 12.7 in LS 2001.

We provide a simple ‘heuristic’ motivation of the result using standard Gaussian

projection theorem below.

Pt+dt = E
[
v |Y t, Yt+dt, σ

t, σt+dt
]

(10)

= E
[
v |Y t, σt

]
+
Cov(v, Yt+dt − Yt |Y t, σt)

V (Yt+dt − Yt |Y t, σt)
(Yt+dt − Yt − E[Yt+dt − Yt |Y t, σt](11)

= Pt +
βΣtdt

β2Σtdt2 + σ2
t dt

(Yt+dt − Yt) (12)

≈ Pt +
βΣt

σt
dYt. (13)

The second line uses the fact that the dynamics of σt is independent of the asset value

distribution and of the innovation in order flow. The third line uses the fact that the

expected change in order flow is zero for the conjectured policy. The last line follows from

going to the continuous time limit (with dt2 ≈ 0). Similarly, by the projection theorem,

we have:

V ar
[
v |Y t, Yt+dt, σ

t, σt+dt
]

= V ar
[
v |Y t, σt

]
− (

βΣt

σt
)2V ar

[
Yt+dt − Yt |Y t, σt

]
, (14)

which gives:

Σt+dt = Σt − λ2
tσ

2
t dt. (15)

In the spirit of a rational expectation’s equilibrium, we now conjecture a price impact
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function of the form:

λ(t, σt,Σt) =

√
Σt

Gt

, (16)

where Gt solves the following recursive stochastic differential equation:

√
Gt = E

[∫ T

t

σ2
s

2
√
Gs

ds|σt
]
. (17)

We can show the following lemma

Lemma 2. There exists a maximal bounded solution Gt to the recursive equation (17).

Further, that solution satisfies

σ2 (T − t) ≤ Gt ≤ σ2 (T − t) (18)

Proof 2. We note that yt =
√
Gt solves the Backward stochastic differential equation

dyt = −f(t, yt)dt− ΛtdMt

with f(t, yt) =
σ2
t

2yt
and with terminal condition yT = 0. Now f(t, yt) ≤ `(yt) ∀(t, ω)

where we define the function `(y) = σ2

2y
. We can thus compute

∫∞
0

dx
`(x)

=
∫ 0

−∞
dx
`(x)

=∞.

Thus `(x) is super-linear as shown in lemma 1 of Lepeltier and San Martin (1997). Their

theorem 1 then applies, which gives us the existence of a maximal bounded solution for

yt (and therefore for Gt).

Now consider the solution to the following Backward equation

dxt = − σ2

2xt
dt− Λ̃tdMt

with terminal condition xT = 0. It can be computed straightforwardly as xt = σ
√
T − t

(note Λ̃t = 0). Since ∀(t, ω); f(t, y) ≥ σ2

2y
we can use the comparison result Corollary 2
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of Lepeltier and San Martin (1997) to obtain

yt ≥ xt ∀(t, ω) (19)

which gives the lower bound on the maximal solution for Gt. The upper bound follows

immediately from a slightly more general bound on G that we derive in lemma 5 below

(see equation (70)).

Remark 1. The theorem in Lepeltier and San Martin (1997) does not guarantee the

uniqueness of the solution to the BSDE. However, the use of the maximal solution in the

construction of the equilibrium seems sensible since it achieves the highest value function

for the insider, as we show below.

We assume that the insider takes the price dynamics given by equations (7), (9), (16),

and (17) as given to solve his ‘partial equilibrium’ problem:

J(t) = max
θt

E

[∫ T

0

(v − Pt)θtdt | v,FYt
]
. (20)

Then, we will verify that his optimal trading strategy is indeed of the form

conjectured in (5).

We first prove an important property of our conjectured equilibrium price process.

Namely that it converges almost surely to the value v, known (only) to the insider, at

maturity T . This guarantees that all private information will have been incorporated in

equilibrium prices at maturity. This property is analogous to the result proved in Back

(1992), that equilibrium prices in the continuous time Kyle model follow a standard

Brownian Bridge. In our framework, equilibrium prices follow a kind of ‘stochastic

bridge’ process, in that the price converges to the known value, but the process may

display stochastic volatility due to the stochastic noise trader volatility shocks.
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Theorem 1. Suppose price dynamics are given by equations (7), (9),(16), and (17),

then the price process Pt converges in L2 to v at time T .

Proof 3. The conjectured equilibrium price process is:

dPt =
(v − Pt)
Gt

σ2
t dt+

√
Σt

Gt

σtdZt (21)

dΣt = −Σt

Gt

σ2
t dt. (22)

To prove that PT = v in L2, we consider the process X(t) = Pt − v and show that

limt→T E[X(t)] = 0 and that limt→T E[X(t)2] = 0. This establishes convergence in L2.

Note that

X(t) = e−
∫ t
0
σ2u
Gu

duX0 +

∫ t

0

e−
∫ t
s
σ2u
Gu

du

√
Σs

Gs

σs dZs (23)

:= I1(t) + I2(t), (24)

where the second line defines the integrals I1, I2. Equation (18) implies that

−
∫ t

0

σ2
u

Gu

du ≤ σ2

σ2 log(
T − t
T

)

It follows immediately from this inequality that

lim
t→T

E[I1(t)2] = lim
t→T

E[I1(t)] = 0. (25)

Further, note that:

E

∫ t

0

{
e−

∫ t
s
σ2u
Gu

du

√
Σs

Gs

σs

}2

ds

 = E

[
−
∫ t

0

e−
∫ t
s 2

σ2u
Gu

dudΣs

]
. (26)
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Using integration by parts, we find:

E

∫ t

0

{
e−

∫ t
s
σ2u
Gu

du

√
Σs

Gs

σs

}2

ds

 = E

[
Σt − e−

∫ t
0 2

σ2u
Gu

duΣ0

]
. (27)

We also have Σt = Σ0e
−

∫ t
0
σ2u
Gu

du. Thus we conclude that the stochastic integral I2(t) has

finite second moment. It therefore is a martingale (thus E[I2(t)] = 0) and by the Itô

Isometry we have:

E[I2(t)2] = E

[
Σ0e

−
∫ t
0
σ2u
Gu

du(1− e−
∫ t
0
σ2u
Gu

du)

]
. (28)

It follows that limt→T E[I2(t)2] = 0 and that limt→T E[X(t)] = limt→T E[X(t)2] = 0.

This establishes L2 convergence.

We now establish an interesting property of the conjectured price process. This

contrasts our framework from much of the previous literature. In the original Kyle model

price impact is constant. In extensions of that model (Back, 1992; Back and Pedersen,

1998; Baruch, 2002; Back and Baruch, 2004), price impact is either a martingale, or a

super-martingale. In these models, price impact measures have to improve (i.e, decrease)

on average over time, to incite the insider to not trade too aggressively initially.7 Instead,

our framework is the first (to our knowledge) where price impact measures are expected

to deteriorate (i.e, increase) over time. Indeed, we find:

Lemma 3. Market depth (which is the inverse of the price impact, i.e, Kyle’s lambda)

is a martingale that is orthogonal to the aggregate order flow. It follows that price impact

(Kyle’s lambda) is a submartingale.

7Motives to trade more aggressively early on are due to risk-aversion and a random exogenous
deadline. It would be interesting to combine risk-aversion or random deadline, with stochastic noise
trader volatility. It is likely that price impact would be neither a sub nor a super martingale in that
case.
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Proof 4. Note that from its definition the Gt process satisfies:

d
√
Gt +

σ2
t

2
√
Gt

dt = dMt, (29)

where Mt = E[
∫ T

0

σ2
t

2
√
Gt
dt |σt] is a martingale (adapted to the filtration generated by the

noise-trader volatility process) by the law of iterated expectation. It follows, by definition

of the process σt, that dMtdZt = 0.

From its definition in (16) and the definition for Σ and G above we obtain:

d
1

λ(t)
=

1√
Σt

d
√
Gt −

√
Gt

2(Σt)3/2
dΣt (30)

=
1√
Σt

dMt. (31)

It also follows that d 1
λt
dYt = 0.

To prove that λ is a submartingale we apply Jensen’s inequality. We have: 1
λt

=

Et[
1
λs

] ≥ 1
Et[λs]

. It follows that λt ≤ Et[λs].

We now prove the following result, which establishes the optimal trading rule for the

insider:

Theorem 2. Suppose price dynamics are given by equations (7), (9),(16), and (17), and

that the drift m(t, σt) and volatility ν(t, σt) of the σt process are such that the following

technical conditions are satisfied:

A1 The local martingales
∫ u

0
(v − Pt)

√
Σt
Gt
σtdZt and

∫ u
0

(v−Pt)2+Σt
2
√

Σt
dMt are ‘true’

martingales.

A2 λT =
√

ΣT
GT

> 0 a.s.

Then the optimal value function is given by:

J(t) =
(v − Pt)2 + Σt

2λt
. (32)

15



The optimal strategy is given by:

θ∗t =
1

λt

σ2
t

Gt

(v − Pt). (33)

Proof 5. Apply Itô’s rule to the conjectured value function to get

dJ(t) =
(v − Pt)2 + Σt

2
d

1

λt
+

1

λt

(
−(v − Pt)dPt +

1

2
dP 2

t

)
− (v − Pt)dPt d

1

λt
+

1

2λt
dΣt.

(34)

The insider takes the price impact process as given and assumes the price process follows:

dPt = λt (θtdt+ σtdZt) ,

with the lambda process as in equation (16) above. Using lemma 3 and the Σt dynamics,

and integrating the above we obtain:

J(T )−J(0) +

∫ T

0

(v−Pt)θtdt =

∫ T

0

(v−Pt)
√

Σt

Gt

σtdZt +

∫ T

0

(v − Pt)2 + Σt

2
√

Σt

dMt. (35)

Now, since J(T ) ≥ 0 it follows by taking expectation and using A1 that

E

[∫ T

0

(v − Pt)θtdt
]
≤ J(0) (36)

for any admissible policy {θt}. Further, if there exists a trading strategy θt consistent

with the updating equations (8), such that PT converges to v in L2 then, using A2, we

have E[J(T )] = 0 and the inequality holds with equality. As we have shown in theorem 1,

the candidate policy θ∗t proposed in the theorem indeed satisfies this. We have therefore

proved the optimality of the value function and of the proposed policy.

Remark 2. The technical assumptions A1 and A2 are a bit unsatisfactory since they

are about endogenous quantities. However, at this level of generality and specifically,

without making further assumptions about m(t, σt), ν(t, σt), it is difficult for us to give

a more precise statement. In the next section however, we give six examples of the σt
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process where we can verify explicitly that these conditions hold. Note that in the original

Kyle-Back model where σt is constant, these conditions are clearly satisfied.

The following result is an immediate consequence of theorems 1 and 2:

Theorem 3. Under the conditions of theorem 2, there exists an equilibrium where the

price process follows dynamics given in equations (7), (9),(16), and (17), and where

the insider follows trading strategy established in theorem 2. The price impact (Kyle’s

lambda) follows a stochastic process, given in equation (16).

It is interesting to compare our results to those of Kyle (1985), and Back and Pedersen

(1998).

First, we see that the optimal trading strategy for the insider is to trade proportion-

ally to the under-valuation of the asset (v − Pt) at a rate that is inversely related to

her price impact (λt) and to the remaining amount of noise trader risk as measured by

the new equilibrium quantity (Gt
σt

). The latter quantity reduces to the remaining time

horizon T − t in the original Kyle model when σt is constant.

Second, our expression for the price impact generalizes both BP’s result (page 395)

obtained for deterministically changing noise trader volatility and Kyle’s result that price

impact (the inverse of market depth) is proportional to the amount of private information

that has not yet been incorporated into prices and inversely proportional to the amount

of noise trading. Interestingly, the measure of the relevant noise amount we obtain, when

noise trading is stochastic, is quite different from what obtains in the deterministic case,

where it is simply the remaining total variance. In fact we show below (see lemma 5)

that G(t) is always smaller than the expected remaining noise-trader variance.

Lastly, our results shed more light on the dynamics of price impact. For example,

BP find that, when noise trader volatility is deterministic but information arrives

stochastically to the insider, then λt is a martingale. Instead, we find that with
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fixed information of the insider, but stochastically arriving noise trader volatility,

the inverse of λt (which measures market depth) is a martingale. In both cases,

the martingale condition reflects the fact that, in equilibrium, informed trading

responds optimally to changes in the environment (information arrival in BP, noise

trading in our case). Interestingly, in BP’s model, because noise trading changes

deterministically, the sensitivity of prices to orders does not change systematically over

time. Instead, in our model, it does, since as shown in lemma 3 above, price impact

is a submartingale. In other words, not only is price impact systematically lower

when noise trading volatility is higher, but also on average we expect price impact to

increase over time. Unlike in BP, we find that in equilibrium market depth can vary

systematically over time. The information content of orders is not constant in our model.

How large are the profits to the insider?

Total unconditional profits of the informed in our model can be computed by

integrating the value function over the unconditional prior distribution of v, as

Ev[J(0)] = Σ0

λ0
=
√

Σ0G0. Clearly, the profits depend on how much private information

remains to be released to the market, and the total expected amount of noise trading as

measured by the solution to the BDSE for G0. Since the latter depends on the current

state of liquidity, it is clear that the total profits generated by the insider will be path

dependent, and a function of the realized noise-trading volatility. The more time the

market spends in the higher liquidity state, intuitively, the higher the profits the insider

will generate.

How does information get into prices?

Note that in equilibrium

dΣt = −dP 2
t , (37)
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which shows that information arrives at higher rate, when stock price volatility is high.

As we show below, when noise trading volatility exhibits mean-reversion, then stock

price volatility is stochastic and tends to be higher when noise trading volatility is

higher. So paradoxically, the adverse selection cost (as measured by the probability of

facing an informed trader) tends to be higher, when noise trading liquidity is higher.

This is very different from the standard Kyle model, where private information decays

at a constant rate that is independent of the noise trading volatility level.

What can we say about the execution costs for uninformed noise traders?

We define the aggregate execution (or slippage) costs incurred by liquidity traders

at time T (defined pathwise) as:

∫ T

0

σtdZtdPt =

∫ T

0

λtσ
2
t dt. (38)

Intuitively, the total losses incurred between 0 and T by uninformed can be computed

pathwise as:

∫ T

0

(Pt+dt − v)σtdZt =

∫ T

0

(Pt + dPt − v)σtdZt =

∫ T

0

λtσ
2
t dt+

∫ T

0

(Pt − v)σtdZt. (39)

The first component is the pure execution or slippage cost due to the fact that, in Kyle’s

model, agents submit market orders at time t that get executed at date t+dt at a price set

by competitive market makers. The second component is the pure fundamental loss due

to the fact that based on the price they observe at t uninformed purchase a security with

fundamental value v that is unknown to them. Note that since prices are set efficiently by

market makers, on average this second component has zero mean. Therefore we obtain

the result that, the unconditional expected total losses incurred by uninformed are equal
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to the unconditional expected execution costs incurred by uninformed. Further, as the

next lemma shows, these are also equal the total unconditional expected profits of the

insider. (Note, however, that pathwise neither quantity need be equal.)

Lemma 4. Unconditional expected execution costs paid by the uninformed are equal to

the unconditional expected profits of the insider:

Ev[

∫ T

0

θ∗t (v − Pt)dt] = Ev[

∫ T

0

σ2
t λtdt] =

√
Σ0G0. (40)

Proof 6. The insider’s unconditional expected profits are

Ev[

∫ T

0

θt(v − Pt)dt] = Ev[

∫ T

0

σ2
t√

ΣtGt

(v − Pt)2dt] (41)

= Ev[

∫ T

0

σ2
t√

ΣtGt

Σtdt] (42)

= Ev[

∫ T

0

σ2
t λtdt], (43)

where the first equality follows from the definition of θ∗ and the second from the law of

iterated expectations. This is the same expression obtained for the execution costs paid

by the uninformed. By definition this is also equal to Ev[J(0)] where the expectation

superscript emphasizes that it is taken over the unconditional distribution of v. This

gives the result.

We will show numerically below, that aggregate execution costs to noise traders can

be larger when noise trading liquidity is larger (even though in those states, price impact

measured by lambda is lower). This is consistent with trading profits of the insider being

larger when noise trading volatility is higher.

In the following section we consider a few specific examples of noise trader volatility

process to illustrate the above result.
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3. Examples

As is clear from the above proposition, much of the characterization of the equilibrium

depends on the dynamics of the λt process, which, in turn, depends on the Gt and Σt

processes. Gt solves a backward stochastic differential equation, which can be solved for

specific choices of the noise trader volatility dynamics. In this section we consider a few

special cases, for which we can characterize the equilibrium further.

3.1. Arbitrary deterministic volatility process

Suppose that the noise trader volatility follows an arbitrary deterministic volatility,

then the backward equation for G(t) simplifies to:

√
G(t) =

∫ T

t

σ(u)2

2
√
G(u)

du. (44)

In that case we can show the following.

Theorem 4. A solution to equation (44) is the function G(t) =
∫ T
t
σ(u)2du. In that

case, the equilibrium is identical to that derived in Kyle/Back, up to a deterministic time

change given by τt =
∫ t

0
σ2
udu. Indeed, private information is incorporated into prices

at the same rate at which the amount of noise trader volatility decays. Price impact

(and market depth) are constant. Kyle’s lambda is given by: λ =
√

Σ0

τT
. The optimal

strategy of the insider is: θ∗t =
σ2
t

λ
∫ T
t σ2

udu
(v − Pt). The equilibrium price process follows a

time-changed Brownian bridge process:

dPt =
(v − Pt)
τT − τt

dτt + λdZ(τt). (45)

Proof 7. Differentiating both sides of (44) we see that a solution satisfies G′(t) = −σ(t)2

with boundary G(T ) = 0. Thus we obtain the solution for G(t). Further, we have
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from (9) with the definition of λt =
√

Σt
Gt

that:

dΣt

Σt

=
dG(t)

G(t)
. (46)

This implies that Σt
Gt

= Σ0

G0
, and hence that λ is constant. The optimal portfolio policy and

the equilibrium price process follow from equations (7) and equation (33). Comparing the

equation for the price to the Brownian bridge process obtained in Back (1992), it is clear

that the dynamics are identical up to a deterministic time change given by τt =
∫ t

0
σ2
udu.

This result is consistent with the analysis in Back and Pedersen (1998) and specializes

to the continuous time Kyle-model also derived in Back (1992) if σ(t) = σu is constant

(in which case λ = σv
σu

with σ2
v = Σ0

T
is the annualized variance of the market maker’s

prior estimate of the asset value). Note that, since λ is constant in this example, it

is trivially both a martingale and a submartingale. However, we give examples below

where the lambda process is stochastic.

3.2. Positive martingale dynamics

Suppose that volatility follows an arbitrary (strictly positive) martingale process:

dσt
σt

= ν(t, σt)dMt, (47)

where as before M is a martingale (in fact, Mt need not even be a continuous Martingale)

independent of Z. The backward equation for G(t) is:

√
G(t) = Et

[∫ T

t

σ2
u

2
√
G(u)

du

]
. (48)

Then we can show the following.

Theorem 5. A solution to equation (48) is G(t) = σ2
t (T − t). In that case, private
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information is incorporated into prices linearly (independent of the level of noise trader

volatility). Market depth (the inverse of Kyle’s lambda) is proportional to noise trader

volatility:
1

λt
=
σt
σv
, (49)

where σ2
v = Σ0

T
is the annualized initial private information variance level. The trading

strategy of the insiders is:

θt =
σt

σv(T − t)
(v − Pt). (50)

Equilibrium price dynamics are identical to the original Kyle (1985) model:

dPt =
(v − Pt)
T − t

dt+ σvdZt. (51)

In particular, stock price volatility is constant. The unconditional expected profit level of

the insider at time zero is Tσvσ0.

Proof 8. Plugging the guessed solution for G on the right hand side of equation (48)

and using the martingale property of σ(u) we obtain:

Et

[∫ T

t

σ2
u

2
√
G(u)

du

]
= σ(t)

∫ T

t

1

2
√

(T − u)
du] (52)

= σ(t)
√

(T − t) (53)

=
√
G(t), (54)

which confirms our guess. Further, we have from (9) and using the solution for G(t) we

obtain:
dΣt

Σt

= − 1

T − t
. (55)

The solution is:

Σt = σv(T − t). (56)

Further, from its definition λt =
√

Σt
Gt

= σv
σ(t)

. From equation (7) we find the stock price
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dynamics.

This example shows that many of the features of Kyle’s equilibrium survive when noise

trader volatility follows arbitrary martingale dynamics. Indeed, we see that when noise

trader volatility is not forecastable, private information gets into prices at the same

rate as in the original economy (i.e., linearly). The equilibrium looks identical to the

original Kyle-Back model where one substitutes a stochastic process σt for the constant

volatility of uninformed order flow in the original model. Since in the original model,

the equilibrium price process and the rate at which private information is revealed are

independent of the volatility of uninformed order-flow, they are unchanged in this case.

However, both the trading strategy of the insider and the price impact (Kyle’s lambda)

change. Both become stochastic. The insider trades more aggressively when uninformed

order flow volatility is higher, but price impact moves in the exact opposite direction

so that both effects cancel, leaving equilibrium prices unchanged. In equilibrium then,

insiders cannot gain from timing their trades and thus their unconditional expected profit

level is unchanged relative to what it would be in the Kyle-Back model with noise trader

volatility set to a constant σ0. Interestingly, even in this model however, price impact

measures are stochastic and vary inversely with the level of noise trader volatility. Since

the latter is a martingale, we see that on average, price impact is expected to deteriorate

in this case.

This simple framework also suggests that price dynamics will become more complex

if the level of noise trading volatility is predictable. We consider four such examples

next. First, we consider the case where noise trader volatility grows (or decreases) at

a constant rate. Second, we consider the case of general diffusion dynamics. Third, we

consider a case of diffusion dynamics with mean-reversion. Fourth, we consider a regime

switching model with state dependent predictability.
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3.3. Constant growth rate

Suppose that volatility follows a geometric brownian motion process:

dσt
σt

= mdt+ νdWt, (57)

where W is a standard Brownian motion independent of Z and for simplicity we assume

that m, ν are constant. The backward equation for G(t) is as before. We can show the

following.

Theorem 6. A solution to equation (48) is the function G(t) = σ2
tBt where Bt =

e2m(T−t)−1
2m

. In that case, private information is initially incorporated into prices at a

faster (slower) rate than in the original Kyle model if m is negative (positive):

Σt

Σ0

=
1− e−2m(T−t)

1− e−2mT
. (58)

Market depth is given by:
1

λt
= e−mtσt

√
B0

Σ0

. (59)

The trading strategy of the insider is:

θt =
σt

e−m(T−t)Bt

√
B0

Σ0

(v − Pt). (60)

Stock price dynamics are given by:

dPt =
(v − Pt)
Bt

dt+ emt
√

Σ0

B0

dZt. (61)

In particular, stock price volatility is a deterministic exponentially increasing (decreas-

ing) function of time if noise trader volatility is expected to increase (decrease). The

unconditional expected profit at time zero of the insider is Tσvσ0

√
B0

T
.

Proof 9. Plugging the guessed solution for G on the right hand side of equation (17)
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and using the fact that e−muσ(u) is a martingale, we obtain:

E

[∫ T

t

σ2
u

2
√
G(u)

du

]
= σ(t)

∫ T

t

em(u−t)

2
√

e2m(T−u)−1
2m

du (62)

= σt

√
e2m(T−t) − 1

2m
, (63)

which confirms our guess.

Further, using (9) and the solution for G(t) we obtain:

dΣt

Σt

= − 2m

e2m(T−t) − 1
dt. (64)

The solution is:
Σt

Σ0

=
1− e−2m(T−t)

1− e−2mT
. (65)

Further, from its definition:

λt =

√
Σt

Gt

=

√
Σ0

G0

σ0

e−mtσt
. (66)

Equation (7) gives the stock price dynamics.

This example shows that as soon as there is some predictability, then the equilibrium

differs from the standard Kyle-Back solution. For example, if noise trader volatility is

expected to increase (m > 0), then the insider has an incentive to trade more aggressively

(for a given level of noise trader volatility and of expected profit v − P ), because an

increase in m raises the amount of remaining cumulative noise trading (G(t)) at all

times. His unconditional expected profit is increasing in m (because G0 is increasing in

m). We plot in figure 1 the optimal trading strategy of the insider normalized by its

expected profit level (θt/(v−Pt)) for different levels ofm and in figure 2 the corresponding

G(t) function, holding the noise trader volatility fixed at σt = 0.4. Interestingly, this
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results in private information getting revealed at a different speed than in the benchmark

economy, where volatility is unforecastable (or constant).

0.2 0.4 0.6 0.8
time

5

10

15

Θ�Hv-PL

m=0

m=-0.5

m=0.5

Figure 1: Trading strategy of the insider normalized by his expected profit (θt/(v−Pt))
for a given fixed level of noise trader volatility plotted against time and for different
levels of expected growth rate of noise trader volatility.
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Figure 2: Expected remaining cumulative noise trading variance (G(t)) plotted against
time and for different levels of expected growth rate of noise trader volatility.

Figure 3 plots the path of the posterior variance of the private information signal for

three cases m = 0.5, m = 0 and m = −0.5. It is remarkable that private information

is revealed following a deterministic path, which only depends on the expected rate of

change in noise trading volatility, despite the fact that the strategy of the insider is
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Figure 3: Path of posterior variance of the insider’s private information Σt for various
values of the expected change in noise trader volatility m.

stochastic. This is of course the result of the offsetting effect noise trading volatility

has on the price impact coefficient λt. If the level of noise trading variance changes, the

insider trades more or less aggressively, but price impact changes one for one, making

price dynamics and information revelation independent of the volatility level. If variance

is expected to increase, then private information gets into prices more slowly initially,

and then faster when the insider trades more aggressively. So posterior variance follows

a deterministic concave path if noise trader volatility is expected to increase, but a

convex path if it is expected to decrease. As a result, the equilibrium price process

exhibits time varying volatility. Its volatility increases (decreases) exponentially if noise

trader volatility is expected to increase (decrease). Interestingly, price volatility is

deterministic, despite stochastic noise trader volatility and stochastic market depth.

From a mathematical point, the price process follows a one-factor Markov stochastic

bridge process with non-time homogeneous volatility (recall that Pt almost surely

converges to v at time T ).
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In this economy, we obtain an interesting separation result. The strategy of the

insider (θt) and the price impact measures (λt) expressed as a function of the level of noise

trader volatility (σt) are independent of the volatility of the noise trader volatility (ν). As

a result, the informational efficiency of prices, the price process, and the unconditional

expected profits of the insider only depend on initial conditions (Σ0, σ0) and the expected

growth rate of noise trader volatility (m).

However, the time-series dynamics of the price impact measure and the optimal

strategy of the insider is stochastic and varies with σt, which of course depends on ν.

An implication is that we may see lots of variation in estimates of price impact measures

(Kyle’s lambda) in time series (i.e, at different times along one path) and in cross-section

(i.e., at the same time across different ‘economies’ or stocks), but this is not necessarily

informative about the amount of private information (Σt) in the market.

We may wonder how general these findings are. Specifically, under what conditions

the optimal trading strategy of the insider, given knowledge of the current level of noise

trading volatility, is independent of the uncertainty about future noise trader volatility.

The next example offers a characterization of the equilibrium for more general diffusion

dynamics, which helps clarify this further.

3.4. General Diffusion Dynamics

Suppose that volatility follows a strictly positive process of the form:

dσt
σt

= m(t, σt)dt+ ν(t, σt)dWt, (67)

where W is a standard Brownian motion independent of Z and m, ν are general processes

(that satisfy the technical restrictions of the previous section). The backward equation

for G(t) is as before. We can characterize the solution as follows.
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Lemma 5. Suppose that νt is such that the process ξt = e−
∫ t
0
ν2s
2
ds+

∫ t
0 νsdWs is a

martingale8, then a solution to equation (48) is given by the process:

G(t) = σ2
tA(t)2, (68)

where A(t) solves the following recursive equation:

A(t)2 = Ẽt

[∫ T

t

e
∫ u
t 2ms−σA(s)2dsdu

]
, (69)

where the expectations is taken with respect to the measure P̃ equivalent to P and defined

by the Radon-Nykodim derivative dP̃
dP

= ξT , and where σA is the diffusion of logA(t). It

follows that:

G(t) ≤ E

[∫ T

t

σ2
udu

]
. (70)

Proof 10. Define A(t) =

√
G(t)

σt
. Then plugging into equation (48) we see that A(t)

solves:

A(t) = E[

∫ T

t

e
∫ u
t msds

2A(u)

ξu
ξt
du] (71)

= Ẽ[

∫ T

t

e
∫ u
t msds

2A(u)
du], (72)

where we have used, for the first line, the fact that (for u ≥ t):

σu = σte
∫ u
t msds

ξu
ξt
, (73)

and, for the second line, Girsanov’s theorem. Now, it follows, from the law of iterated

8Sufficient conditions, such as the Novikov conditions, are given in LS(2001).
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expectation, that e
∫ t
0 msdsA(t) +

∫ t
0
e
∫u
0 msds

2A(u)
du is a P̃ martingale, say M̃ . Thus we have:

dA(t) +mtA(t)dt+
1

2A(t)
dt = e−

∫ t
0 msdsdM̃t. (74)

By Itô’s formula we also have dA(t)2 = 2A(t)dA(t) + σA(t)2A(t)2dt, where we define

σA(t) to be the diffusion of logA(t). It follows that:

dA(t)2 = (2mt − σA(t)2)A(t)2dt = 2A(t)2e−
∫ t
0 msdsdM̃t. (75)

Integrating, using the fact that A(T ) = 0, and assuming sufficient regularity for the

stochastic integral to be a martingale, we obtain the result.

The inequality follows immediately from the fact that E[
∫ T
t
σ2
udu] =

σ2
t Ẽ[
∫ T
t
e
∫ u
t 2msdsdu].

This result helps us understand when the uncertainty about future noise trading

volatility level (ν) will affect the trading strategy of the insider, the price impact measure,

and equilibrium prices. In particular, we see that the ‘uncertainty irrelevance’ result

obtained in the previous example, generalizes to rather general diffusion settings, as

long as the drift is deterministic:

Corollary 1. If the expected growth rate of noise trading volatility follows a determin-

istic process mt, then the process G(t) admits the solution:

G(t) = σ2
t

∫ T

t

e
∫ u
t 2msdsdu. (76)

In turn this implies that private information enters prices at a deterministic rate, and

that equilibrium price volatility is deterministic.

It is immediate that, in this (deterministic m) case, the trading strategy of the insider

is not affected by uncertainty about future noise trading volatility (as measured by the
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ν process). However, as in the previous example, the insider’s strategy is a function of

the level of noise trading volatility, and thus stochastic.

For the insider to change his strategy depending on the uncertainty about future

noise trading volatility, the growth rate of noise trading volatility mt has to be stochastic.

When that is the case, the inequality (70), obtained in the previous lemma, suggests that

the agent will act as if there was less cumulative noise trading volatility than a ‘myopic’

agent who would simply consider the expected remaining total cumulative variance due

to noise trading.

To better understand this case, we consider a case where volatility is mean-reverting.

3.5. Mean-reverting noise trading volatility

Consider the case where xt = log σt follows a mean-reverting Ornstein-Uhlenbeck

process:

dxt = (−ν
2

2
− κxt)dt+ νdWt. (77)

We parametrize the drift of xt so that, when κ = 0, volatility is a martingale:

dσt
σt

= −κxtdt+ νdWt. (78)

As a result, we can focus on the impact of mean-reversion alone, and use a series

expansion in κ around the known solution when κ = 0 (derived in example 2). The

following result characterizes the solution.

Theorem 7. If the log of noise trading volatility follows a mean reverting process as

given in equation (78), then the process G(t) admits the solution:

G(t) = σ2
tA(T − t, xt, κ)2, (79)
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where the function A(τ, x, κ) can be approximated by a series expansion:

A(τ, x, κ) =
√
T − t

(
1 +

n∑
i=1

(−kτ)i

(
i∑

j=0

xj
i−j∑
k=0

cijkt
k

)
+O(κn+1)

)
, (80)

where the cijk are positive constants that depend only on ν2 and can be solved explicitly.9

In that case, private information enters prices at a stochastic rate that depends on the

level of noise trading volatility:

dΣt

Σt

= − 1

A(T − t, xt, κ)2
dt. (81)

Market depth is stochastic and given by:

λt =

√
Σt

σtA(T − t, xt, κ)
. (82)

The trading strategy of the insider is:

θt =
σt√

ΣtA(T − t, xt, κ)
(v − Pt). (83)

Stock price dynamics follow a three factor (P, x,Σ) Markov process with stochastic

volatility given by:

dPt =
(v − Pt)

A(T − t, xt, κ)2
dt+

√
Σt

A(T − t, xt, κ)
dZt. (84)

In particular, stock price volatility is a stochastic and tends to be higher when noise

trading volatility is higher. The unconditional expected profit at time zero of the insider

is Tσvσ0
A0√
T

.

Proof 11. To prove this result, we observe that mt = −κxt and that xt has following

9We provide in the appendix the fifth order solution. Higher order expansions can be obtained easily
using Mathematica (program available upon request).

33



dynamics under the P̃ measure:

dxt = (
ν2

2
− κxt)dt+ νdW̃t, (85)

where by Girsanov’s theorem we have defined W̃t = Wt − ν2t a standard P̃ -measure

Brownian motion. Thus xt is a one-factor Markov process under P̃ . Using the Markov

property for conditional expectations, we guess that the solution to equation (69) is given

by a function A(t, xt).

As shown in the proof of lemma 4, this function satisfies:

Ẽt

[
dA(t, xt)/dt+mtA(t, xt) +

1

2A(t, xt)

]
= 0. (86)

Using Itô’s lemma we obtain the following non-linear PDE for A(T − t, x) (where we

change variables to τ = T − t and drop the argument of the function for simplicity):

ν2

2
(Axx + Ax) +−κx(Ax + A)− Aτ +

1

2A
= 0 (87)

subject to boundary conditions A(0, x) = 0. When κ = 0, the solution is simply

A(τ, x;κ = 0) =
√
τ . Assuming the solution is analytic in its arguments, we seek an

series expansion solution of the form given in equation (80) above. Plugging this guess

into the left hand side of the PDE and Taylor expanding in κ, we find that each term

in the series expansion can be set to zero by an appropriate choice of the constants cijk.

We can thus recursively solve for these constants and obtain an approximate solution to

the PDE. In figures 9 in the appendix we plot the 0th, 1st, 2nd and 5th order expansion

solution for ν = 0.7 T = 1,κ = 0.25 and for three values of x0 = {−0.3; 0; +0.3}.

The first term in the series expansion of the A(τ, x, κ) function is instructive. Indeed,

we find:

A(τ, x, κ) =
√
τ(1− κ

2
τ(
ν2τ

6
+ x)) +O(κ2). (88)
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This confirms that we need κ to be different from zero for uncertainty about future noise

trading volatility to affect the trading strategy of the insider, and equilibrium prices. We

see that for a given expected path of noise trading volatility (e.g., setting x = 0 where

it is expected to stay constant), the higher the mean-reversion strength κ the lower the

A function. This implies that mean-reversion tends to lower the profit of the insider for

a given expected path of noise trading volatility (compare his profits to the case where

κ = 0).

Further, we see that the function is decreasing in (log) noise-trading volatility if

κ > 0 (we confirm this for higher order expansions). This implies that stock price

volatility is stochastic and positively correlated with noise-trading volatility. Equilibrium

prices follow a three-factor Markov Bridge process with stochastic volatility. Private

information gets incorporated into prices faster the higher the level of noise trading

volatility, as the insider trades more aggressively in these states. Note that, since the

A(τ, log σ, κ) function is decreasing and convex in volatility, the insider trades more

aggressively than in the case where κ = 0 (where A(t, log σ) is independent of volatility).

In these high volatility states, market depth also improves, but less than proportionally

to volatility to account for the more aggressive insider trading.

The net effect is that the insider’s strategy changes as a function of uncertainty about

future noise trading volatility, as the insider can benefit from timing market (liquidity)

conditions in this context. In fact, the higher ν2 the more aggressively does the insider

choose to respond a change in noise trading volatility (as A is decreasing in ν2).

In the last example, we consider a continuous time Markov Chain process for noise-

trader volatility. This introduces state-dependent predictability and jumps in noise

trader volatility in a simple manner and leads to a tractable illustration of the dynamics

of price volatility and private information revelation. We can also simply illustrate the

relation between market liquidity states and execution costs to insiders.
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3.6. A continuous time Markov chain example

Here we consider a case where Mt is not a continuous martingale and show that we

can still derive an equilibrium following the same approach used in the Brownian case

above. We assume that uninformed order flow volatility follows a two-state continuous

Markov Chain, i.e., there are two regimes st ∈ [0, 1] with σ(0) < σ(1), and the dynamics

of the regime indicator are:

dst = (1− st)dN0(t)− stdN1(t), (89)

where Ni(t) is a standard Poisson counting process with jump intensity ηi respectively.10

Then we can show the following. Since the volatility process is Markov, we seek a

solution to the BSDE for G of the form G(t, st) that satisfies:

√
G(t, st) = Et

[∫ T

t

σ(su)
2

2
√
G(u, su)

du

]
. (90)

We can characterize it as follows.

Theorem 8. A solution to (90) is the function G(t, st) = 1{st=0}G
0(T−t)+1{st=1}G

1(T−

t), where the deterministic functions G0, G1 satisfy the system of ODE given in (91)

below, with boundary conditions G0(0) = G1(0) = 0.

G0
τ (τ) = σ(0)2 + 2η0(

√
G1(τ)G0(τ)−G0(τ)) (91)

G1
τ (τ) = σ(1)2 + 2η1(

√
G1(τ)G0(τ)−G1(τ)) (92)

Proof 12. To prove this results note that if G is a solution to (90) then
√
G(t, st) +∫ T

t
σ(su)2

2
√
G(u,su)

du is a martingale, by the law of iterated expectation. Applying Itô’s lemma

we obtain that G then solves the system of ODE derived above. It is clear that the

10For example, η0 is the intensity of moving from state 0 to state 1.
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boundary condition is G(T, S) = 0.

We note that when there is no transition between states ηi = 0 then the solution

reduces to the familiar one obtained in Back (1992), i.e., Gi(τ) = σ(i)2(T − t). In

general, the system of coupled differential equations for Gi(t) i = 0, 1 can be easily

solved numerically (we have not been able to find a closed-form solution). We note

that as maturity approaches, as long as the switching intensities η1, η2 are not too (i.e.,

unboundedly) large, the solution for the price process converges to a pure Brownian

bridge as in the continuous time version of the Kyle model presented in Back (1992).

However, with more time to go before maturity, the possibility of transitionning from

one liquidity state to another changes the optimal strategy of the insider and the price

impact function.

For illustration, we choose a period length T = 1, η0 = η1 = 2 (2 transitions per

period), σ(0) = 0.2 and σ(1) = 0.5. For these parameter values we report in figure 4 the

G-function in the high and low state. As expected, close to maturity the two functions

converge smoothly to the lines σ(i)2(T − t) (with i = 0, 1) that would prevail, if there

were no transitions between states (i.e., the state was absorbing), which also corresponds

to the original Kyle model.

Figure 4 shows that, typically, when there is a switch in regime, say from the low to

the high volatility regime, the measure of price impact (Kyle’s lambda) will jump down,

as price impact is lower in the high noise-trading volatility regime. Indeed, recall that

λt =
√

Σt
Gt

and that since Σt is an absolutely continuous process, the immediate effect

of an upward jump from G0 to G1 is to lower λ. (of course subsequently, in the high

noise trading regime, information will be impounded more quickly into prices, leading

to a faster drop in Σt than in the low volatility regime).

Using the explicit solution for the amount of private information Σ(t) =
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Figure 4: G function in high and low state that solve equation (90). We also plot the
lines σ(0)(T − t) and σ(1)T − t, which sandwich respectively G0(T − t) and G1(T − t).
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Figure 5: Four paths of the remaining amount of private information Σ(t)/Σ(0)
corresponding to four different noise trader volatility scenarios: (a) start and stay in
the high volatility regime until T , (b) start and stay in the low volatility regime until
T , (c) start in the high volatility regime and switch to low volatility at t = 0.5, and (d)
start in low volatility regime and switch to high at t = 0.5. We also plot as a benchmark,
the Kyle (1985) economy private information decay, which is linear and independent of
the noise trader volatility level.

38



Σ(0)e−
∫ t
0
σ2u
Gu

du, we present in figure 5 four paths of Σ(t) which depict the revelation

of private information in our economy relative to the Kyle (1985) benchmark. We plot

Σ(t)/Σ(0) for the case where noise trading volatility switches to the high regime at date

zero and stays there until maturity (high), when it starts in the low regime and stays

there until maturity, and when there is a jump at t = 0.5 from high to low and low to high

respectively. Note that in Kyle, information always decays linearly in time, irrespective

of the level of noise trader volatility, in the sense that Σkyle(t)/Σkyle(0) = T − t. Instead,

when noise trading volatility can change stochastically, information flows into prices

in a very different fashion. As figure 5 reveals, the posterior variance, when in the

high volatility regime, is a decreasing convex function of time, but becomes decreasing

concave when there is a switch to the low noise trading regime. The intuition, is that in

the low noise trading regime, the insider is playing a waiting game, in the sense that he

trades much less aggressively, than he would in the Kyle economy with the same level of

volatility. He does so hoping for the high noise trading regime to arrive, where he trades

more aggressively, leading to much faster arrival of private information. Of course, if the

regime switch does not arrive then ultimately, he will have to become more aggressive

so that all his information eventually makes it into prices (see the path marked as ‘low’

on the graph).

This suggests that all the price impact measures and execution cost measures will

be path dependent. For example, we plot in figure 6, for the same four noise trading

volatility scenarios, the corresponding path of the price impact (λ(t)) process. We

see that if the economy starts in the high noise trading regime and stays there until

maturity, then measured price impact is relatively low and decays steadily (the path is

only slightly concave). Instead, if the economy starts in the low noise trading regime,

then price impact level is at first only slightly higher than the price impact level in
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the high noise trading regime, but it increases exponentially as the economy approaches

maturity. Similarly, if the regime switches at some point from high to low volatility, then

price impact immediately jumps up a little, but subsequently, market depth deteriorates

very rapidly as λ increases along a very convex path. This captures intuitively, the

submartingale property of λ. On average, execution costs are expected to deteriorate as

the economy approaches maturity. Interestingly, note that if the economy is in the high

noise trading regime, then measured price impact will be low and decrease steadily at

the beginning, even though there is a lot of ‘asymmetric information’ in the sense that,

from figure 5, we see a lot of information getting into prices. Comparing figures 5 and 6

suggests that the level of λ, obtained by ‘regressing’ stock prices changes on order flow,

does not give a valid measure of the amount of private information flowing into prices

(as measured by the slope of Σ(t)).

In figure 7 we plot the volatility of the stock price (which equals λtσt), for the same

four noise trading volatility scenarios. As we see, stock price volatility tends to be higher

in the high noise-trading volatility regime. If the economy stays in that regime, then

volatility drops steadily. However, if the economy jumps to a low noise trading volatility

regime, then stock price volatility jumps down, a large amount, and then subsequently

rises rapidly, following an exponential path. These dynamics are intuitive, given the

discussion on the dynamics of price impact. In the low noise trading regime, there is less

informed trading, thus price responds less to order flow. However, if the higher noise

trading volatility regime does not materialize, then, since the same total of amount of

private information will make it into price eventually, price impact increases dramatically

to reflect the ‘catching-up’ trading by insiders.

Lastly, from its definition, it is clear that execution costs paid by uninformed noise

traders are closely related to the path of stock price volatility (indeed, from their

definition, execution costs for insiders are the noise trader volatility weighted integral of
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Figure 6: Four separate paths of equilibrium price impact (lambda) dynamics corre-
sponding to (a) start and stay in the high volatility regime until T , (b) start and stay
in the low volatility regime until T , (c) start in the high volatility regime and switch
to low volatility at t = 0.5, and (d) start in low volatility regime and switch to high at
t = 0.5.
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Figure 7: Four separate paths of stock price volatility corresponding to (a) start and
stay in the high volatility regime until T , (b) start and stay in the low volatility regime
until T , (c) start in the high volatility regime and switch to low volatility at t = 0.5,
and (d) start in low volatility regime and switch to high at t = 0.5.
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the area below the path of the stock price volatility). In figure 8 we plot, for the same

four scenarios, the path of realized execution costs (λtσ
2
t ). As pointed out in lemma 3,

the total execution costs paid by uninformed at time T is the area below each curve

plotted. From the graph it is clear that execution costs are lowest in the low volatility

regime scenario, and much higher in the high noise trading volatility regime. We give

the corresponding numbers in table 1 below.

This is paradoxical, since as is clear from the table, the high noise trading volatility

regime is also the one where the average measured price impact (λ) is lower. Now, one

may argue that the difference between the two is simply that there are simply more

noise traders in high volatility scenario than in the low volatility scenario, and that

therefore it is natural that the total costs are higher. However, if we compare the two

other scenarios (high/low to low/high), where arguably, there are the same ‘number’

of noise traders along each path (in the sense that the cumulative quadratic variation

of noise trader order flow is the same across both paths as is confirmed in the third

row of table 1), then we see that this is not the only reason. Indeed, execution costs

paid by uninformed traders is higher in the low/high than in the high/low scenario (see

first row of table 1). Interestingly, we see that the average price impact is higher in

the high/low than in the low/high regime, which indicates that focusing on the average

level of price impact measures does not capture the realized execution costs. Instead,

normalized execution costs, measured as ‘volume’ weighted price impact normalized by

total noise trader volume, is perhaps better informative of the average execution cost for

the average uninformed trader. We see in the last row of table 1 that the average price

impact thus measured is indeed higher in the low/high than the high/low regime, and

indeed, also higher in the low regime than the high regime, indicating the importance

of normalizing price impact measures, when there can be variation in uninformed noise

trader volatility.
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Noise trading volatility paths
high low high/low low/high

Execution costs (
∫ T

0
λtσ

2
t dt) 0.078 0.017 0.054 0.057

Average price impact (
∫ T

0
λtdt) 0.487 1.740 1.023 0.853

Total ‘number’ of uninformed (
∫ T

0
σ2
t dt) 0.16 0.01 0.085 0.085

Normalized execution costs (
∫ T
0 λtσ2

t dt∫ T
0 σ2

t dt
) 0.487 1.740 0.636 0.671

Table 1: This table presents the realized execution costs for uninformed traders
depending on various scenarios of realized paths of noise trader volatility. Each path of
realized noise trader volatility corresponds to a certain ‘number’ of uniformed traders
arriving to the market. This ‘number’ is measured by the quadratic variation of the
order flow. Normalized execution costs measure the total execution costs divided by the
number of uninformed traders.

Unlike in previous literature, execution costs are path-dependent and depend in a

complex manner on the realized path of noise trader volatility (and not just on the total

cumulative amount of noise trading relative to private information as in Kyle (1985) or

Back and Pedersen (1998)).

4. Conclusion

In this paper we have extended Kyle (1985) model of dynamic insider trading to the

case where noise trader volatility can change stochastically over time. In equilibrium,

we find that the insider adjusts his optimal trading strategy to trade less when noise

trading liquidity is lower and more when it is higher. Since market makers anticipate

this, in equilibrium, measures of market depth are time varying. Market depth is a

martingale and therefore its inverse, price impact, is a submartingale, indicating that on

average execution costs are expected to deteriorate over time. If noise trader volatility is

predictable, then the equilibrium price exhibits stochastic volatility. It follows a multi-

variate ‘stochastic bridge’ process, which can be seen as a generalization of the classic
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Figure 8: Four separate paths of realized execution costs (λtσ
2
t ) corresponding to (a) start

and stay in the high volatility regime until T , (b) start and stay in the low volatility
regime until T , (c) start in the high volatility regime and switch to low volatility at
t = 0.5, and (d) start in low volatility regime and switch to high at t = 0.5. As
explained in lemma 3 the area under each path represents the execution costs incurred
by uninformed traders.

Brownian bridge to stochastic volatility.

Since the insider trades more aggressively when measured price impact is lower, more

information gets into prices when price volatility (and noise trading) is high. Somewhat

paradoxically then, when volume is high, measures of execution costs for the uninformed

traders (due to ‘adverse selection’) may be higher, reflecting the fact that insider trades

more aggressively, and therefore that more information gets into prices, even though

price impact measures, such as Kyle’s lambda, might be lower. Some of these results

seem consistent with empirical facts documented in the literature (e.g., Collin-Dufresne

and Fos (2012) find that informed trade more aggressively when liquidity measures seem

better, Madhavan, Richardson and Roomans (1997) find that measured execution costs

tend to rise on average over the day, Foster and Viswanathan (1993) find a positive

relation between adverse selection measures and volume), but more work remains to be

done to test the implications of the model more directly.
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5. Appendix

The fifth order expansion of the A function (with v = ν2).

A(τ, x, κ) =
√
t

(
1− κt

(
vt

12
+
x

2

)
+ κ2t2

(
13v2t2

1440
+ x

(
vt
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+

1

6

)
+

7vt

96
+

5x2

24

)
− κ3t3

(
89v3t3
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(
3v2t2
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We illustrate the convergence of the expansion in the following figures.
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Figure 9: A function expansion solution given in equation (80) for different order (0,1,2,5)
of the expansion for x0 = 0. Other parameter values are κ = 0.25, ν = 0.7, T = 1.
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Figure 10: A function expansion solution given in equation (80) for different order
(0,1,2,5) of the expansion for x0 = +0.7. Other parameter values are κ = 0.25, ν =
0.7, T = 1.
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Figure 11: A function expansion solution given in equation (80) for different order
(0,1,2,5) of the expansion for x0 = −0.7. Other parameter values are κ = 0.25, ν =
0.7, T = 1.
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