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Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal
levels. Necroptosis, an alternative form of programmed necrosis, is regulated by receptor-interacting protein (RIP) 1 activation
and by RIP3 and mixed-lineage kinase domain-like (MLKL) phosphorylation. Ferroptosis and necroptosis both play important
roles in the pathological progress in ischemic stroke, which is a complex brain disease regulated by several cell death pathways.
In the past few years, increasing evidence has suggested that the crosstalk occurs between necroptosis and ferroptosis in
ischemic stroke. However, the potential links between ferroptosis and necroptosis in ischemic stroke have not been elucidated
yet. Hence, in this review, we overview and analyze the mechanism underlying the crosstalk between necroptosis and ferroptosis
in ischemic stroke. And we find that iron overload, one mechanism of ferroptosis, leads to mitochondrial permeability transition
pore (MPTP) opening, which aggravates RIP1 phosphorylation and contributes to necroptosis. In addition, heat shock protein
90 (HSP90) induces necroptosis and ferroptosis by promoting RIP1 phosphorylation and suppressing glutathione peroxidase 4
(GPX4) activation. In this work, we try to deliver a new perspective in the exploration of novel therapeutic targets for the
treatment of ischemic stroke.

1. Introduction

Due to its increasing incidence, stroke is now the leading
cause of serious long-term disability and death [1]. Ischemic
stroke accounts for 70-80% of total stroke cases worldwide,
and survivors often experience sensorimotor disorders in
one or more body regions [1, 2]. During ischemia, the blood
supply to brain tissues is disrupted, which subsequently pro-
motes a cascade of pathophysiological responses resulting in
different types of cell death, including autophagy, apoptosis,
necroptosis, and ferroptosis [3]. Ferroptosis, a recently dis-
covered nonapoptotic form of cell death, is characterized by
iron overload, glutathione (GSH) depletion, glutathione per-
oxidase (GPX) 4 inactivation, and lipid and amino acid met-
abolic imbalances. Necroptosis, an alternative form of

programmed necrosis, is regulated by receptor-interacting
protein (RIP) 1 activation and by RIP3 and mixed-lineage
kinase domain-like (MLKL) phosphorylation via inhibition
of caspase-8. Emerging studies have reported that ferroptosis
and necroptosis both induce and aggravate brain tissue dam-
age following the onset and development of cerebral ischemia
and cerebral ischemia/reperfusion injury (CIRI) [4–8].
Regarding therapy, tissue plasminogen activator (t-PA), the
only thrombolytic drug approved by the Food and Drug
Administration for ischemic stroke treatment, dissolves
blood clots by activating a proteolytic enzyme [8]. Early
application of thrombolytic drugs is beneficial for the recov-
ery and prognosis of patients with acute ischemic stroke.
However, accumulating research has revealed that thrombo-
lytic drugs have many contraindications and narrow
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therapeutic windows and are associated with a high risk of
hemorrhagic transformation [9, 10]. In addition, delayed
administration of recombinant t-PA (rt-PA) may lead to
poor reperfusion [11, 12]. Therefore, clinical use of thrombo-
lytic drugs has recently declined. For the above reasons,
interventions targeting the specific types of programmed cell
death have been investigated to provide new ideas for the
treatment of ischemic stroke [13, 14]. Ferroptosis differs
from necroptosis in morphological characteristics; develop-
mental steps; and key regulators, inducers, and inhibitors
(Table 1). However, increasing evidence has suggested that
significant crosstalk occurs between ferroptosis and necrop-
tosis following ischemic stroke [15–21]. In this review, we
summarize the mechanism underlying the crosstalk between
necroptosis and ferroptosis in ischemic stroke. Elucidation of
this mechanism could provide a new perspective supporting
advancement of ischemic stroke treatment.

2. Ferroptosis and Cerebral Ischemia

In ischemic stroke, ferroptosis contributes to structural and
functional integrity damage including blood–brain barrier
(BBB) impairment, which is characterized by rapid neuronal
death and dysfunction. Abundant evidence has demon-
strated that the mechanisms of ferroptosis include GSH
depletion [33, 34]; GPX4 inactivation [34–36]; and metabolic
imbalances of iron [34, 37], lipids [36], and amino acids [38]
(Figure 1). We will elucidate these mechanisms and their
relationships with cerebral ischemia.

2.1. Iron Overload. Most iron comes from damaged or aged
red blood cells; this iron is released by macrophages via trans-
ferrin receptor (TFR) 1 expressed on the cell surface [39].
Macrophages first engulf red blood cells and then use heme
oxygenase to breakdown heme and eventually release iron.
The excess iron in cells is stored in ferritin. A small amount
of iron comes from food, and dietary iron consists of heme
iron and inorganic nonheme iron [40].

Heme iron and nonheme iron are absorbed as Fe (II) by
duodenal epithelial cells, and then, Fe (II) absorbed is oxi-
dized to Fe (III) by the ferroxidase hephaestin; eventually,

the Fe (III) enters the circulation via ferroportin (FPN)
[41–43]. Moreover, virtually all circulating iron binds to
transferrin (TF) in serum [44] to keep iron in a soluble form
[42], which makes it available for absorption. TF-bound Fe
(III) in circulation binds to TFR1 firstly and then Fe (III) is
taken up into acidified endosomes [45]. The content of Fe
(III) transported from the endosome to the cytoplasm as Fe
(II) by divalent metal transporter 1 (DMT1) is reduced with
the cooperation of six-transmembrane epithelial antigen of
prostate 3 (STEAP3) messenger RNA (mRNA), which is
expressed at high levels in macrophages and hepatocytes
[46, 47]. On the other hand, overload iron in the plasma pro-
motes non-TF-bound iron (NTBI) accumulation [41, 48].

Furthermore, iron is exported via FPN controlled by hep-
cidin which is the master molecule of iron negative homeo-
stasis regulation. The expression of hepcidin is regulated by
the bone morphogenetic protein (BMP)/SMAD pathway, as
well as the JAK/signal transducer and activator of transcrip-
tion 3 (STAT3) pathway and mitogen-activated protein
kinase (MAPK)/eukaryotic protein kinase (EPK) pathway
[49]. TF-bound iron causes a shift from TFR1/HFE com-
plexes to TFR2/HFE complexes and also triggers the SMAD
phosphorylation and then activates transcription gene
which encodes hepcidin [49]. Interleukin- (IL-) 6 binds
IL-6 receptor to initiate a JAK/STAT signaling and hepcidin
expression [50]. In contrast, erythropoietin inhibits hepci-
din expression and accelerates iron accumulation through
the BMP/SMAD pathway and the MAPK/EPK pathway
[49]. When the plasma iron concentration is high, diferric
TF binds TFR2 to induce upregulation of hepcidin in hepa-
tocytes. Besides, hepcidin binds to FPN to occlude outward
open FPN and accelerate FPN degradation, which decreases
iron export [51, 52].

Iron released into the circulation binds to TF and then
iron is transported to sites of storage and utilization [53].
For example, iron is involved in processes such as the synthe-
sis of some proteins, including hemoglobin and myoglobin,
and redox reactions. There are multiple pathways of iron uti-
lization by erythroblasts in mammals, including pathways
involving TFR1 and the diferric TF-TFR1 complex [53]. TF
and TFR are the major iron transporters under physiological

Table 1: Schematic overview of ferroptosis and necroptosis in ischemic stroke. JAK: Janus kinase; STEAP3: six-transmembrane epithelial
antigen of prostate 3; ACSL4: acyl-CoA synthetase long-chain family member 4; FPN: ferroportin; TFR1: transferrin receptor 1; PHKG2:
phosphorylase kinase G2; NADPH: nicotinamide adenine dinucleotide phosphate; TNFR: tumor necrosis factor receptor; DFO:
deferoxamine; Nec-1: necrostatin-1.

Ferroptosis Necroptosis

Morphological
characteristics

Shrunken mitochondria, fragmented mitochondria, enlarged
cristae, dense membrane, lipid radicals

Necrosomes, ion-selective channels formed by
MLKL, round and swollen cells, broken plasma

membrane

Developmental
steps

Iron overload, GSH depletion, GPX4 inactivation, lipid
peroxidation, system xc

- impairment
RIP1 activation, RIP3 and MLKL phosphorylation

Key regulators
GPX4, JAK, STEAP3, TFR1, ACSL4, FPN, PHKG2, p53, NADPH

oxidase
RIP1, RIP3, MLKL, Fas/TNFR, p53

Inducers and
inhibitors

Inducers: erastin [22], sorafenib [23], acrolein [22]
Inhibitors: DFO [24], vitamin B12 [25], carvacrol [26], Chinese

herbal medicines including naotaifang [27]

Inducers: alkylating agents [28], X-rays [29]
Inhibitors: Nec-1 [30], infliximab [7], dabrafenib
[31], Chinese herbal medicines including curcumin

[32]

2 Oxidative Medicine and Cellular Longevity



conditions, instead of SLC39A14 which is a member of the
solute carrier 39 family mediating cellular uptake of iron,
zinc, and manganese [54, 55]. However, SLC39A14 func-
tions as the hepatic transporter of NTBI in the absence
of TF [54, 55]. Indeed, hepatocyte-specific TF-knockout
(TF-LKO) mice exhibit increased serum levels of NTBI and
develop iron overload in a variety of tissues [54]. Further-
more, TF-LKO mice exhibit reduced expression of TFR1 at
both the mRNA and protein levels; meanwhile, TF-LKO
mice exhibit increased expression of ferritin-L and ferritin-
H at the protein level [54].

Normally, iron metabolism in the body is stable and
beneficial. Furthermore, iron regulatory proteins (IRP) 1
and IRP2, which are central regulators of cellular iron
homeostasis, are vital in the process of iron metabolism.
Ferric ions bind to iron-regulatory element (IRE) with high
affinity, which enables tight coordination between cellular
iron uptake and ferritin/heme synthesis [56]. This tight
coordination increases iron levels by repressing the transla-
tion of ferritin and maintaining the stability of TFR1 mRNA
at low levels of intracellular iron [56]. As an effective redox
cycling metal, iron has the potential to catalyze the produc-
tion of noxious free radicals, especially in the central nervous
system [57].

Ferroptosis ultimately leads to decreased neural function
and/or structural integrity of the brain. In an ischemic stroke

mouse model, free radical production and excessive iron have
been found to lead to an oxidative stress response and neuro-
nal death by causing prolonged upregulation of TFR1 and
increasing peripheral iron uptake [58, 59]. The oxidative
stress response eventually has an adverse effect on disease
recovery [58, 59]. After ischemic stroke, disruption of the
BBB enables excessive accumulation of intracellular or extra-
cellular fluids in the brain, which results in brain edema and
aggravates the degrees of brain tissue injury and nerve dys-
function. Numerous studies have demonstrated that BBB
disruption is related to the ability of iron pools from the
blood gain sudden accessing to the brain parenchyma, and
overload iron aggravates ferroptosis which is induced by lipid
peroxidation via Fenton’s reaction [13, 60, 61]. Thus, changes
in iron content in brain tissues reflect the extent of BBB
dysfunction.

2.2. GSH Depletion and GPX4 Inactivation. Metabolism of
iron plays a vital regulatory role in ferroptosis, which can
be reversed by GPX4 activation and GSH production. GSH,
a tripeptide containing a sulfhydryl group, is composed of
glutamate, glycine, and cysteine. Besides, GSH is synthesized
from cystine transported by system xc

-. As a vital antioxidant,
GSH plays an important role in free radical scavenging and
detoxification through glutathione S-transferase and GPX4
[62, 63]. On the other hand, system xc

- impairment inhibits
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Figure 1: The mechanisms of ferroptosis in ischemic stroke. (1) Following ischemic stroke, BBB is disrupted, which allows Fe (III) in the
blood to be released into the brain parenchyma with the cooperation of TF and TFR1. Fe (III) is transported from the endosome to the
cytoplasm as Fe (II) by DMT1 with the cooperation of STEAP3. Iron overload accelerates lipid ROS accumulation and ferroptosis via
Fenton reaction. (2) System xc- is simultaneously impaired, which inhibits cystine-glutamate exchange and decreases the generation of the
antioxidant GSH and GPX4. (3) Metabolic imbalances of lipids and amino acids aggravate lipid ROS accumulation and ferroptosis.
LPCAT3: lysophosphatidylcholine acyltransferase 3; H2O2: hydrogen peroxide; GSSG: oxidized glutathione.
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cystine-glutamate exchange, suppresses GSH production and
GPX4 activation [64], and eventually results in ferroptosis
and neuronal impairment. Indeed, the levels of GSH are
decreased in stroke patients and middle cerebral artery occlu-
sion (MCAO) animal models [65].

GPX4, a vital antioxidant enzyme, converts lipid
hydroperoxides into nontoxic lipid alcohols, which pre-
vents ferroptosis [66]. Constitutive deletion of the mouse
GPX4 gene or inactivation of GPX4 adversely affects normal
embryonic development [67, 68], which leads to neurological
dysfunction. More importantly, inactivation of GPX4 also
leads to ferroptosis when glutamine is deficient [69]. There-
fore, GPX4 inactivation is a major factor in ferroptosis. Con-
sistently, loss of GPX4 leads to ferroptosis, which manifests
mainly as progressive cognitive dysfunction and impaired
behavior in the context of ischemic stroke [70, 71]. Thus,
inactivation or loss of the ferroptosis regulator GPX4 triggers
cerebral ischemia. However, activation of the p53 tumor sup-
pressor regulates ferroptotic responses without visibly
influencing GPX4 function [72]. Furthermore, p53 positively
regulates ferroptosis by inhibiting the expression of the cysti-
ne/glutamate antiporter SLC7A11 (light chain of subunit of
system xc

-) [73]. In addition, the expression levels of
SLC7A11, GPX4, and GSH are decreased in MCAO rats [27].

2.3. Lipid and Amino Acid Metabolism Imbalances. The initi-
ation and execution of ferroptosis lie at the intersection of
amino acid, lipid, and iron metabolism [74]. GPX4 converts
potentially toxic lipid hydroperoxide (L-OOH) to nontoxic
lipid alcohol (L-OH) [74, 75]. Inactivation of GPX4 or deple-
tion of GSH ultimately results in overwhelming lipid peroxi-
dation that causes ferroptosis. In the central nervous system,
lipids and lipid mediators are essential for maintenance of
normal brain tissue structure and function. Besides, some
lipids have either neuroprotective or neurodegenerative
effects on poststroke brain tissue [76]. Arteriosclerosis is a
major cause of stroke and associated with lipid deposition.
Lentivirus-mediated A20 overexpression increases ROS gen-
eration in lipid-rich environments and enhances erastin-
induced ferroptosis which is associated with GPX4 down-
regulation and acyl-CoA synthetase long-chain family mem-
ber (ACSL) 4 upregulation [77]. Phosphorylase kinase G2
(PHKG2) regulates the availability of iron to lipoxygenase
and lipids, including polyunsaturated fatty acids (PUFAs)
with labile bis-allylic hydrogen atoms [78]. The abundance
and localization of PUFAs determine the degrees of lipid per-
oxidation [78]. And free fatty acids are substrates for the syn-
thesis of lipid signaling media, but PUFAs and free fatty acids
must be esterified to membrane phospholipids and oxidized
to participate in ferroptosis [78, 79]. In this process, ACSL4
catalyzes fatty acids to form acyl-CoAs which promotes fatty
acid oxidation or lipid biosynthesis [80]. The research indi-
cates that lipid oxidation upon GPX4 inhibition requires
ACSL4 [80]. Further, GPX4-ACSL4 double-knockout cells
show marked resistance to ferroptosis, which means ACSL4
is a component essential for ferroptosis execution and sensi-
tive to ferroptosis [80]. Meanwhile, ACSL4 deficiency is
accompanied by a significant and preferential decrease of
phosphatidylethanolamine (PE) species [80]. PEs containing

arachidonic acid, which are located upstream of lipid perox-
idation, are key phospholipids that drive ferroptosis via oxi-
dation and lipoxygenase. Lipid peroxidation is the driving
force of cell death in ferroptosis [79], and heme-mediated
lipid peroxidation may be particularly important. Heme deg-
radation products, such as iron, have been shown to regulate
inflammation, apoptosis, and antioxidant defense by heme
oxygenase and isozymes, including hmox1 and hmox2 [81].
hmox1 affects vascular tension through its antioxidant activ-
ity, but hmox2 enhances cerebral blood flow during hypoxia
by regulating the hydrogen sulfide pathway [81]. Further-
more, lipid peroxidation products are used as potential bio-
markers of ischemic stroke. Indeed, multiple clinical studies
have demonstrated that lipid peroxidation is positively corre-
lated with the severity of neurological deficits [82, 83].

Amino acid metabolism imbalance promotes ferroptosis.
The step in which glutaminolysis produces glutamate is cata-
lyzed by glutaminase 1 and glutaminase 2 in ferroptosis [84].
Glutaminase 1 inhibitor suppresses ferroptosis and protects
tissues from ischemia-reperfusion injury by ablating glutami-
nolysis [84]. Besides, glutaminase 2 is the p53 target gene,
and upregulation of glutaminase 2 results in p53-dependent
ferroptosis [85]. Glutaminolysis and the glutamine-fueled
intracellular metabolic pathway [84] also contribute to cyste-
ine deprivation and increase of glutamate levels, which acti-
vates glutamate N-methyl-D-aspartic acid receptors and
accelerates neuronal iron uptake [86]. Because cysteine
availability is the limiting factor for the biosynthesis of glu-
tathione, some cells that are resistant to ferroptosis induced
by system xc

- inhibitors leverage the transsulfuration path-
way to biosynthesize cysteine from methionine and subse-
quently bypass the requirement for cystine import via the
cystine/glutamate antiporter system xc

- [74]. In addition,
the mevalonate pathway produces antioxidants or activates
selenocysteine transfer RNA, which enhances GPX4 expres-
sion [36]. Consistent with these findings, extracellular gluta-
mate concentrations are markedly increased in MCAO rats,
which accelerates neuronal iron uptake and results in
excitotoxicity-related cell death [86, 87].

3. Ferroptosis in CIRI

Restoring the cerebral circulation following a period of
occlusion reestablishes tissue oxygenation, which leads to
CIRI [88, 89]. Because reperfusion aggravates metabolic dys-
function and structural destruction, CIRI is the main factor
associated with the high mortality and disability rates for
ischemic stroke [90]. The extent of tissue injury is directly
related to the extent of blood flow reduction and to the
length of the ischemic period, and it also affects the levels
of cellular adenosine triphosphate and intracellular pH
[91]. Furthermore, the release of adenosine triphosphate
modulates alpha 1-adrenergic receptor signaling. One study
has explained that alpha 1-adrenergic receptor is critical for
perfusion redistribution: activity of the receptor is a prereq-
uisite for redistribution of cerebral blood flow, but the
receptor subtype may determine the magnitude of redistri-
bution responses [92]. Therefore, activation of the alpha 1-
adrenergic receptor pathway is a potential strategy for
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decreasing infarct size in CIRI. On the other hand, CIRI
promotes the activation of cell death programs, including
apoptosis, autophagy-associated cell death, ferroptosis, and
necroptosis, by pattern-recognition molecules such as toll-
like receptors, which recruit and activate immune system
and complement system components [93]. Related research
has revealed that activation of peroxisome proliferator-
activated receptor-gamma (PPAR-γ) suppresses toll-like
receptor-mediated stimulation of dendritic cells [94], thereby
inhibiting the immune system. Besides, an agonist of PPAR-γ
reduces hematoma volume and then decreases iron content
from blood accessing to the brain, which attenuates iron
overload [95]. In other words, marked decreases in PPAR-γ
expression [96] contribute to the activation of ferroptosis in
CIRI. Another study has found that PPAR-γ and ACSL4
both promote fat deposition [97]. Besides, ACSL4 inhibition
prior to reperfusion suppresses ferroptosis because low
expression of ACSL4 improves GPX4 expression and reduces
ferroptotic marker levels [98]. Accumulating evidence has
demonstrated that ferroptosis is dependent on iron or iron-
dependent ROS [99, 100]. Iron overload causes prolonged
upregulation of transport receptors, increases peripheral iron
uptake via the BBB, and exacerbates the risk of hemorrhagic
transformation [101]. Besides, iron overload also enhances
basal serum lipid peroxidation after early t-PA administra-
tion [101]. Related research has found that t-PA restores
blood flow to the brain but prolonged reperfusion also results
in CIRI [102]. Notably, targeted iron-mediated oxidative
stress extends the time window for the treatment of ischemia
or reperfusion events [58]. Lipid and amino acid metabolism
is also imbalanced in CIRI. For example, the activity levels of
malondialdehyde (MDA) and nitric oxide (NO) are
increased, and the levels of superoxide dismutase (SOD)
and GPX4 are decreased in a CIRI mouse model and an
oxygen-glucose deprivation/reoxygenation (OGD/R) cell
model [103]. Therefore, therapeutics for iron-mediated oxi-
dative stress are effective for CIRI.

Mitochondria are essential for maintaining cellular
homeostasis and function, and mitochondrial dysfunction
plays an important role in the pathogenesis of cardiovas-
cular and neurodegenerative diseases [104]. Mitochondria-
targeted antioxidant Mito-TEMPO obviously rescues doxoru-
bicin cardiomyopathy, supporting oxidative damage of mito-
chondria as a major mechanism in ferroptosis-induced heart
damage [105]. More importantly, ferrostatin-1 and iron chela-
tion also alleviate heart failure induced by I/R in mice [105].
Another research has indicated that ubiquitin-specific prote-
ase 22, a member of the deubiquitinase family, protects
against myocardial ischemia-reperfusion injury via the
SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-
induced cardiomyocyte death [106]. These findings highlight
that targeting ferroptosis serves as a cardioprotective strategy
for cardiomyopathy prevention [107, 108]. The similar
research in the central nervous system indicated that ferrop-
tosis may be also an emerging target in CIRI [109]. A study
has found that the levels of lncRNA PVT1 are upregulated
and miR-214 levels are downregulated in plasma of acute
ischemic stroke patients [109]. PVT1 silencing or miR-214
overexpression significantly reduces infarct size and sup-

presses ferroptosis in CIRI mice. PVT1 overexpression or
miR-214 silencing markedly abolishes the effects of
ferrostatin-1 on ferroptosis indicators except for TFR1
expression [109]. Carthamin yellow, a flavonoid compound
extracted from safflower, has been reported to inhibit Fe
(II) and ROS accumulation and reverse ACSL4, TFR1,
GPX4, and ferritin heavy chain 1 protein expression levels
in the brain of CIRI rats [110].

As the protein associated with iron metabolism, TFR has
two types, TFR1 and TFR2. The expression of TFR1 is
increased in the cerebral cortex and hippocampus on the
ischemic side [111]. TFR2 is an iron modulator transcribed
in two isoforms, TFR2α and TFR2β [112]. It has been
reported that TFR2β increased in wild-type mouse hearts
subject to I/R, and both TFR2β null mouse hearts are pro-
tected against I/R injury (about 40% smaller infarct size
compared to wild-type mouse hearts) [112]. TFR2β-KI
(lacking TFR2β mouse model) hearts have showed an
increased ferritin heavy chain and a decreased FPN1, while
LCKO-KI (selective inactivation of liver TFR2α in KI mice)
hearts have presented an upregulation of ferritin-L chain
and DMT1/hepcidin-RNA [112]. Another central nerve
study indicated that TFR2β deletion exerts neuroprotection
against dopaminergic degeneration and against Parkinson’s
disease- and aging-related iron overload [113]. However,
the efficacy of the regulation of TFR2β on the CIRI remains
unclear; further research should be carried out.

4. Necroptosis

Cells undergoing necroptosis have the morphological charac-
teristics of necrotic cells and signal regulation similar to that
of apoptotic cells. Necroptosis is a programmed cell death
pathway under the precise regulation of a series of intracellu-
lar factors [88, 114]. The main morphological manifestations
of necroptosis are membrane pore formation, cell swelling,
cell membrane rupture, and cell content release [7]. In addi-
tion, necroptosis is mediated by RIP1 activation and RIP3
and MLKL phosphorylation [115, 116].

Coordinated and interdependent RIP1 phosphorylation
and ubiquitination in the necrotic complex are important
factors in necroptosis [117]. Almost half of the amino acid
sequences of RIP1 and RIP3 are shared, and the topological
features of these proteins are similar [118]. The intermediate
domain of RIP1 contains a receptor-interacting protein
homotypic interaction motif (RHIM) that binds to the RHIM
in RIP3, which forms a necrosome [114]. Moreover, the crit-
ical necrosome constituents RIP1 and RIP3 play roles as sig-
naling intermediates during MLKL activation. MLKL protein
inhibition or inactivation is necessary for necroptosis [119,
120]. Necroptosis represents the intersection of apoptosis
and necrosis. However, the downstream signaling pathway
of necroptosis, unlike that of apoptosis, is not linked with
caspase [88, 121]. Factors related to necroptosis include the
tumor necrosis factor receptor (TNFR) superfamily, hypoxia,
and other environmental stimuli. The TNFR superfamily, the
main factor of necroptosis, has been deeply researched. Its
relationship with necroptosis is shown in Figure 2.
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The binding of tumor necrosis factor-alpha (TNF-α) and
death receptors, such as TNFR1, contributes to the binding of
RIP1 and death receptors [122]. Complex I, which consists of
RIP1 and many death receptors, forms complex II through
the deubiquitinase cylindromatosis (CYLD). When RIP1
deubiquitination and caspase-8 are inhibited, RIP3 binds to
RIP1, which forms complex IIb (necrosome) including
RIP1, RIP3, andMLKL. The formation of necrosome is based
on the similar N-terminal kinase domain and the shared
RHIM of the C-terminus between RIP1 and RIP3 [100,
123]. Necroptosis is linked with RIP1 deubiquitination. In
contrast, RIP1 ubiquitination leads to the recruitment of
the I kappa B kinase complex and transforming growth
factor-beta-activated kinase 1, which activates the nuclear
factor-kappa B (NF-κB) and MAPK pathways [124–127]
and subsequently suppresses programmed cell death. Fur-
thermore, increased RIP1 ubiquitination impairs RIP1 and
RIP3 phosphorylation [128]. The occurrence of necroptosis
is related to MLKL phosphorylation by RIP3 [129]. In addi-
tion, the downstream factor of RIP3, calcium/calmodulin-
dependent protein kinase II, increases ROS levels to induce
mitochondrial dysfunction [130]. Phosphorylation of RIP3
and MLKL activates phosphoglycerate mutase family mem-
ber 5 (PGAM5) and then induces necroptosis [131, 132] in
collaboration with dynamin-related protein 1 (Drp1) which
is a dynamics-related protein that mediates mitochondrial
fission, fusion, and mitophagy [133]. Moreover, RIP3
induces mitochondrial permeability transition pore (MPTP)
opening via the endoplasmic reticulum stress/calcium over-

load/ROS pathway [114]. Therefore, the RIP1/RIP3 complex
and MLKL phosphorylation are key participants in and spe-
cific biochemical markers of necroptosis [134].

5. Necroptosis in Cerebral Ischemia and CIRI

Necroptosis has two different outcomes for disease progres-
sion. On the one hand, necroptosis promotes cell death and
neuroinflammation in the contexts of several neurodegener-
ative conditions [135] and then induces cardiomyocyte
injury [136]. On the other hand, necroptosis may produce
an immune response, which prevents tumor progression or
produces an immunosuppressive microenvironment [137].
However, the recruited inflammatory response promotes
tumor progression [137]. Specifically, necroptosis attenuates
inflammation induced by TNF-α and lipopolysaccharide,
which is beneficial to intracellular pathogens that trigger this
type of cell death by dampening the host immune response
[138].

Sequential expression of TNF-α is found primarily in the
neurons and glia of the infarction core in ischemic stroke,
and dying cells are also detected in this area [139]. These
above indicate that stimulation of the Fas/TNFR family trig-
gers cell death and then aggravates cerebral ischemia and
CIRI [6, 129]. Relevant research has proven that necroptosis
activation leads to acute injury in the infarct area of an
MCAO/reperfusion (MCAO/R) mouse model [8]. Besides,
changes of necroptosis markers are time dependent in CIRI,
and the peak time of necroptosis is 12 hours after reperfusion
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[140]. The findings indicate that RIP3 deletion, MLKL dele-
tion, or necroptosis loss-of-function is the potential thera-
peutic strategy for neuroprotection in ischemic stroke [8].

Microglia, the primary immune cells of the central ner-
vous system, undergo necroptosis in diverse pathological
processes. Microglia are macrophage-like cells of the central
nervous system with two possible phenotypes: the M1 phe-
notype, which expresses proinflammatory factors, and the
M2 phenotype, which expresses anti-inflammatory factors
[141]. Activated microglia release proinflammatory cyto-
kines and promote cell necroptosis [70]. In one study, a
model simulating ischemia is constructed with neurons
expressing RIP3, and these neurons produce proinflamma-
tory cytokines such as IL-18 and TNF-α in vitro [142]. In
contrast, ischemic RIP3-deficient neurons secrete the anti-
inflammatory cytokines IL-4 and IL-10 [142]. Thus, RIP3
and MLKL induce microglial polarization towards the M1
phenotype. Further research has suggested that M1 microglia
and their receptors induce epithelial cell injury and BBB
destruction [7].

6. Crosstalk between Ferroptosis
and Necroptosis

Ferroptosis and necroptosis are different forms of cell death,
but multiple lines of structural, functional, and mechanistic
evidence indicate that crosstalk occurs between them
(Figure 3).

6.1. MPTP Opening. Ferroptosis is characterized morpholog-
ically as follows: the presence of abnormally small normal
mitochondria with condensed mitochondrial membranes;
decreased numbers of, or a lack of, mitochondrial cristae;
outer mitochondrial membrane rupture; and an electron
lucent nucleus [73, 143, 144]. Moreover, nuclear membrane
damage is induced prior to cytoplasmic membrane damage
in ferroptosis [144]. Necroptosis is morphologically charac-
terized by cellular organelle swelling, cell membrane rupture,
and dilation of the perinuclear space [7, 144]. These results
show that the structural changes associated with ferroptosis
occur mainly in mitochondria and are characterized by mito-
chondrial atrophy, while the structural changes associated
with necroptosis occur in multiple organelles, including
mitochondria [145, 146]. However, these changes eventually
result in cell membrane rupture, mitochondrial membrane
potential depolarization, andMPTP opening. MPTP opening
leads to mitochondrial energetic dysfunction, organelle
swelling, rupture [147], and typically ferroptosis [148] and
necroptosis [149]. Ischemic stroke and subsequent CIRI pro-
mote ROS production in the mitochondria of neuronal cells,
and the MPTP is deeply involved in this process [150]. Some
studies have shown that RIP3 upregulation leads to calcium
influx, calcium/calmodulin-dependent protein kinase II acti-
vation, xanthine oxidase expression, and excess ROS produc-
tion in the ischemic environment [149]. Meanwhile, RIP3
upregulation also induces MPTP opening via endoplasmic
reticulum-calcium-xanthine oxidase signaling pathways
[149, 151–154]. The changes above eventually result in
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increased membrane permeability and mitochondrial swell-
ing and dysfunction [149, 151–154]. In addition, necrosome
promotes MPTP opening and ROS generation, which ulti-
mately leads to TNF-α-independent necroptosis [20]. GSH
reduction and GPX4 inhibition contribute to lipoxygenase
activation and calcium influx, which induces MPTP opening
and mitochondrial dysfunction [18]. On the other hand,
lipoxygenase activation and GPX4 inhibition aggravate lipid
peroxide production, which induces ferroptosis formation
[155]. Iron overload, one of the mechanisms of ferroptosis,
has been shown to trigger MPTP opening and necroptosis
via induction of ROS accumulation in osteoblastic cells
[156]. Furthermore, ROS-mediated endoplasmic reticulum
stress and mitochondrial dysfunction are known to promote
structural and functional injury in the nervous system [157].
Other studies have indicated that endoplasmic reticulum
stress is linked with ferroptosis via toxic lipid peroxides
[158]. Besides, ferroptosis and endoplasmic reticulum stress
response activation are induced by system xc

- inhibition
[158]. Aside from cell membrane and mitochondrial injury,
another common pathological feature of ferroptosis and
necroptosis is BBB damage. Notably, macrophage andmicro-
glial activation is found in ferroptotic tissue [17].

6.2. Cysteine and HSP90. The cysteine plays important roles
in both ferroptosis and necroptosis in the central nervous
system. Three cysteines (C257, C268 and C586) in RIP1 form
intermolecular disulfide bonds, which induce ROS produc-
tion, subsequently inducing RIP1 autophosphorylation on
serine residue 161. The autophosphorylation enables RIP1
to recruit RIP3, which forms a functional necrosome
[159]. In addition, cysteine can be converted to cystine in
most tissues. As a cystine/glutamate antiporter, SLC7A11
transports cystine to downregulate ferroptosis [38]. There-
fore, SLC7A11 plays a key role in antioxidant defense.
Besides a key regulator of ferroptosis, SLC7A11 is also a tar-
get for coordinating immunotherapy with radiotherapy
[160]. For example, SLC7A11 inhibition leads to mixed-
type cell death via ferroptosis and necroptosis in a context-
dependent manner in hepatocellular carcinoma cells [161].

Moreover, some studies have found that substances con-
taining cysteine play vital roles in the outcomes of ferroptosis
and necroptosis. For example, one novel study found that
knockdown of progranulin which is a secreted glycoprotein
and cysteine-rich growth factor, significantly promotes
necroptosis in MCAO mice [162]. In addition, progranulin-
regulated ischemic stroke is associated with ROS accumula-
tion [162]. MCAO mice with progranulin knockdown man-
ifest severe oxidative stress, as evidenced by increased MDA
content and reduced SOD activity [162]. Therefore, progra-
nulin is a common regulator in ferroptosis and necroptosis.
Heat shock protein 90 (HSP90) contains 6 cysteines, and
the expression of HSP90 is increased during OGD injury
[19]. HSP90 not only has beneficial influences in cells but
also stabilizes some death signal proteins and promotes cell
death [19, 163]. In addition, Triad3A, an E3 ubiquitin-
protein ligase, promotes the downregulation of RIP1 [21].
RIP1 forms a complex with Triad3A and HSP90. TNF-α-ini-
tiated stimulation does not alter the binding of HSP90 to

RIP1, which means that both Triad3A and HSP90 may coop-
eratively regulate the homeostasis of RIP1 [21]. The finding
also indicates that HSP90 promotes the formation of the
RIP1/RIP3 complex [19]. Another study has indicated that
HSP90-associated chaperone-mediated autophagy promotes
GPX4 degradation and ferroptosis formation by regulation
of LAMP2A stability [16]. An inhibitor of HSP90, 2-amino-
5-chloro-N,3-dimethylbenzamide (CDDO), blocks necrop-
tosis by inhibiting RIP1 activation, which means HSP90
accelerates RIP1 phosphorylation. Furthermore, consistent
with the interaction of HSP90 and GPX4 [15, 16], CDDO
suppresses GPX4 degradation and ferroptosis formation by
blocking chaperone-mediated autophagy [164]. Another
HSP90 inhibitor tanespimycin (17-allylamino-17-demethox-
ygeldanamycin) has been proved to exert inhibitory effect on
both necroptosis and ferroptosis in HT-22 cells treated with
TNF-α/zVAD.fmk or erastin [164]. Tanespimycin also
improves neurobehavior of subarachnoid hemorrhage rats
via HSP90/RIP3/NOD-like receptor family pyrin-domain
containing 3 (NLRP3) signaling pathway [165]. Except for
that, general control nonderepressible 2 (GCN2) expression
is increased in MCAO mice [166]. Besides, HSP90 improves
the activity and lever of GCN2 [167]. Further research has
proven that the GCN2-eIF2α-activating transcription factor
4 (ATF4) pathway is the downstream of RIP1-RIP3-MLKL.
And ATF4-regulated gene, glutathione-specific gamma-
glutamylcyclotransferase 1 (CHAC1), is the downstream of
GCN2-eIF2α-ATF4 pathway [168]. Cystine starvation
induces necroptosis and ferroptosis through the activated
GCN2-eIF2α-ATF4 pathway in the triple-negative breast
cancer cells [168]. Therefore, we speculate that as a common
regulatory node between necroptosis and ferroptosis, HSP90
is the potential therapeutic target and its inhibitor suppresses
necroptosis and ferroptosis in ischemic stroke through the
GCN2-eIF2α-ATF4 signaling pathway.

Based on the mechanisms of ferroptosis and necroptosis,
the mechanisms of drugs against ischemic stroke targeting
ferroptosis or necroptosis are explained from several per-
spectives below (Tables 2 and 3).

7. Pharmacotherapies for Ischemic Stroke
Targeting Ferroptosis and Necroptosis

At present, the clinical treatment of ischemic stroke involves
intervention measures to restore blood flow via drug-based
or mechanical thrombolysis. However, these measures have
limited success, and there are no effective intervention or
treatment measures to protect the brain against cell death
[169, 170]. Accumulating evidence demonstrates that ferrop-
tosis accelerates ischemic stroke, and ferroptosis inhibition
can significantly reduce disease severity and facilitate func-
tional recovery [170].

Deferoxamine (DFO), an iron chelator widely used to
treat iron overload, reduces the cerebral infarct volume
in MCAO rats and suppresses ferroptosis by promoting
erythropoietin synthesis and increasing hypoxia-inducible
factor-alpha (HIF-α) levels [24]. Although HIF-α plays
an adverse role in ischemic stroke [171], it induces human
umbilical cord blood hematopoietic stem cells to produce
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Table 2: Pharmacotherapies targeting ferroptosis and necroptosis against cerebral ischemia or ischemic stroke. BCAS: bilateral common
carotid artery stenosis.

Pharmacotherapy Subject Effects References

Ferroptosis

DFO MCAO rats Decreases infarct volume [24]

Statin Acute ischemic stroke patients Reduces cholesterol and enhances early reperfusion [173, 175]

Vitamin B12
Lacunar stroke patients

MCAO model; one patient
Protects the BBB; improves neurological function;

endothelial cell protection
[25, 176, 177]

Promethazine
HT1080 cell ferroptosis model;

MCAO model
Suppresses ferroptosis; an excellent therapeutic effect;

a good ability to permeate the BBB
[178]

Naotaifang MCAO rats Reduces ROS, MDA, and iron accumulation [27]

Carvacrol Ischemic stroke gerbils Reduces lipid peroxidation levels and increases GPX4 expression [26]

Ferroptosis; necroptosis

17-DMAG
MCAO mice; OGD-subjected

bEnd.3 cells
Protects the BBB; inhibits HSP90 expression;

suppresses inflammation
[186]

Necroptosis

Nec-1 BCAS mice
Inhibits RIP1 and RIP3 to reduce inflammation and

improve cognitive function
[30]

Nec-1 MCAO rats
Decreases phosphorylated RIP1, RIP3, MLKL, and
phosphorylated MLKL levels and the numbers of

phosphorylated RIP1+ neurons
[188]

Necrosulfonamide MCAO mice
Reduces MLKL expression and infarct volume and

improves neurological function
[189]

Dabrafenib
Focal ischemic brain
injury model mice

Reduces TNF-α mRNA levels and infarct size [31]

Infliximab tMCAO rats
Reduces mitochondrial damage, cytoplasm transparency,

and BBB permeability
[7]

Gsk′872+RIP3 siRNA
MCAO mice;

OGD-subjected HT-22 cells
Reduces RIP1, RIP3, MLKL, and phosphorylated MLKL

levels to protect the neurological system
[171]

Ligustroflavone MCAO rats
Reduces RIP3, MLKL, and phosphorylated MLKL

levels to improve neurological function
[190]

Table 3: Pharmacotherapies against CIRI targeting ferroptosis and necroptosis. BBCAO/R: bilateral common carotid artery occlusion and
reperfusion.

Pharmacotherapy Subject Effect References

Ferroptosis

Metformin BBCAO/R rats Reduces GPX, SOD, MDA, and catalase levels [191]

Galangin MCAO/R gerbils Increases the expression of SLC7A11 and GPX4; hippocampal neuron protection [192]

Xinshao formula MCAO/R rats
Increases the activity of SOD and GPX4; decreases the activity of inducible nitric

oxide synthase and the content of NO, ROS, and MDA
[196]

Carthamin yellow MCAO/R rats
Decreases Fe (II) and ROS accumulation and MDA lever; increases GSH and GPX4

lever
[110]

Edaravone MCAO/R rats Reduces ROS generation, cerebral infarct size, and neurological defects [198]

Necroptosis

Cyclosporine-A BBCAO/R rats Inhibits MPTP opening; reduces RIP1 and RIP3 levels [199]

Nec-1 MCAO/R rats
Suppresses RIP1-RIP3 interaction and RIP3 activation; decreases the dead rate of

neurons in the hippocampal CA1 region
[200]

β-Caryophyllene
OGD/R neuron cell;

MCAO/R mice
Decreases TNF-α, IL-1β, and toll-like receptor 4 levels; decreases RIP1 and RIP3

expression and MLKL phosphorylation
[202]

Emricasan
+ponatinib

MCAO/R rats Decreases RIP1, RIP3, and MLKL expression; reduces the activity of caspase-8 [203]
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Epac1, which improves cerebral blood flow and promotes
neurite outgrowth following ischemic stroke [172]. Ferropto-
sis is also suppressed by lipophilic antioxidants, including
statins and vitamin B12. For example, as inhibitors of
the hydroxymethylglutaryl-CoA reductase enzyme, statins
inhibit lipid biosynthetic pathway, which reduces infarct size,
neurological deficits, and adverse events in 1712 patients
with acute ischemic stroke [173]. Apart from exhibiting
lipid-lowering activity, statins have also been proven to be
effective in improving endothelial function, increasing early
reperfusion [174], and attenuating inflammatory and oxida-
tive stress-related damage [175]. These effects reduce lipid
peroxidation, protect the BBB, and prevent free iron from
entering brain tissue, which suppresses ferroptosis. Homo-
cysteine has been proven to be an adverse factor in ischemic
stroke, because homocysteine activates microglia and
induces proinflammatory cytokine release and promotes
lipid peroxidation. Therefore, vitamin B12 (cyanocobalamin)
reduces oxidative stress and lipid peroxidation by lowering
homocysteine levels [25]. The changes are beneficial to
inhibit ferroptosis, protect the integrity of endothelial cells
and the BBB, promote neural repair, and improve recovery
in ischemic stroke [25, 176, 177]. In addition to vitamin
B12, the most potent compound 2-(1-(4-(4-methylpipera-
zin-1-yl) phenyl) ethyl)-10H-phenothiazine (51) of pro-
methazine has a good ability to permeate the BBB and good
therapeutic effect in MCAO model [178]. Meanwhile, it also
suppresses erastin-induced ferroptosis [178]. Leptin is an
adipocyte-derived hormone that acts as inhibiting glutamate
release in the hippocampal CA3 field [179], which attenuates
ferroptosis induced by glutamate excitotoxicity [180],
increases cerebral blood flow in hypoperfused rat brains, pro-
tects neurologic function, and reduces infarct size [181, 182].
However, a research found that the leptin level is high in
patients and mice after acute ischemic stroke [183]. The high
leptin lever upregulates inflammatory factor lever [183],
mediates GPX4 downregulation, and accelerates iron over-
load, which eventually leads to ferroptosis [184]. Therefore,
leptin has become a potential target for the treatment of
ischemic stroke. In addition to the synthetic drugs above,
Chinese herbal medicines are critical in pharmacotherapies
for ischemic stroke. For example, naotaifang, a compound
Chinese herbal medicine, reduces the ROS levels and lipid
peroxidation production [27]. It also increases the expression
of GPX4 and GSH, which inhibits ferroptosis via the
TFR1/DMT1 and SCL7A11/GPX4 pathways [27]. Apart
from traditional Chinese medicinal compounds, the effects
of the chemical components of Chinese herbs in pharmaco-
therapies for ischemic stroke have received increasing atten-
tion. Carvacrol has been found to reduce lipid peroxidation
levels and increase GPX4 expression, which help suppress
ferroptosis and protect the structure and function of hippo-
campal neurons in an ischemic stroke gerbil model [26].
Schisandrin may be a potential therapeutic agent targeting
ferroptosis in ischemic stroke because schisandrin A protects
mitochondria and eliminates excessive ROS [185], thereby
reducing lipid peroxidation levels to inhibit ferroptosis.

In addition to pharmacotherapies targeting ferroptosis,
other pharmacotherapies targeting necroptosis and the cross-

talk between ferroptosis and necroptosis in ischemic stroke
have also been further researched. HSP90 is the common reg-
ulator of ferroptosis and necroptosis. The selective HSP90
inhibitor17-dimethylaminoethylamino-17-demethoxygelda-
namycin (17-DMAG), which is currently undergoing clinical
trials for cancer treatment, effectively inhibits BBB disrup-
tion by preventing the degradation of tight junction pro-
teins, suppressing inflammatory responses, and decreasing
HSP90 expression after ischemic stroke [186]. Necroptosis
inhibitors also prevent other forms of cell death, while fer-
roptosis inhibitors cannot. For example, the RIP1 inhibitor
necrostatin-1 (Nec-1) has been proven to inhibit ferroptosis
in a necroptosis/RIP1-independent manner [187]. Mean-
while, Nec-1 decreases RIP1 and RIP3 protein levels, which
suppresses necroptosis and improves cognitive function
[30, 188]. A potent small-molecule inhibitor of MLKL,
necrosulfonamide, binds to MLKL’s N-terminal CC region
and reduces MLKL expression, which inhibits necroptosis,
diminishes infarct volume, and improves neurological func-
tion [189]. Dabrafenib, an RIP3 inhibitor at micromolar con-
centrations, reduces TNF-α mRNA levels and attenuates
TNF-α activation in macrophages, which decreases infarct
size and protects neuron cells after focal cerebral ischemic
injury [31]. As a monoclonal antibody widely used in inflam-
matory disease, infliximab can also be used to reduce mito-
chondrial damage, attenuate cytoplasmic transparency, and
decrease BBB permeability and necroptosis formation in
the ischemic area, eventually ameliorating neurological defi-
cits [7]. In addition, inhibition of necroptosis-related gene
expression has been intensively investigated as an ischemic

stroke treatment. For example, Gsk′872 (RIP3 inhibitor)
combined with RIP3 siRNA reduces the levels of RIP1,
RIP3, and MLKL and MLKL phosphorylation, which pro-
tects the neurological system [171]. Chinese herbs or their
active ingredients reduce the content of necroptosis-related
proteins (RIP3, MLKL, and phosphorylated MLKL), which
suppresses necroptosis and improves neurological function
in rats following MCAO [190].

8. Pharmacotherapies against CIRI Targeting
Ferroptosis and Necroptosis

Cerebral structural and neurological damage becomes more
severe with prolonged CIRI which results from delayed diag-
nosis and treatment of ischemic stroke. Therefore, timely
diagnosis and treatment remain critical for rapid cerebral
blood flow recovery and for reducing the incidence rates of
complications and recurrent stroke. However, thrombolytic
drugs, which are commonly used as the therapeutics against
CIRI, have declined in clinic because of their many contrain-
dications, their narrow therapeutic windows, and the risk of
hemorrhagic transformation [9, 10]. Current research seeks
to explore potential therapeutic strategies for CIRI. Notably,
oxidative stress, MPTP opening, cell death, and inflamma-
tion all lead to CIRI. Therefore, pharmacotherapies targeting
these mechanisms are important for improving the efficacy
of CIRI treatment, reducing adverse reactions, and attenuat-
ing secondary injury which results from reperfusion.
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Oxidative stress plays a major role in the pathogenesis of
CIRI. Some pharmacotherapies, such as metformin [191]
and galangin [192], suppress ferroptosis and exert cerebro-
protective effects in the context of CIRI by decreasing lipid
peroxidation production or increasing the expression of
GPX4. Apart from that efficacy, metformin (1,1-Dimethylbi-
guanide), a hypoglycemic drug, leads to glucose starvation
which results in the phosphorylation and activation of aden-
osine 5′-monophosphate-activated protein kinase (AMPK)
[193, 194]. This kinase suppresses PUFA-containing lipid
biosynthesis and then inhibits ferroptosis [194, 195]. In addi-
tion to galangin, the therapeutics of other Chinese herbs and
their bioactive constituents against CIRI cannot be ignored.
For example, Xinshao formula, a traditional Chinese medic-
inal compound, exerts a protective effect against CIRI in
rats by increasing the activity of SOD and GPX4 and
decreasing the content of ROS and MDA [196]. Therefore,
the formula attenuates oxidation or lipid peroxidation and
then suppresses cell death induced by oxidative stress.
The herbal carthamin yellow, as well as herb combination
huangqi-honghua and its main components astragaloside
IV and hydroxysafflor yellow A, significantly reduces the
infarct volume after 24 h of reperfusion, increases the activ-
ity of antioxidants (e.g., SOD and GPX4), and decreases the
levels of MDA, ROS, and Fe (II) [110, 197]. These botani-
cals may play an important role in neuroprotection by sup-
pressing ferroptosis.

Edaravone is an upstream suppressor of ROS [150, 198].
Cyclosporine-A is a potent inhibitor of CYPD, and it acts on
the prominent mediator of the MPTP [199]. The two drugs
inhibit MPTP opening in ischemic stroke and then inhibit
neuronal cell death [150, 198, 199]. MPTP opening is a com-
mon factor of ferroptosis and necroptosis, which is character-
ized primarily by RIP1 activation and RIP3 and MLKL
phosphorylation. The RIP1 inhibitor Nec-1 reduces the cell
death ratios of neurons after CIRI by inhibiting RIP1-RIP3
interaction and RIP3 activation [200]. Besides, the combina-
tion of Nec-1 and a glycogen synthase kinase-3 beta inhibitor
can downregulate the levels of necroptosis-related proteins
(RIP1, RIP3, and MLKL), decrease glial scar markers, and
ameliorate chronic inflammatory responses, which suppress
astrocyte necroptosis after CIRI [201]. β-Caryophyllene (8-
methylene-4,11,11-trimethylbicyclo [7.2.0] undec-4-ene), an
odoriferous bicyclic sesquiterpene, alleviates cerebral ischemic
injury or CIRI by inhibiting necroptotic neuronal death and
inflammatory response [202]. The therapy of emricasan (an
inhibitor of caspases) combined with ponatinib (a potential
inhibitor for RIP1/3) against CIRI has been reported to ame-
liorate necroptosis by reducing the activities of capase-8 and
downregulating the expressions of RIP1, RIP3, and MLKL
[203]. In addition, maresin 1, a new docosahexaenoic acid-
derived proresolving agent, reduces inflammatory responses
and attenuates mitochondrial damage, which may suppress
TNF-α-induced necroptosis, diminish neuronal degeneration,
and attenuate CIRI [204]. Vanillic acid (4-hydroxy-3-methox-
ybenzoic acid), a neuroprotective agent against CIRI, downre-
gulates the levels of proinflammatory factors and upregulates
the levels of anti-inflammatory factors [205], which can be
inferred that it exerts a neuroprotective effect against TNF-

α-induced necroptosis. Necroptosis inhibitors also attenuate
ferroptosis. For example, mifepristone (11β-(4-dimethyl‐
amino)‐phenyl-17β-hydroxy-17-(1-propynyl)‐estra-4,9-dien-
3-one) stimulates PPAR-γ to attenuate iron overload, which
suppresses ferroptosis and then alleviates CIRI in rats [90].
Besides, mifepristone also inhibits inflammatory cytokines
[96] to suppress necroptosis induced by TNF-α. As the PARP
inhibitor, PJ34 (N-(6-oxo-5, 6-dihydro-phenanthridin-2-yl)-
2-(N, N-dimethylamino)acetamide) enhances the DNA bind-
ing and transactivation of PPAR-γ [206], which inhibits
PARP-related necroptosis and ferroptosis. Therefore, PJ34
promotes vascular protection and attenuates reperfusion
injury induced by delayed rt-PA administration [90].

9. Conclusion and Perspectives

Stroke is becoming a crucial issue for people in developing
countries, especially in China, where ischemic stroke has
become the leading cause of death owing to its high morbid-
ity, mortality, and disability rates. Several types of cell death
pathways have been discovered. Besides, relevant research
has demonstrated their roles in organismal homeostasis and
the existence of crosstalk between them. Clarification of the
molecular mechanisms underlying this crosstalk will not only
contribute to a comprehensive understanding of the cell
death machinery but also shed light on new pharmacother-
apeutic targets for related diseases. Further study needs to
focus on the crosstalk regarding molecular mechanisms
and interplay among different types of regulated necrosis,
especially ferroptosis and necroptosis. Pharmacological
intervention of two or more types of regulated necrosis
simultaneously may have advantages in clinic to prevent
and treat ischemic stroke [207]. Nevertheless, many ques-
tions must be answered before this crosstalk can be exploited
for clinical applications. For example, the roles of receptors in
necroptosis/ferroptosis crosstalk have not been fully eluci-
dated. Moreover, the precise mechanisms of some drugs,
especially traditional Chinese medicine, targeting ferropto-
sis and necroptosis in ischemic stroke need to be further
explored. In addition, thrombolytic therapy for cerebral
ischemic injury has been limited due to its narrow thera-
peutic time window, induction of CIRI, and high risk of
hemorrhagic transformation. Thus, novel therapeutic
approaches, including traditional Chinese medicinal for-
mula, that affect multiple targets and prevent neuronal
death (including ferroptotic and necroptotic death) are
urgently needed to be developed. Solving the problems will
provide crucial support for exploiting the mechanisms of
crosstalk between ferroptosis and necroptosis and interven-
ing ischemic stroke. Overall, much work is needed before
these problems can be solved.
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RIP1: Receptor-interacting protein 1
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