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Abstract: Acinetobacter baumannii, once considered a low-category pathogen, has emerged as 

an obstinate infectious agent. The scientific community is paying more attention to this pathogen 

due to its stubbornness to last resort antimicrobials, including carbapenems, colistin, and tige-

cycline, its high prevalence of infections in the hospital setting, and significantly increased rate 

of community-acquired infections by this organism over the past decade. It has given the fear of 

pre-antibiotic era to the world. To further enhance our understanding about this pathogen, in this 

review, we discuss its taxonomy, pathogenesis, current treatment options, global resistance rates, 

mechanisms of its resistance against various groups of antimicrobials, and future therapeutics.
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Introduction
Acinetobacter baumannii, a non-fermenter Gram-negative coccobacillus, was consid-

ered a low-category pathogen in the past, but has now emerged as a leading cause of 

hospital- and community-acquired infections. It is a frequent cause of pneumonia and 

septicemia in immunocompromised patients. It resists many classes of antibiotics by 

virtue of chromosome-mediated genetic elements on one hand, while it can also persist 

for a prolonged period in harsh environments (walls, surfaces, and medical devices) 

in the hospital settings on the other hand.1,2

A. baumannii was isolated for the first time from soil by a Dutch bacteriologist 

Beijerinck in 1911 and was described as Micrococcus calcoaceticus.3 In succeeding 

50 years, the same bacterium was isolated many times and reported with different 

names such as Moraxella lwoffi, Alcaligenes hemolysans, Mirococcuscalco-aceticus, 

and Herellea vaginicola. Four decades later, Brisou and Prevot purposed to include it 

in the genus Achromobacter, based on its inability to move and being non-pigmented.4 

In 1968, Baumann et al placed all such isolates in one genus Acinetobacter, which 

was accepted by the committee on the taxonomy of Moraxella and Allied Bacteria 4 

years later.5 Based on DNA similarity, Bouvet and Grimont further classified it into 

12 groups in 1986.6 Currently, they are taxonomically classified as γ-proteobacteria, 

family Moraxellaceae and order Pseudomonadales.7

Acinetobacter calcoaceticus-baumannii complex is a group of aerobic, non-

fermentative, gram-negative coccobacillus that encompasses four different Acineto-

bacteria, comprising A. baumannii, Acinetobacter pittii, Acinetobacter nosocomialis, 

and Acinetobacter calcoaceticus. The first three are implicated in infections, while 

the latter is rarely considered pathogenic.8 It appears as Gram-negative coccobacillus 
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in pairs  ranging from 1 to 1.5 µm when observed under the 

microscope after gram staining. It often resists complete 

decolorization and can deceive as Gram-positive cocci. Nutri-

tionally, it is aerobic, non-fastidious, and a non-fermenter. It is 

a non-motile organism and does not produce cytochrome oxi-

dase, urease, citrate, and indole; however, it produces catalase 

enzyme. A. calcoaceticus-baumannii complex nurtures well 

at 35°C–37°C; however, some environmental isolates grow 

well in the temperature range of 20°C–30°C. A. baumannii 

is the only bacterium in the genus that can grow at 44°C.6

It grows well on routine laboratory media such as blood 

agar, chocolate agar, and MacConkey agar. On blood agar, 

it forms colorless, non-hemolytic, shiny mucoid colonies, 

smooth in contexture with a diameter of 1–2 mm after 18–24 

hours of incubation at 37°C. It produces colorless colonies 

on MacConkey agar which are shiny mucoid and tomb 

shaped, indicating its non-lactose fermenting ability. On 

selective agar, Leeds Acinetobacter Medium, it gives pink 

color colonies when grown in the presence of supplement.9

Acinetobacter spp. are free-living saprophytic organisms 

and widely distributed in different environments including 

soil, water, wastewater, vegetables, and skin of animals and 

humans.10 They have been isolated from various body parts of 

healthy individuals, including the nose, ear, throat, forehead, 

trachea, conjunctiva, vagina and perineum, axillae, groin, 

hands, and toe webs; however, most strains isolated were 

other than A. baumannii.11 In hospital environment, they 

reside on beds, curtains, walls, roofs, medical devices, and 

equipment, as well as on belongings of medical personnel, 

tap water sinks, telephones, door handles, hand sanitizers, 

dispensers, trolleys, bins, and even on computers. They have 

the capacity to survive for prolonged periods on inanimate 

objects. The factors that are responsible for their persistence 

in a hospital environment are resistance to key antimicro-

bial drugs and disinfectants and their ability to survive in 

desiccants.12

Pathogenicity of A. baumannii

A. baumannii has emerged as a major culprit involved in 

causing nosocomial infections, especially in intensive care 

units (ICUs) worldwide. The capability of this organism to 

pollute hospital surfaces for extended periods is linked with 

nosocomial outbreaks.13 It has gained the ability to infect not 

only hospitalized patients but also the general population. 

In hospital settings, it confers 26% mortality rate that goes 

up to 43% in ICUs.14 A. baumannii is a principal agent of 

ventilator-associated pneumonia, which accounts for nearly 

15% of all hospital-acquired infections, with the highest 

morbidity and mortality in medical wards and especially in 

the ICUs. It accounts for ∼50% of the total use of antibiotics 

in the ICUs.15

A. baumannii is not considered a community pathogen, 

but in immunocompromised individuals and in children, 

it populates tracheostomy sites and can cause community-

acquired bronchiolitis and tracheobronchitis. It has also 

been implicated in community-acquired pneumonia with 

underlying conditions such as smoking, alcoholism, diabetes 

mellitus, and COPD in tropical regions of Asia and Aus-

tralia.16 A. baumannii has been implicated in bloodstream 

infections in 10%–15% of cases due to invasive procedures 

(intravascular or respiratory catheters, tubes, or cannulas). In 

20%–70% of A. baumannii infections, the origin of infection 

remains unknown.17

A. baumannii is an increasing threat to neurosurgery 

patients. It is responsible for 4% of all meningitis and shunt-

related infections, with 70% mortality rates.18 It is responsible 

for 2.1% of ICU-acquired wound infections; however, its 

prevalence is more pronounced (32%) in casualties from 

battlefields of Afghanistan and Iraq. It is not a usual agent of 

urinary tract infections (UTIs); however, it can cause infection 

in debilitated elderly patients and in patients with prolonged 

indwelling catheter-related infections in the ICUs where it 

contributes 1.6% of the total UTIs. It may cause endocarditis, 

keratitis, and ophthalmitis following use of the contact lens 

and eye surgery.19

A. baumannii can be transmitted through the vicinity of 

affected patients or colonizers such as linens fomites, cur-

tains, bed rails, tables, sinks, doors, feeding tubes, and even 

medical equipment. Contamination of respiratory support 

equipment, suction devices, and devices used for intravas-

cular access is the key source of infection.20

A. baumannii is considered as a low-virulence pathogen, 

unless it is isolated from patients having comorbidities such 

as neonates with low birth weights and elderly patients with 

chronic illnesses such as malignancy. Major predisposing 

factors important in the acquisition of A. baumannii infec-

tion include prolonged hospital stay, mechanical ventilation, 

intravascular device, advanced age, immunosuppression, 

previous broad-spectrum antimicrobial therapy, previous 

sepsis, ICU stay, and enteral feedings.21

Pathogenesis of A. baumannii

The intrusion of a microorganism requires cell-to-cell 

adhesion to establish infection; however, the capability of 

A. baumannii to anchor with cells/mucosal cells is low as 

compared to other microorganisms such as Pseudomonas 
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aeruginosa, Neisseria meningitides, Campylobacter, Yer-

sinia enterocolitica, and Helicobacter pylori.22 The reduced 

adhesion and invasion of A. baumannii attribute to its low 

virulence; however, it possesses a hydrophobic ability that 

provides attachment to foreign materials such as plastics 

used in intravascular devices. It has been proven that surface 

hydrophobicity is highly expressed in strains isolated from 

patients as compared to normal flora of the skin.19

Outer membrane protein A (OmpA) is associated with 

improving adhesion, specifically to the epithelial cells of the 

respiratory tract. It localizes in the mitochondria and nuclei 

and induces expression of proapoptotic molecule cytochrome 

c, resulting in cell death.23 A. baumannii evades alternative 

complement pathway-mediated killing by neutralizing factor 

H, a key regulator of alternative complement pathway, with 

the help of OmpA. This phenomenon is known as serum 

resistance of A. baumannii.24 OmpA induces differentiation 

of CD4+, activation and maturation of dendritic cells, and 

causes their premature apoptosis.25

Secretion of outer membrane vesicles that contain dif-

ferent virulence-related proteins (proteases, phospholipases, 

superoxide dismutase, and catalase) at the infection site 

accelerates the local innate immune response and ultimately 

leads to tissue damage. The outer membrane vesicles also 

augment biofilm formation on abiotic surfaces.26 Polysac-

charide capsule of Gram-negative rods is notorious as a 

virulence factor. It plays a central role in guarding bacteria 

against phagocytosis by the host innate immune system.27 

Lipopolysaccharides (LPSs) of A. baumannii consist of an 

O-antigen, the carbohydrate core, and a lipid A moiety. LPS 

is a chemotactic agent that recruits inflammatory cells and 

compels them to release their cytotoxic material.28

Quorum sensing is the capability of bacteria to commu-

nicate with their neighboring counterparts to respond jointly 

to the changing environment. They produce small easily 

diffusible hormone-like molecules known as autoinducers, 

which are used to observe their population density and to 

adapt in an ever-changing environment.29 Like other Gram-

negative rods, Acinetobacter yields acylhomoserine lactones 

as signaling molecules for interspecies and intraspecies com-

munication. It also produces less-studied signaling molecules 

such as diketopiperazines, 2-heptyl-3-hydroxy-4-quinolone, 

and retention factor 1.30

Despite the abundance of iron in biological systems, 

availability of biologically active ferric iron is relatively low 

due to its decreased solubility in an aerobic environment and 

chelation by other compounds such as hemoglobin and ferric-

binding protein called transferrin.31 A. baumannii is unable 

to acquire iron from transferrin or lactoferrin; however, it 

possesses siderophores, which have iron acquisition ability 

devoted to iron accumulation from heme.32

The ability of A. baumannii to form biofilms on biotic and 

abiotic surfaces is a well-studied mechanism of resistance. To 

survive in unfavorable conditions, it becomes metabolically 

inert in the deeper layers of biofilms. Poor penetration and the 

inability of antibiotics to act on metabolically inert bacteria 

augment its virulence.14 A. baumannii involved in epidem-

ics shows a high-level desiccation resistance and biofilm-

forming capability on biological surfaces. The property of 

A. baumannii to form pellicle by virtue of polysaccharide, 

poly-N-acetyl glucosamine, and csuA/B usher protein is a 

way to offshore antibiotic effect. Other virulence factors are 

also involved in biofilm evolution, including biofilm-asso-

ciated protein (BAP), OmpA, BAP-like protein-1 (BLP-1), 

and BAP-like protein-2 (BLP-2).33

Antibiotic resistance and treatment 
options against A. baumannii

Discovery of antibiotics was a remarkable milestone in the 

history of modern medicine. The discovery of penicillin, fol-

lowed by sulfonamides and aminoglycosides, urged scientists 

to speculate that a “magic bullet” to wipe out the infectious 

diseases has been found. However, unfortunately, the scenario 

is not as true as once thought. Fleming stated in his Nobel 

lecture that, in future, antibiotics will be easily available to 

everyone and quacks might undermine the positive role of 

antibiotics through exposing a persistent low regimen to bac-

teria that can result in the evolution of antibiotic resistance.34

Penicillin was administered for the first time in 1941, and 

penicillin-resistant isolates were detected in 1942. Similarly, 

methicillin was introduced in 1960 and methicillin-resistant 

strains were reported in 1961 and so on.35 Currently, the iso-

lates of A. baumannii resistant to all available antimicrobials 

have been reported.36 The hard work of scientific community 

resulted in discovery of many antibiotics, but their misuse 

resulted in high degree of resistance. It can be said that pre-

antibiotic era has started, where again microbes with greater 

killing capacity are in abundance.37 Acinetobacter has been 

endowed with the genetic setup for rapid development of 

antimicrobial resistance, and therefore, is known as a natural 

transformant. Scientific literature is full of reports stating it 

as one of the toughest bacteria.38

Until early 1970s, Acinetobacter infections were treatable 

with ampicillin, carbenicillin, gentamicin, and nalidixic acid, 

either as a monotherapy or combination therapy, but high 

rates of resistance were noticed after 1975.39 Presently, many 
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valuable drugs such as ureidopenicillin, aminopenicillins, 

narrow-spectrum and even extended-spectrum cephalospo-

rin, tetracycline, chloramphenicol, cephamycins such as 

cefoxitin, and most aminoglycosides have lost their efficacy 

against Acinetobacter.40

Carbapenems (imipenem and meropenem), amino-

glycosides (amikacin and tobramycin), fluoroquinolones, 

(ciprofloxacin and levofloxacin), broad-spectrum cephalo-

sporins (ceftazidime, cefotaxime, ceftriaxone, cefepime), 

and combinations of beta-lactamase inhibitors with antibiotic 

(ampicillin/sulbactam) are currently being used, provided that 

the organisms are susceptible; however, the minimum inhibi-

tory concentrations (MICs) have substantially increased.1

Carbapenems
Carbapenems have been the mainstay of antimicrobial 

therapy against A. baumannii infections since 1990. Over-

whelming resistance to carbapenems was first reported 

in 1985, the year of imipenem discovery, declaring that 

antibiotic resistance mechanisms existed even before their 

first use. Currently, about 8%–26% isolates are susceptible 

to imipenem, depending on the region of the world.41 North 

America and Europe harbor 13%–15% of carbapenem-

resistant Acinetobacter, in comparison to Latin America, 

where 40% resistance has been reported.42 Another study 

reported 48% carbapenem resistance in the USA.43 Alarm-

ingly, a recent review mentioned 50%, 85%, and 62%–100% 

as the frequency of carbapenem-resistant Acinetobacter 

in Singapore, India, and Pakistan, respectively. Likewise, 

the frequency of carbapenem-resistant A. baumannii was 

reported to be 70%, 92%, and 100% in Chile, Korea, and 

Portugal, respectively. The resistance to carbapenems also 

renders other beta-lactam drugs ineffective.44 Worse clinical 

outcomes with carbapenem-resistant Acinetobacter infec-

tions have been reported by many authors.44

Colistin
Colistin or polymyxin E is a bactericidal drug that disrupts 

cell membrane like a detergent. Its positively charged 

cationic region binds to negatively charged hydrophilic 

portion of LPSs. The resulting loss of integrity causes cell 

death.45 The current panic situation of antibiotic resistance 

in Acinetobacter infections had led to the use of historically 

discarded drug, colistin. Colistin has shown high nephro-

toxicity, ranging from 11% to 76% in various retrospective 

and prospective studies. Therefore, its use was discontinued 

short after its discovery in late 1950s. However, recent stud-

ies do not advocate such higher incidence of nephrotoxicity 

in  comparison to previous studies, if associated risk factors 

are kept in mind, such as dose, age of patient, duration, and 

existing comorbidities such as hypertension, obesity, and 

hypoalbuminemia.46,47 The mechanisms of colistin-induced 

nephropathy are not clearly understood; however, certain 

studies in this field suggested that accumulation of colistin in 

proximal renal tubules results in oxidative damage. Caspase-

mediated apoptosis, inducible nitrous oxide synthase, and 

endothelial nitrous oxide synthase are also implicated in 

pathogenesis of nephrotoxicity.48 Colistin-driven neurotox-

icity is infrequent and includes bronchoconstriction, cough, 

and chest tightness when administered via respiratory tract 

and results in chemical meningitis.49,50 Other dose-dependent 

reversible adverse effects include ataxia, apnea, paresthesias, 

delirium, visual disturbances, seizures, vertigo, and neuro-

muscular defects.51

Colistin is administered as a pro-drug in the form of colis-

tin methanesulfonate; so, achievement of its critical levels in 

blood is difficult. Therefore, its use as monotherapy results 

in rapid emergence of regrowth. Heteroresistance (selective 

resistance of bacterial subpopulation followed by amplifica-

tion) is another phenomenon that results in rapid emergence 

of resistant clones.52,53

Low plasma levels and heteroresistance of colistin raised 

serious concern on colistin monotherapy.54 Combination 

of colistin with other in vitro active agents that gives a 

synergistic effect is widely used by physicians in critically 

ill patients. However, debate is still open in literature about 

the advantages of combination versus monotherapy. Some 

studies suggest monotherapy as effective as combination.55,56 

Extensive review of literature favored combination therapy 

in terms of microbiological clearance as well as clinical 

cure in A. baumannii infections.57,58 Colistin/carbapenem 

and colistin/rifampicin are the most studied combinations 

that have well-established in vitro and in vivo activities, 

and also, proved to be effective in the clinics.59,60 Other 

studied combinations include colistin/tigecycline, colistin/

minocycline, colistin/aminoglycosides, colistin/ampicil-

lin–sulbactam, colistin/trimethoprim– sulfamethoxazole, 

colistin/fosfomycin, colistin/daptomycin, and colistin/

sulbactam.61–64

Unfortunately, resistance has emerged against this last 

resort antibiotic. Colistin-resistant Acinetobacter was first 

reported in the Czech Republic in 1999.65 Now it is increas-

ingly being reported worldwide.66 Low levels of resistance 

(2.1%–7.1%) have been reported from the USA, while reports 

from Europe have documented 7%–11% resistance. Highest 

resistance has been reported from India (53%),  followed by 
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Iran (48%), Spain (40.7%), and Korea (30%)57,67 as shown 

in Table 1.

Tigecycline
Tigecycline, being the first member of glycycline, is a novel 

drug approved by the US Food and Drug Administration in 

June 2005 for the treatment of complicated skin infections, 

community-acquired pneumonia, and intra-abdominal infec-

tions.68 It is also being used in the treatment of bacteremia 

and UTIs by multidrug-resistant (MDR) Gram-negative 

bacteria.69 It is active against a wide number of Gram-positive 

and Gram-negative bacteria including anaerobes.70 It has 

shown effectiveness against A. baumannii and other species 

of Acinetobacter in large number of studies.71

Testing the sensitivity of A. baumannii to tigecycline is 

not standardized yet. The European Committee on Antimi-

crobial Susceptibility Testing and Clinical and Laboratory 

Standards Institute still do not have established breakpoints 

for tigecycline sensitivity testing. However, many researchers 

use more flexible breakpoints, as reported by the US Food 

and Drug Administration (sensitive: ≤2 mg/L, resistant ≥8 

mg/L).72 Therefore, interpretation of antimicrobial sensitivity 

in many studies has been controversial. The method of MIC 

determination also affects the results: E test gives somewhat 

higher MIC value than broth dilution method.73 The determi-

nation of MIC by Vitek 2 is reliable in 94% cases.74

The first case of tigecycline resistance was reported 

by Sader et al in 2005 and in 2007 Navon-Venezia et al 

reported 66% tigecycline resistance against A. baumannii in 

Israel.75,76 At times, varying percentages of resistance have 

been reported all over the world, with Turkey possessing the 

highest resistance rate (81%), as shown in Table 2.

Mechanism of resistance
Enzyme-mediated degradation (beta-lactamases), genetic 

manipulations (mutations, acquiring or leaving a gene, 

upregulation or downregulation of gene expression), and 

efflux pumps are different strategies adopted by Acineto-

bacter to escape from destruction of antibiotics.77

Resistance to beta-lactams
Resistance to beta-lactam antibiotics is mediated through 

enhanced degradation by beta-lactamases, alteration in 

penicillin-binding proteins, changes in outer membrane 

porins for decreased permeability, and expulsion of antibiot-

ics out of cell through efflux pump (Figure 1-I).78 Among 

beta-lactamases, ampC cephalosporinase or molecular class 

c beta-lactamase is more prevalent in A. baumannii.79 It 

is encoded by bla gene and confers resistance to penicil-

lins and narrow- and extended-spectrum cephalosporins. 

Other beta-lactamases include class A beta-lactamases 

such as extended-spectrum beta-lactamases (PER-1, VEb-

Table 1 Studies showing colistin resistance by Acinetobacter in different regions of the world

Author Year % Colistin resistance  

(resistant isolate/total)

Region Reference

Bashir et al 2014 1 (1/100) Pakistan 104  

Qadeer et al 2016 3 Pakistan 105  

Gupta et al 2016 53.1 (17/32) India 106  

Pawar et al 2016 11.9 (42/359) India 107  

Am et al 2016 4.2 (45/47) India 108  

Samawi et al 2016 1.4 (2/137) Qatar 109  

Maraki et al 2016 7.9 (15/189) Greece 110  

Al-Samaree et al 2016 20 (10/50) Iraq 111  

Alaei et al 2016 16 (14/85) Iran 112  

El-Shazly et al 2015 4.7 (1/21) USA 113  

Maspi et al 2016 48.8 (42/86) Iran 114  

Ambrosi et al 3.2 (1/31) Italy 115  

Chang et al 2012 10.4 (14.134) Taiwan 116  

Rossi et al 2016 1.4 (102/7446) Brazil 117  

Batarseh et al 2015 1.8(2/116) Jordan 118  

Qureshi et al 2015 20 cases USA 119  

Tojo et al 2015 1 case Japan 120  

Daadani et al 2013 1.8 (24/1307) Saudi Arabia 121  

Cikman et al 2015 2.5 (1/40) Turkey 122  

Castanheira et al 2014 1.2 (65/5477) USA 123  

Al-Sweih et al 2011 12 (30/250) Kuwait 124  

Ghasemian et al 2016 8 (4/50) Iran 125  
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1, CTX-M, TEM, SHV), class B beta-lactamases such as 

metallo-beta-lactamases (MBLs; IMP, SIM, VIM), and class 

D beta-lactamases such as OXA.80 Acquired OXA-type 

carbapenemases are the mainstay against carbapenems, a 

treatment of choice, followed by MBLs.81 OXA23, OXA24, 

and OXA58 are plasmids that encode carbapenemases 

which are mainly responsible for carbapenem degradation. 

Coexistence of OXA23 and an MBL NDM-1, a nightmare in 

the history of antibiotic resistance, has been reported.82 All 

other types of OXA are chromosome mediated and include 

OXA25, OXA26, and OXA40.

Reduced entry of drugs via outer membrane proteins 

(OMPs) or porins and modification of penicillin-binding 

proteins (PBPs) are implicated in resistance to beta-lactams. 

Many studies suggested reduced expression of OMPs and 

PBP2 results in carbapenem resistance. Among OMPs, a 43 

kDa protein oprD and a 29 kDa protein CarO are the most 

studied porins that support the hypothesis of decreased 

expression. Probably, porins and beta-lactamase work col-

lectively in conferring resistance.83

Presence of efflux pumps confers resistance to multiple 

classes of antibiotics. Six families of efflux pumps have 

been identified which include resistance nodulation cell 

division family, small multidrug resistance superfamily, 

ATP-binding cassette (ABC) family, major facilitator 

superfamily, multidrug toxic compound extrusion family, 

and recently identified proteobacterial antimicrobial com-

pound efflux family.84 AdeABC efflux pump has been well 

characterized in A. baumannii and is a member of resistance 

nodulation cell division family that mediates resistance to 

many classes of antibiotics (cefotaxime, chloramphenicol, 

erythromycin, aminoglycosides, and fluoroquinolones). 

Overexpression of AdeABC also confers resistance to 

carbapenems.85 AbeS, a member of small MDR efflux 

pump, has also been identified in A. baumannii.86 AdeABC, 

AdeIJK, and AdeFGH are the major drug efflux pumps of 

ABC family. Other members of major facilitator super-

family include CraA, AmvA/AedF, and Tet(B). Members 

of recently discovered proteobacterial antimicrobial com-

pound efflux family include AceI, while a representative 

of multidrug toxic compound extrusion family includes 

AbeM pump.87

Resistance to aminoglycoside
The most frequent mechanism of aminoglycoside resistance 

is the modification of amino or hydroxyl group by amino-

glycoside modifying enzymes. All types of aminoglycoside 

modifying enzymes (adenylases, acetylases, methyltrans-

ferases, and phosphotransferases) have been identified in 

Acinetobacter. Reduced drug entry and alteration in target 

ribosomal protein are the other mechanisms involved in 

aminoglycoside resistance (Figure 1-II).88

Table 2 Studies showing tigecycline resistance by Acinetobacter in different regions of the world

Author Year % Tigecycline resistance 

(resistant isolate/total)

Region Reference

Kulah et al 2009 14.3 Turkey 126  

Liao et al 2008 19.1 Taiwan 127  

Dizbay et al 2008 47 Turkey 128  

Behera et al 2009 57.6 India 129  

Chang et al 2012 45.5 Taiwan 116  

Kim et al 2010 23.4 Korea 130  

Al-Sweih et al 2011 13.6 Kuwait 124  

Van et al 2014 41.3 Vietnam 131  

Baadani et al 2013 9.7 Saudi Arabia 121  

Garza-Gonzalez et al 2010 3 Mexico 132  

Garcia et al 2009 20 Chile 133  

Rizek et al 2015 0 Brazil 134  

Ahmed et al 2012 24 South Africa 135  

Capone et al 2008 27.5 Italy 136  

Mendes et al 2010 3 Worldwide 137  

Dizbat et al 2008 25.8 Turkey 138  

Farrell et al 2010 0.2 (1/397) Asia-Western Pacific 139  

Bahador et al 2013 20 Iran 140  

Hasan et al 2014 20 Pakistan 141  

Al-Agamy et al 2016 56 Saudi Arabia 142  

Chmielar et al 2016 18.4 (23/125) Poland 143  

Tsioutis et al 2016 74.2 Greece 144 
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Resistance to quinolones
Major mechanism for resistance to quinolones is mutations in 

the gyrA and parC genes, which results in phenotypic changes 

in DNA gyrase and topoisomerase IV, leading to reduced 

drug affinity.89 Drug influx and efflux system encoded by 

chromosomal DNA mediates reduced expression of OMPs 

involved in drug influx and increased expression of efflux 

proteins resulting in active drug expulsion; these are also 

responsible for quinolone resistance.90 Plasmid-encoded 

quinolone resistance determinants qnrA, qnrB, and qnrS 

have also been identified in A. baumannii that protect DNA 

by inhibiting binding of quinolones to DNA gyrase and 

topoisomerase (Figure 1-III).91,92

Mechanism of colistin resistance
The mechanisms of resistance to colistin are encoded by 

chromosomal DNA of the bacteria. Two major mechanisms 

have been reported. The first mechanism consists of mutations 

in lipid A encoding genes (lpxA, lpxC, and lpxD), resulting in 

loss of LPS, an outer part of Gram-negative organisms and an 

initial target of colistin.93 The second mechanism involves the 

two-component system of pmrAB, which is a response regula-

tor and sensor kinase. It senses the environmental conditions 

(pH, Mg2+, and Fe3+) and, in response, regulates the expres-

sion of genes involved in lipid A synthesis. Point mutations 

in pmrA and pmrB upregulate their gene expression, resulting 

in remodeling of outer membrane (Figure 1-IV).94 Recently, 

a plasmid-mediated colistin resistance gene, mcr-1, has been 

reported in Escherichia coli.95,96 Although mcr-1 gene has 

not been identified in A. baumannii, still it is speculated that 

progression from MDR Acinetobacter to pan drug resistance 

is unavoidable due to the arrival of transmissible colistin 

resistance mechanisms.97

Alternate modalities
The dilemma of rapidly increasing antibiotic resistance 

with minimal options left in hand has steered the scientific 

community to think beyond antibiotics. In the last decade, 

renaissance of research in the field of different alterna-

tives to antibiotics has intensified. Previously neglected 

modalities with therapeutic potential against MDR bacteria 

cannot be left apart. Bacteriophages are the best example 

of neglected modality. Bacteriophages and their encoded 

products such as lysins are extensively being studied as 

an alternative to antibiotics. The wild-type bacteriophages 

and their enzymatic products act in a manner like antibiot-

ics and destroy target bacteria. The first report of isolation 

and characterization of phages against A. baumannii was 

published in 2010. The phages AB1 and AB2 have specifi-

cally shown lytic behavior against A. baumannii. Since then, 

Figure 1 Different mechanisms of resistance in A. baumannii: (I) beta-lactams; (II) aminoglycosides; (III) quinolones; (IV) colistin.

Abbreviations: AME, aminoglycoside modifying enzyme; LPS, lipopolysaccharide; OMP, outer membrane porin; PBP, penicillin-binding protein.
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many lytic phages have been isolated, characterized, and 

sequenced. The bulk of in vitro studies and characterization 

of phages against A.  baumannii urged a dire need to test 

their in vivo efficacy and pharmacodynamics to fight back 

infectious diseases.98,99

Monoclonal antibodies are one alternative that can be 

used to treat A. baumannii infections. They bind to virulence 

factors of pathogens and neutralize them. It seems prudent to 

use them as an alternative due to their well-studied phenom-

ena and clinical outcomes. However, their production is too 

expensive to be used for treating infections. Probiotics are 

live bacteria that exert a healthy effect on humans. They act 

by competing for the pathogen in the acquisition of nutrition 

and space for colonization; however, their exact mechanism 

of action is under study.100

Antimicrobial peptides (AMPs) or short AMPs are pro-

duced by various eukaryotic and prokaryotic organisms as 

their part of innate host immune response. They hold the 

potential to kill bacteria, so interest in AMPs as an alternative 

to antibiotic is increasing day by day. They are broad spectrum 

in nature, have low immunogenicity, low resistance, and carry 

a solution of antibiotic resistance for Gram-positive as well as 

Gram-negative bacteria. Several peptides having in vitro and 

in vivo activities against A. baumannii have been reported. 

A hybrid of cecropin A and melittin has shown activity in 

peritoneal sepsis by pan drug-resistant strain of A. baumannii 

in an animal model of infection. Brevinin 2, alyteserin 2, and 

catonic α-helical peptides have also demonstrated bacteri-

cidal activity against A. baumannii. A proline-rich peptide 

A3-APO has exhibited greater efficacy in controlling A. 

baumannii bacteremia in comparison to imipenem in a mice 

model. A short D-enantiomeric peptide D-RR4 protected 

the Caenorhabditis elegans model of infection from lethal 

infection by A. baumannii. Many successful reports exist 

in literature about potential of AMPs against such a robust 

organism, but factors such as cytotoxicity, moderate activity, 

enzymatic degradation, and high productivity cost need to 

be evaluated prior to concluding about their systemic use as 

an antibiotic.100,101

Gene editing technique by using clustered, regularly 

interspaced short palindromic repeat (Cas) system to knock 

out the resistance gene and make it labile to antimicrobial 

therapy is another possible way to nib such bugs.

Metal chelators that are essential in the expression of 

bacterial virulence factors, such as iron, zinc, and manganese, 

can be a promising target for designing newer antimicrobial 

drugs. Artificial nanoparticles made of lipids known as “lipo-

somes” that closely resemble the membrane of host cells can 

act as decoys for bacterial toxins, and so are able to sequester 

and neutralize them.102,103

Conclusion
A. baumannii has emerged as an established nosocomial 

pathogen and exhibits a higher level of resistance to many 

antibiotics. Extensively drug resistant and pan drug resistant 

isolates are routinely being reported in various medical facili-

ties. Carbapenems, the drug of choice to treat A. baumannii 

infections, are increasingly being ineffective due to higher 

resistance rates. Even resistance to newer antimicrobial 

tigecycline is emerging rapidly. Historically discarded drug 

colistin is left as the last resort antimicrobial, but resistance 

against this drug is also being reported all over the world at 

higher rates. Such vanishing treatment options have steered 

up the scientific community to look for an alternative to 

antibiotics. These alternatives are the dire need of the time 

and hopefully will be available in future.
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